CORRIGENDUM TO "ON NEAR PSEUDO-VALUATION RINGS AND THEIR EXTENSIONS"

[International Electronic Journal of Algebra, 5 (2009), 70-77.]

V. K. Bhat

All rings are associative with identity and all modules are unitary. Throughout this corrigendum R denotes a commutative ring with identity $1 \neq 0$. The field of rational numbers is denoted by \mathbb{Q} unless otherwise stated. Let R be a ring. The set of prime ideals of R is denoted by Spec(R), the set of associated prime ideals of R(viewed as a right R-module) is denoted by $Ass(R_R)$ and the set of minimal prime ideals of R is denoted by Min.Spec(R). Assas(U) denotes the assassinator of a uniform R-module U and for any subset J of a right R-module M, the annihilator of J is denoted by Ann(J). The set of regular elements of R is denoted by C(0)and for any ideal I of R, the set of elements regular modulo I is denoted by C(I).

Recall that a prime ideal P of R is said to be strongly prime if and only if for any $a, b \in R$ either $aP \subseteq bR$ or $bR \subseteq aP$. The set of strongly prime ideals of a ring R is denoted by S.Spec(R).

Let now σ be an automorphism of R and δ a σ -derivation of R. Consider the Ore extension $O(R) = R[x; \sigma, \delta] = \{\sum_{i=0}^{n} x^{i}a_{i}, a_{i} \in R\}$ in which multiplication is subject to the relation $ax = x\sigma(a) + \delta(a)$ for all $a \in R$.

To prove Theorem 2.5 and Corollary 2.6 of [2], the author uses Proposition 2.5 of [1].

Theorem 1. (Theorem 2.5 of [2]) Let R be a Noetherian near pseudo-valuation ring which is also an algebra over \mathbb{Q} . Let σ be an automorphism of R such that R is a $\sigma(*)$ -ring and δ a σ -derivation of R. Then O(R) is a Noetherian near pseudovaluation ring.

Corollary 2. (Corollary 2.6 of [2]) Let R be a Noetherian near pseudo-valuation ring which is also an algebra over \mathbb{Q} , σ and δ as usual such that $\sigma(U) = U$ for all $U \in Min.Spec(R)$. Then O(R) is a Noetherian near pseudo-valuation ring.

Proposition 3. (Proposition 2.5 of [1]) Let R be a ring, σ an automorphism of R and δ a σ -derivation of R. Then:

- (1) For any strongly prime ideal P of R with $\delta(P) \subseteq P$ and $\sigma(P) = P$, O(P) is a strongly prime ideal of O(R).
- (2) For any strongly prime ideal U of O(R), $U \cap R$ is a strongly prime ideal of R.

Proposition 3 above is false. This mistake was found by Prof. Feran Cedo and communicated to Prof. Dolors Herbera (Editor IEJA).

We note that the hypothesis (used above) that any $U \in S.Spec(R)$ with $\sigma(U) = U$ and $\delta(U) \subseteq U$ implies that $O(U) \in S.Spec(O(R))$ is too restrictive. This leads to the fact that U = 0 [Proof: This proof is done and forwarded by Prof. Dolors Herbera to the author : if $U \neq 0$ and $O(U) \in S.Spec(O(R))$ then either $O(U) \subseteq xO(R)$ or $xO(R) \subseteq O(U)$. The first case is not possible because $0 \neq U \subseteq O(U) \cap R \subseteq xO(R) \cap R = 0$ which is a contradiction. Therefore, $xO(R) \subseteq O(U)$ but then $1 \in U$ so that U = R which is impossible with a prime ideal].

Example 4. Let $R = \mathbb{Z}_{(p)}$. This is in fact a discrete valuation domain, and therefore, its maximal ideal P = pR is strongly prime. But pR[x] is not strongly prime in R[x] because it is not comparable with xR[x] (so the condition of being strongly prime in R[x] fails for a = 1 and b = x).

Consequent upon this, Proposition 2.4, Theorem 2.5 and Corollary 2.6 of [2] must be deleted from the paper.

Acknowledgement: The author would like to express his sincere thanks to Prof. Feran Cedo and Prof. Dolors Herbera for their timely communication regarding the mistake, and Example 4.

References

- V. K. Bhat, Polynomial rings over pseudovaluation rings, Int. J. Math. Math. Sci. 2007 (2007), Art. ID 20138.
- [2] V. K. Bhat, On near-pseudo-valuation rings and their extensions, Int. Electron. J. Algebra, 5 (2009), 70-77.

V.K. Bhat School Mathematics, SMVD University, P/o Kakryal, Katra, J and K, India -182320 e-mail: vijaykumarbhat2000@yahoo.com