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Abstract. In this paper, it is proved that all nontrivial laws in form
Q

i<j [xi, xj ]
λij of metabelian products of abelian groups are products of trans-

forms of Jacobi products if not all the factors are torsion groups. This result

generalizes the well-known result of Bachmuth on the laws of free metabelian

groups. Using this, n-symmetric words of metabelian products are completely

described. Moreover, an example is constructed to show that the above result

is not necessarily true if all the factors are torsion groups.
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1. Introduction

We first fix some notation which will be used throughout the paper. For a

positive integer n, let Fn denote the free group of rank n with basis {x1, . . . , xn}.
Then An := Fn/F ′n and Mn := Fn/F ′′n will denote the free abelian group and the

free metabelian group of rank n, respectively. Similarly, for a positive integer m, let

F := H1∗· · ·∗Hm be the free product of some nontrivial abelian groups H1, . . . , Hm.

Then A := F/F ′ and M := F/F ′′ will denote the corresponding abelian product

and metabelian product, respectively. For a group G, let Z(G) be the integral

group ring, and for each element ω ∈ Z(G), we use ω̄ and ω̃ to denote its natural

image in Z(G/G′) and Z(G/G′′), respectively. The commutator of two elements

a, b is denoted by [a, b] = aba−1b−1, and the conjugate is denoted by ab = bab−1.

Moreover, we use a = b(mod F ′′n ) to denote that there exists an element c ∈ F ′′n
such that a = bc.

Definition 1.1. Let G be a group. An element ω ∈ Fn is called a law of G if

ω(g1, . . . , gn) = 1 for any g1, . . . , gn in G. The group of all laws of G in Fn is called

the law group of G and denoted by L(G).
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Let ω ∈ Fn. Since F ′n is generated by the commutators [xi, xj ]µ, where 1 ≤ i ≤
j ≤ n and µ ∈ Fn, and since any two commutators commute modulo F ′′n , ω can be

expressed as

ω = ω1ω2(mod F ′′n ) = xµ1
1 · · ·xµn

n

∏

i<j

[xi, xj ]λij (mod F ′′n ), (1)

where ω1 = xµ1
1 · · ·xµn

n , ω2 =
∏

i<j [xi, xj ]λij , µi ∈ Z and λij ∈ Z[x̄±1 , . . . , x̄±j ].

For the free metabelian group Mn, since M ′
n is abelian, M ′

n may be regarded as

a left Z(Mn/M ′
n)-module in the natural way, where the module action is induced

by the conjugation in Mn. It is known that the Jacobi products

[xi, xj ]1−x̄k [xj , xk]1−x̄i [xk, xi]1−x̄j

are laws for each metabelian group. The following well-known theorem obtained

by Bachmuth [1], shows that its partial inverse is true.

Theorem 1.2. Let ω ∈ F ′n and write ω = ω2(mod F ′′n ) as in form (1). Then ω is

a law of the free metabelian group Mn if and only if ω2 is a product of transforms

of Jacobi products.

The main purpose of this paper is to prove the following theorem, which gener-

alizes the above Bachmuth’s result.

Theorem 1.3. Let m, n ≥ 2 be integers. Let M be the metabelian product of some

nontrivial abelian groups H1, . . . ,Hm. If not all factors Hi are torsion groups, then

L(G) = F ′′n . More precisely, let ω = ω2(mod F ′′n ) as in form (1), then ω is a law of

M in Fn if and only if ω1 = 1 and ω2 is a product of transforms of Jacobi products.

In the case that all factors Hi are torsion groups, the following example shows

that Theorem 1.3 is not necessarily true.

Example 1.4. Let n ≥ 2 be an integer. Let G be the metabelian product of cyclic

groups 〈a1〉 and 〈a2〉 with o(a1) = o(a2) = 2. Then
∏

i<j [xi, xj ](1+x̄i)(1+x̄j) is a law

of G, and cannot be expressed as a product of transforms of Jacobi products.

This example is discussed in details in Section 4.

As an application of Theorem 1.3, a characterization of symmetric words of

metabelian groups is given in Section 4.

Definition 1.5. Let G be a group. A word ω(x1, . . . , xn) ∈ Fn is called a n-

symmetric word for the group G, if ω(g1, . . . , gn) = ω(gσ(1), . . . , gσ(n)) for all

g1, . . . , gn in G and σ in the symmetric group Sn.
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Symmetric words for a group are closely related to the fixed points of the auto-

morphisms permuting generators in their corresponding relatively free groups [13].

The problem of characterizing the symmetric words for a given group G was initi-

ated by Plonka [10], who gave a complete description for nilpotent groups of class

≤ 3. More results on the symmetric words can be found in [4,5,6,7].

Our second result, stated in the following theorem, completely describes n-

symmetric words of metabelian products M .

Theorem 1.6. Each n-symmetric word of M can be expressed in the form

ω =
∏

i<j

[xi, xj ]u(x̄i,x̄j)+v(x̄i,x̄j)p(x̄1,...,∧x̄i,...,∧x̄j ,...,x̄n),

where u and v are sums of polynomials of the forms xrys − xsyr with integral

coefficients, and p is an (n− 2)-symmetric polynomial.

This paper is organized as follows. After this introduction, we recall, in Section

2, some necessary information on Fox derivatives, Magnus embedding, Shmel’kin

embedding and generalized derivatives. Then in Section 3, we first prove several

technical lemmas and then Theorem 1.3. Finally in Section 4, we discuss Exam-

ple 1.4 and prove Theorem 1.6.

2. Preliminaries

We first recall some necessary information of Fox derivatives [2] and Magnus

embedding [8].

Left Fox derivatives ∂i (i = 1, 2, · · · , n) are defined to be linear mappings from

Z(Mn) to Z(An), which satisfy for any elements ũ, ṽ ∈ Z(Mn) the following rules:

(1) ∂i(ũ + ṽ) = ∂i(ũ) + ∂i(ṽ);

(2) ∂i(x̃j) = δij ;

(3) ∂i(ũṽ) = ū∂i(ṽ) + ε(ṽ)∂i(ũ), where δij is kronecker symbol, ε is the trivial-

ization map of Z(Mn) → Z.

For every ω̃ ∈ Mn, s̄ ∈ Z(An), we have the following equality [1]:

∂i(w̃s̄) = s̄ · ∂i(w̃).

Let Tn be a left Z(An)-module with basis {t1, . . . , tn}. Consider a matrix group

Wn such that

Wn =

(
An Tn

0 1

)
.

Then the map



10 JIANGMIN PAN

β(ω̃) =

(
ω̄ ∂1(ω̃)t1 + · · ·+ ∂n(ω̃)tn
0 1

)
,

where ω̃ ∈ Mn, is an embedding (called the Magnus embedding) of Mn into Wn.

The Magnus embedding was generalized into Shmel’kin embedding in [12], and

the reduced generalized derivatives [3] play similar role in the investigation of the

group F/R′ to the role of the Fox derivatives in the investigation of the group

Mn, where R is a normal subgroup of F with R
⋂

Hi = 1 for i = 1, . . . , m. Write

H := F/R. Let T be a free left Z(H)-module with basis {t1, . . . , tm}. Consider a

matrix group W such that

W =

(
H T

0 1

)
.

The map

ai →
(

āi (āi − 1)ti
0 1

)
,

where ai ∈ Hi (i = 1, . . . ,m) and āi is the natural image of ai in H, determines

a homomorphism σ : F → W with kernel R′. The resulting embedding (we also

write σ to denote this embedding) of the group F/R′ into the group W is called the

Shmel’kin embedding. It is known that the Shmel’kin embedding can be applied

to the case where R = F ′.

As shown in [3], for any element ω̃ ∈ F/R′, we have

σ(ω̃) =

(
ω̄ D1(ω̃)t1 + · · ·+ Dm(ω̃)tn
0 1

)
,

where Di (i = 1, . . . , m) are the generalized derivatives.

Similar to the Fox derivatives, the generalized derivatives

Di : Z(F/R′) → Z(F/R)

satisfy the following rules:

(1) Di(ũ + ṽ) = Di(ũ) + Di(ṽ) for any ũ, ṽ ∈ Z(F/R′);

(2) Di(ũṽ) = ūDi(ṽ) + ε(ṽ)Di(ũ) for any ũ and ṽ ∈ Z(F/R′);

(3) Di(ũ) = ū− 1 for any u ∈ Ai;

(4) Di(ũ) = 0 for any u ∈ Aj , j 6= i.

where ε is the trivialization map of Z(F/R′) → Z.

Generalized derivatives and Fox derivatives have the following relation [3]:

for any u(x̃1, . . . , x̃n) ∈ Mn and for all g1, · · · , gn ∈ M ,

Di(u(g1, · · · , gn)) =
n∑

j=1

Digi∂ju(g1, · · · , gn),
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where ∂ju(g1, . . . , gn) denotes the value of ∂ju(x1, . . . , xn) on (g1, . . . , gn).

3. Proof of Theorem 1.3

The following lemma can be found in [9], it allows to use equations on group

rings to study metabelian groups.

Lemma 3.1. Let a, b be elements of a group. Consider the equation

(1− a)(1− b)x = 0

then

(1) if o(a) = o(b) = +∞, the equation has only the zero solution in Z(〈a〉× 〈b〉);
(2) if o(a) = m1, o(b) = m2, all the solutions of the equation in Z(〈a〉 × 〈b〉) are

as follows:

x = g(b)
m1−1∑

i=1

ai + h(a)
m2−1∑

j=1

bj ,

where g(b) ∈ Z(〈b〉), h(a) ∈ Z(〈a〉);
(3) if o(a) = +∞, o(b) = m, all the solutions of the equation in Z(〈a〉 × 〈b〉) are

as follows:

x = f(a)
m−1∑

i=1

bi,

where f(a) ∈ Z(〈a〉).

We now prove two technical lemmas which play important roles in the proof of

Theorem 1.3, and are of independent interest.

Lemma 3.2. Let ω ∈ F ′n. Then ω can be expressed as

ω =
∏

i<j

[xi, xj ]λij υ,

where λij ∈ Z[x̄±1 , . . . , x̄±j ], and υ ∈ F ′′n .

Proof. By definition, F ′n is generated by the elements [xi, xj ]µ, where 1 ≤ i < j ≤ n

and µ ∈ Fn. Since F ′n/F ′′n is abelian, we can write

ω =
∏

i<j

[xi, xj ]µij ω1,

where µij ∈ Z[x̄±1 , . . . , x̄±n ], and ω1 ∈ F ′′n . Then it suffices to prove that all factors

[xi, xj ]µij can be expressed as in the form of lemma. Equivalently, it suffices to prove

that if νij ∈ Z[x̄±1 , . . . , x̄±j ] then [xi, xj ]νij x̄k and [xi, xj ]νij x̄−1
k can be expressed as

in the form of lemma for each k > j.

By Jacobi identity
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[xi, xj ]1−x̄k [xj , xk]1−x̄i [xk, xi]1−x̄j = 1 mod F ′′n ,

we have

[xi, xj ]νij x̄k = [xi, xj ]νij [xi, xj ](x̄k−1)νij

= [xi, xj ]νij ([xj , xk]x̄i−1[xk, xi]x̄j − 1)νij mod F ′′n

= [xi, xj ]νij [xi, xk]νij(x̄j−1)[xj , xk]νij(1−x̄i) mod F ′′n

and similarly, we have

[xi, xj ]νij x̄−1
k = [xi, xj ]νij [xi, xk]νij(1−x̄j)x̄

−1
k [xj , xk]νij(x̄i−1)x̄−1

k mod F ′′n .

So the lemma is true. ¤

Lemma 3.3. Let G be a metabelian group and ω as in Lemma 3.2. Then ω is a

law of G if and only if

ωk =
∏

i<k

[xi, xk]λik

is a law of G for each k ≥ 2.

Proof. Note that ω =
∏n

k=2 ωkυ, where υ ∈ F ′′. Since υ is naturally a law of G,

if all ωk are laws of G, then ω is a law of G.

Set uk =
∏

i<j≤k[xi, xj ]λij , where λij ∈ Z[x̄±1 , . . . , x̄±j ]. For any elements

g1, . . . , gk ∈ G, we have

uk(g1, . . . , gk) = ω(g1, . . . , gk, 1, . . . , 1) = 1.

Thus uk is a law of G for each k ≥ 2, and so ωk = u−1
k−1uk is a law. ¤

We can now prove our main theorem.

The inclusion F ′′n ⊆ L(G) is obvious.

Without loss of generality, we may assume that H1 is a torsion free group and

a1 ∈ H1 is an element of infinite order. Obviously, A = F/F ′ = H1 × · · · ×Hm.

Suppose ω ∈ L(M), that is, ω is a law. By Lemma 2.2, we may write

ω = xµ1
1 · · ·xµn

n

∏

i<j

[xi, xj ]λij mod F ′′n ,

where µi ∈ Z and λij ∈ Z[x̄±1 , . . . , x̄±j ].

Choose g̃i = ã1, g̃j = 1 for j 6= i. Then

ãµi

1 = ω(g̃1, . . . , g̃n) = 1,
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hence µi = 0 since o(ã1) = o(a1) = +∞. By Lemma 3.3, for 2 ≤ k ≤ n, the

elements

ωk = [x1, xk]λ1k · · · [xk−1, xk]λk−1,k (2)

are laws of G. In the following, we distinguish two cases depending on whether or

not there exists some Hi with i ≥ 2 which is not a torsion group.

Case 1. Assume that some Hi with i ≥ 2 is not a torsion group.

Without loss of generality, assume that H2 is not a torsion group, and a2 ∈ H2

is an element of infinite order. For any positive integers s1, s2, . . . , sk, by (2), we

have

ωk(ãs1
1 , ãs2

2 , . . . , ãsk
2 ) = [ãs1

1 , ãsk
2 ]λ1k(ā

s1
1 ,ā

s2
2 ,...,ā

sk
2 ) = 1.

Applying the generalized derivative D1, it follows that

−λ1k(ās1
1 , ās2

2 , . . . , āsk
2 )(1− ās1

1 )(1− ās2
2 ) = 0.

By Lemma 3.1, we have

λ1k(ās1
1 , ās2

2 , . . . , āsk
2 ) = 0. (3)

On the other hand, suppose λ1k(x̄1, x̄2, . . . , x̄2) 6= 0. Let cx̄t1
1 x̄t2

2 · · · x̄tk

k be the ini-

tial monomial of λ1k(x̄1, x̄2, . . . , x̄2) in the lexicographic order, where c 6= 0 is an in-

teger. Then we can choose s1, s2, . . . , sk sufficiently large (if necessary) such that the

degree of (c(ās1
1 )t1(ās2

2 )t2 · · · (āsk
2 )tk) is bigger than the degrees of other monomials

in λ1k(ās1
1 , ās2

2 , . . . , āsk
2 ), which contradicts equation (3). So λ1k(x̄1, x̄2, . . . , x̄k) = 0.

Similarly, we have λik(x̄1, x̄2, . . . , x̄k) = 0 for i = 2, . . . , k − 1. Hence ω ∈ F ′′n .

Case 2. Assume that H2, . . . ,Hn are torsion groups.

Choose a2 ∈ H2 with o(a2) = r > 1. For any positive integers s1, s2, · · · , sk, by

(2), we have

[ãs1
1 ã2, ã

sk
1 ]λ1k(ā

s1
1 ā2,ā

s2
1 ,...,ā

sk
1 )

= ωk(ãs1
1 ã2, ã

s2
1 , . . . , ãsk

1 ) = 1.

Applying the generalized derivative D1, it follows that

λ1k(ās1
1 ā2, ā

s2
1 , . . . , āsk

1 )ās1
1 (1− āsk

1 )(1− ā2) = 0

Since ās1
1 is invertible in Z[ā±1 , ā±2 ], by Lemma 3.1, there exists f(ā1) ∈ Z[ā±1 ] such

that

λ1k(ās1
1 ā2, ā

s2
1 , . . . , āsk

1 ) = f(ā1)(1 + ā2 + · · ·+ ār−1
2 ). (4)
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On the other hand, if λ1k(x̄1, . . . , x̄k) 6= 0, write

λ1k(x̄1, . . . , x̄k) = x̄s
1f0(x̄2, . . . , x̄k) + x̄s−1

1 f1(x̄2, . . . , x̄k) + · · ·

with f0(x̄2, . . . , x̄k) 6= 0. Since o(ā1) = +∞, it is not difficult to show that there

exist positive integers s2, · · · , sk such that f0(ās2
1 , . . . , āsk

1 ) 6= 0. Then we can choose

s1 sufficiently large (if necessary) such that the degree of f0(ās2
1 , . . . , āsk

1 )ās1s
1 is

bigger than the degree of fi(ās2
1 , . . . , āsk

1 )āν1(s−i)
1 for each i ≥ 1. Since o(a2) = r > 1,

we may rewrite

λ1k(ās1
1 ā2, ā

s2
1 , . . . , āsk

1 ) = g0(ā1) + g1(ā1)ā2 + · · ·+ gr−1(ā1)ār−1
2 ,

we then have that degree of gt(ā1) is bigger than degree of gi(ā1) for each i 6= t,

where t is the smallest nonnegative residue of s modulo r. So λ1k(ās1
1 ā2, ā

s2
1 , . . . , āsk

1 ) 6=
0, which contradicts the equation (4). Hence λ1k(x̄1, x̄2, . . . , x̄k) = 0.

With the similar discussion as in case 1, we have ω ∈ F ′′n .

Summarizing, we have proved that L(M) = F ′′n . Then the last statement in

Theorem 1.3 is a direct consequence of [1, Theorem 1.3]. 2

4. Example and symmetric words

The following example shows that in Theorem 1.3 it is necessary to assume that

not all factors Hi are torsion groups.

Example 1.4. Let ω :=
∏

i<j [xi, xj ](1+x̄i)(1+x̄j). To prove ω is a law of G, it

suffices to prove that ωi,j := [xi, xj ](1+x̄i)(1+x̄j) is a law of G for each i < j.

Note that each element of G can be expressed in one of the following four forms:

(i) (ã1ã2)k; (ii) (ã2ã1)k; (iii) (ã1ã2)kã1; (iv) (ã2ã1)kã2.

where k is a positive integer. Let g̃1 and g̃2 be any elements of G.

If g̃1 and g̃2 are elements of the form (i) or (ii), then g̃1 and g̃2 commute and

then ωi,j(g̃1, g̃2) = 1. Thus assume that there exists at least one of g̃1 and g̃2 in

form (iii) or (iv), upon the symmetry of a1 and a2, we may suppose that

(1 + ḡ1)(1 + ḡ2) ∈ Z(A/A′)(1 + ā1).

Then

D1(ω(g̃1, g̃2)) = (1 + ḡ1)(1 + ḡ2)D1([g̃1, g̃2]) ∈ Z(A/A′)(1 + a1)(a1 − 1) = {0},

that is, D1(ω(g̃1, g̃2)) = 0. Obviously, ωi,j(g̃1, g̃2) = 1, so ω(g̃1, g̃2) = 1 by Shmel’kin

embedding. Hence ω is a law of the group G.
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Further, applying Fox derivative, by direct computation, we have

∂1ω = (1 + x̄1)(n−
∑

i<j

x̄2
j ) 6= 0,

by the Magnus embedding, ω /∈ F ′′n . So ω cannot be expressed as a product of

transforms of Jacobi products. 2

Finally, we prove Theorem 1.6.

Let ω be a n-symmetric word of M . By definition, we have that

ω(g1, . . . , gn) = ω(gσ(1), . . . , gσ(n)) (5)

for all g1, · · · , gn in M and σ in the symmetric group Sn. It is easy to show that

the equation (5) is equivalent to that

ω(x1, . . . , xn)(ω(xσ(1), . . . , xσ(n)))−1

is a law of M in Fn. This discussion means that the n-symmetric words of a group

are perfectly determined by its law group. Now, since L(M) = L(Mn) = F ′′n , we

know that M and Mn have the same n-symmetric words set, and the Theorem 1.6

is true by [7, Theorem 1]. 2
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