SOME RESULTS ON GQP-INJECTIVE MODULES

Zhanmin Zhu

Received: 6 October 2007 Revised: 2 December 2008 Communicated by Derya Keskin Tütüncü

ABSTRACT. Let R be a ring. In this note we study some properties of GQP-injective R-modules, some results on GP-injective rings and QP-injective modules are extended to these modules. Some new properties of GP-injective rings are obtained.

Mathematics Subject Classification (2000): 16D50, 16D60, 16D70 Keywords: GQP-injective modules, Kasch modules, GP-injective rings, semilocal rings, perfect rings

1. Introduction

Throughout R is an associative ring with identity and modules are unitary. Recall that a right R-module M is called QP-injective [6, 7] if for every M-cyclic submodule K of M, any R-homomorphism from K to M extends to an endomorphism of M. And a right R-module M is called GQP-injective [10] if for every $0 \neq s \in S = end(M_R)$, there exists a positive integer n such that $s^n \neq 0$ and any R-homomorphism from $s^n M$ to M extends to an endomorphism of M. Clearly, QP-injective modules are GQP-injective, R is right P-injective [4] if and only if R_R is QP-injective, R is right GP-injective [2] if and only if R_R is GQP-injective. Since GP-injective rings need not be P-injective [3], so GQP-injective modules need not be QP-injective. Following Albu and Wisbauer [1], a module M_R is called Kasch if any simple module in $\sigma[M]$ embeds in M, where $\sigma[M]$ is the category consisting of all M-subgenerated right R-modules. It is easy to see that a ring R is right Kasch if and only if R_R is Kasch. In this note we study some properties of GQP-injective modules, especially GQP-injective Kasch modules. Some results on GP-injective rings and QP-injective modules in articles [2,11] are obtained as corollaries and some new results on GP-injective rings are obtained as well.

As usual, we denote the socle and the Jacobson radical of a module N by Soc(N) and Rad(N) respectively. The Goldie dimension and the length of a module N are denoted by G(N) and c(N) respectively. If the Goldie dimension of a module N is finite, then we call N finite dimensional. Let M be a

right R-module with $S = end(M_R)$ and let $X \subseteq M$ and $Y \subseteq S$, then we write $l_S(X) = \{s \in S \mid sx = 0, \forall x \in X\}$ and $r_M(Y) = \{m \in M \mid ym = 0, \forall y \in Y\}$. And we write $L \subseteq S$ if L is an essential left ideal of S.

2. GQP-injective Modules

Proposition 2.1. If M_R is a finitely generated GQP-injective Kasch module with $S = end(M_R)$, then

- (1) $l_S(RadM) \leq {}_SS$.
- (2) $Soc(_{S}S) \subseteq _{S}S$.
- (3) For any $s \in S$, Ss is a minimal left ideal of S if and only if s(M) is a simple submodule of M.
- **Proof.** (1) If $0 \neq s \in S$, then there exists a positive integer n such that $s^n \neq 0$ and any R-homomorphism from s^nM to M extends to an endomorphism of M by the GQP-injectivity of M. Choose a maximal submodule T of the right R-module s^nM . Since M is Kasch, there exists a monomorphism $f: s^nM/T \to M$. Define $g: s^nM \to M$ by g(x) = f(x+T). As M is GQP-injective, $g = s'|s^nM$ for some $s' \in S$. Take $g \in M$ such that $s^ng \in T$. Then $s's^ng = g(s^ng) = f(s^ng + T) \neq 0$, and thus $s's^n \neq 0$. If $s^n(RadM) \not\subseteq T$, then $S^n(RadM) + T = M$. But $s^n(RadM) < < s^nM$ because M is finitely generated, so $T = s^nM$, a contradiction. Hence $s^n(RadM) \subseteq T$. Thus, $(s's^n)(RadM) = g(s^n(RadM)) = f(0) = 0$, whence $0 \neq s's^n \in Ss^n \cap l_S(RadM)$. This implies that $l_S(RadM) \subseteq SS$.
- (2) Let $0 \neq s \in S$. Since M_R is GQP-injective, there exists a positive integer n such that $s^n \neq 0$ and $l_S(Ker(s^n)) = Ss^n$ by [10,Theorem 3]. Let $Ker(s^n) \subseteq T$ for some maximal submodule T of M, then $Ss \supseteq Ss^n = l_S(Ker(s^n)) \supseteq l_S(T)$. But $l_S(T)$ is minimal by [10, Theorem 12], so $Soc(S) \cap Ss \neq 0$, and hence $Soc(S) \subseteq S$.
- (3) If Ss is minimal, then by [10, Theorem 12], Ker(s) is maximal, and so $s(M) \cong M/Ker(s)$ is simple. Conversely, suppose that s(M) is simple. For any $0 \neq ts \in Ss$, since M_R is GQP-injective, there exists a positive integer n such that $(ts)^n \neq 0$ and any R-homomorphism from $(ts)^n M$ to M extends to an endomorphism of M. Now we define $\varphi : s(M) \to (ts)^n M$ such that $\varphi(sm) = (ts)^n m$ for all $m \in M$, then φ is an isomorphism. Let $i : s(M) \to M$ be the inclusion map and let $\psi = i\varphi^{-1}$. Then ψ is a homomorphism from $(ts)^n M$ to M with $\psi((ts)^n m) = sm$ for all $m \in M$, and so there exists $v \in S$ such that $v(ts)^n m = sm$ for all $m \in M$. It means that $v(ts)^n = s$ and then Ss = S(ts). Therefore, Ss is minimal.

Corollary 2.2. If R is a right GP-injective Kasch ring with J = J(R), then

- (1) [2, Lemma 2.2(1), Theorem 2.3(1)] For any $x \in R$, Rx is a minimal left ideal if and only if xR is a minimal right ideal.
 - (2) [2, Theorem 2.3(2)] $Soc(_RR) = Soc(R_R) \leq _RR$.
 - (3) [2, Theorem 2.3(4)] $l_R(J) \leq {}_RR$.

Theorem 2.3. Let M_R be a finitely generated GQP-injective Kasch module with $S = end(M_R)$. Then M/RadM is semisimple if and only if S is left finite dimensional. In this case, $Soc(S_S) = l_S(RadM)$, and $G(S_S) = c(S_Soc(S_S)) = c(M/RadM)$

Proof. (\Rightarrow) The case M=0 is trivial. If $M\neq 0$, then $M/RadM\neq 0$ because M is finitely generated. As M/RadM is semisimple, by [11, Lemma 8], there exist maximal submodules T_1, T_2, \cdots, T_n such that $M/RadM\cong \bigoplus_{i=1}^n M/T_i$. Hence, by [11, Lemma 7] and [10,Theorem 12], $l_S(RadM)\cong {}_SHom_R(M/RadM, {}_SM_R)\cong {}_SHom_R(\bigoplus_{i=1}^n M/T_i, {}_SM_R)\cong \bigoplus_{i=1}^n l_S(T_i)$ is an n-generated semisimple module. This implies that $l_S(RadM)=Soc({}_SS)\unlhd_SS$ by Proposition 2.1, and therefore S is left finite dimensional and G(S)=n=c(SSoc(S)).

$$(\Leftarrow)$$
 See [11, Proposition 6].

Our next result improves [2, Theorem 2.8]

Corollary 2.4. Let R be right GP-injective and right Kasch. Then R is semilocal if and only if R is left finite dimensional. In this case, $Soc(_RR) = Soc(_RR)$, and $G(_RR) = c(_RSoc(_RR)) = c(\overline{R}_R)$, where $\overline{R} = R/J(R)$

Proof. This is immediate from Theorem 2.3 and Corollary 2.2. \Box

Proposition 2.5. Let M_R be a GQP-injective module with $S = end(M_R)$. Then

- (1) If $s, t \in S$ and $sM \cong tM$ are simple, then $Ss \cong St$.
- (2) If M_R is a self-generator, then $Soc(M_R) \subseteq Soc(_SM)$.

Proof. (1) By hypotheses, there exists a positive integer n such that $s^n \neq 0$ and any R-homomorphism from $s^n M$ to M extends to an endomorphism of M. Since sM is simple, $s^n M = sM$. Let $\sigma: sM \to tM$ be an isomorphism, then σ extends to an endomorphism τ of M. Let $\phi: St \to Ss$ be defined by $\phi(ut) = u\tau s$. Then ϕ is well defined since $(\tau s)M \subseteq t(M)$. Now it is routine to verify that ϕ is an isomorphism.

(2) Since M_R is a self-generator, every simple submodule K of M_R has the form s(M) for some $s \in S$, thus by the proof of Proposition 2.1(3), Ss is simple. This

follows that $SsM \cong Ss$ and hence SsM is a simple left S- module. Therefore, $K \subseteq Soc(M_R)$, and (2) follows.

Let $S = end(M_R)$, following [5], we write $W(S) = \{s \in S \mid ker(s) \text{ is essential in } M\}$.

Lemma 2.6. Let M_R be GQP-injective which is a self-generator with $S = End(M_R)$. If $s \notin W(S)$, then the inclusion $Ker(s) \subset Ker(s-sts)$ is strict for some $t \in S$.

Proof. If $s \notin W(S)$, then $Ker(s) \cap K = 0$ for some nonzero submodule K of M, and so $Ker(s) \cap s'(M) = 0$ for some $0 \neq s' \in S$ because M_R is a self-generator. Clearly, $ss' \neq 0$. Since M_R is GQP-injective, there exists a positive integer n such that $(ss')^n \neq 0$ and $l_S(Ker(ss')^n) = S(ss')^n$. Thus, $s'(ss')^{n-1} \in l_S(Ker(s'(ss')^{n-1})) = l_S(Ker((ss')^n)) = S(ss')^n$. Write $s'(ss')^{n-1} = t(ss')^n$, then $(1-ts)s'(ss')^{n-1} = 0$ and hence $(s-sts)s'(ss')^{n-1} = 0$. It is obvious that $Ker(s) \subseteq Ker(s-sts)$. Note that $(s'(ss')^{n-1})M$ is contained in Ker(s-sts) but not contained in Ker(s), the inclusion $Ker(s) \subseteq Ker(s-sts)$ is strict.

Theorem 2.7. Let M_R be GQP-injective which is a self-generator with $S = end(M_R)$. Then the following conditions are equivalent.

- (1) S is right perfect.
- (2) For any sequence $\{s_1, s_2, \dots\} \subseteq S$, the chain $Ker(s_1) \subseteq Ker(s_2s_1) \subseteq \dots$ terminates.

Proof. By using [10, Theorem 5], Lemma 2.6 and [12, Lemma 2.8], one can complete the proof in a similar way to that of [12, Theorem 2.9]. \Box

Following [8], a module M_R is said to be GC2 if for any $N \leq M$ with $N \cong M$, N is a direct summand of M.

Proposition 2.8. Let M be a right R-module with $S = end(M_R)$. Then the following conditions are equivalent.

- (1) M_R is GC2.
- (2) If Ker(s) = 0, $s \in S$, then S = Ss.

Proof. (1) \Rightarrow (2) Let s be given as in (2). Then the mapping $\sigma: sM \to M$; $sm \mapsto m$ is an R-isomorphism. By (1), sM is a direct summand of M, so σ can be extended to an endomorphism t of M. It then follows that $1 = ts \in Ss$.

 $(2)\Rightarrow(1)$ Suppose that N is a submodule of M and $N\cong M$. Let $f:M\to N$ be an isomorphism and let $i:N\to M$ be the inclusion mapping, writing s=if, then N=s(M) and Ker(s)=0. So by (2), 1=ts for some $t\in S$. This follows that $(st)^2=st$ and sM=(st)M. Whence N is a direct summand of M.

Theorem 2.9. If M_R is a GQP-injective module, then it is GC2.

Proof. Let $s \in S = end(M_R)$ with Ker(s) = 0. Then $Ker(s^k) = 0$ for each positive integer k. Since M_R is GQP-injective, there exists a positive integer n such that $s^n \neq 0$ and $l_S(Ker(s^n)) = Ss^n$. Which implies that $S = Ss^n$ and then S = Ss.

Since the endomorphism ring of a finite dimensional GC2 module is semilocal by [9, Lemma 1.1], we have immediately the following:

Corollary 2.10. Let M_R be a GQP-injective module with $S = end(M_R)$. If M_R is finite dimensional, then S is semilocal.

Acknowledgment. The author is very grateful to the referee for the useful comments.

References

- T. Albu and R. Wisbauer, Kasch modules, Advances in Ring Theory, S. K. Jain and S. T. Rizvi (eds.), Birkhäuser, 1997, 1-16.
- [2] J. L. Chen and N. Q. Ding, On general principally injective rings, Comm. Algebra, 27(5) (1999), 2097-2116.
- [3] J. L. Chen, Y. Q. Zhou and Z. M. Zhu, *GP-injective rings need not be P-injective*, Comm. Algebra, 33(7) (2005), 2395-2402.
- [4] W. K. Nicholson and M. F. Yousif, Principally injective rings, J. Algebra, 174 (1995), 77-93.
- [5] W. K. Nicholson, J. K. Park and M. F. Yousif, Principally quasi-injective modules, Comm. Algebra, 27(4) (1999), 1683-1693.
- [6] N. V. Sanh, K. P. Shum, S. Dhompongsa and S. Wongwai, On quasi-principally injective modules, Algebra Colloq., 6(3)(1999), 269-276.
- [7] N. V. Sanh and K. P. Shum, Endomorphism rings of quasi-principally injective modules, Comm. Algebra, 29(4) (2001), 1437-1443.
- [8] M. F. Yousif and Y. Q. Zhou, Rings for which certain elements have the principal extension property, Algebra Colloq., 10(4) (2003), 501-512.
- [9] Y. Q. Zhou, Rings in which certain right ideals are direct summands of annihilators, J. Aust. Math. Soc., 73(3) (2002), 335-346.
- [10] Z. M. Zhu, On general quasi-principally injective modules, Southeast Asian Bull. Math., 30(2) (2006), 391-397.
- [11] Z. M. Zhu and Z. S. Tan, A note on quasi P-injective modules, Sci. Math. Jpn., 62(3) (2005), 461-464.

[12] Z. M. Zhu, Z. S. Xia and Z. S. Tan, Generalizations of principally quasiinjective modules and quasiprincipally injective modules, Int. J. Math. Math. Sci., (12) (2005), 1853-1860.

Zhanmin Zhu

Department of Math., Jiaxing University, Jiaxing, Zhejiang Province, 314001, China.

e-mail: zhanmin_zhu@hotmail.com