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Abstract. Let (A, m) be a Noetherian local ring with infinite residue field

and E be a finitely generated d dimensional Cohen-Macaulay A-module. Let

b be an ideal of A such that htEb = 0 and λ(b, E) = 1. Assume that bp = 0

for all p ∈ Min(E/bE). Let r(b, E) > 0. We show that if Gb(E) is Cohen-

Macaulay, then r(b, E) = a(Gb(E)) + 1.
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1. Introduction

Let (A,m) be a Noetherian local ring with infinite residue field k = A/m and let

E be a d-dimensional finitely generated A-module. Let b be an ideal of A. An ideal

a ⊆ b is called a reduction of b relative to E if abnE = bn+1E for some nonegative

integer n, (see [2, Definition 4.6.4]). We denote by ra(b, E) the least integer with

this property. A reduction a of b relative to E is called a minimal reduction if it

does not properly contain any other reduction of b relative to E. Since k is infinite

it is well known that minimal reductions relative to E always exist; see [15, section

4] and [2, Proposition 4.5.8]. In this case we define the reduction number of b

relative to E by

r(b, E) = min{ra(b, E) : a is a minimal reduction of b relative to E}.

With E = A the correspondence definitions for ideals almost immediately yields;

(see [11]). In this case we set r(b) := r(b, A) and call it the reduction number of b.

In order to state and prove our results we set up a few more notation. We denote by

Rb(E) (resp. by Gb(E)) the Rees module of E associated to b (resp. the associated

graded module of E with respect to b), namely:

Rb(E) :=
∞⊕

n=0

bnE and Gb(E) :=
∞⊕

n=0

bnE/bn+1E = Rb(E)/bRb(E).
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In the case E = A we denote it by R(b) (resp. by G(b)) and call it the Rees

algebra (resp. the associated graded ring) of b simply. Then both Rb(E) and

Gb(E) are finitely generated graded R(b)-module. We denote by m the unique

homogeneous maximal ideal of R(b), i.e., m := mR(b) + R(b)+. Then follow-

ing [2, Definition 4.5.7], the analytic spread of b relative to E is defined to be

λ(b, E) = dim(Rb(E)/mRb(E)) = dim(Gb(E)/mGb(E)), where dim(−) denotes

Krull dimension. Set also λ(b) = dim(R(b)/mR(b)). We note that in general

htEb ≤ λ(b, E) ≤ d = dimE and that by [7, (9.7) Theorem] dim(Gb(E)) = dimE.

The reduction number of an ideal was introduced by Sally [12], where he used

explicitly the presence of small reduction number of the maximal ideal m in a

Cohen-Macaulay local ring in order to study Cohen-Macaulay property of associ-

ated graded ring G(m). For further results and usefulness of this notion see [3,8,15].

A question due to Sally [13], which attained much attention is; when the reduc-

tion number of b is independent of the choice of minimal reduction? Some partial

solutions of this problem were given in [8,9,10]. Most of results are based on the

”a-invariant” and the end of some local cohomology modules. So it is suitable to

describe them briefly. A nice reference for this material is [5], and the textbook

by Brodmann and Sharp [1, Chapters 15, 18]. Let S = ⊕n≥0Si be a Noetherian

graded ring with (S0, n0) a local ring. Let S+ be the irrelevant ideal of S and

N = n0S +S+ denote the maximal homogeneous ideal of S. Let L be a Noetherain

graded S-module of dimension s. If Hi
u(L) denotes the i-th graded local cohomol-

ogy of L with support in graded ideal u of S, then it is well known that the n-th

homogeneous component of Hi
S+

(L) i.e., [Hi
S+

(L)n] is finitely generated for all i ≥ 0

and all n ∈ Z, and it is zero for large values of n. We set

ai(L) = Max{n ∈ Z : [Hi
N(L)]n 6= 0},

and

āi(L) = Max{n ∈ Z : [Hi
S+

(L)]n 6= 0}.

(Convention: If Hi
N(L) = 0 (resp. Hi

S+
(L) = 0) we set ai(L) = −∞ (resp. āi(L) =

−∞)). Then for convenience as(L) is denoted simply as a(L) and called a-invariant

of L.

In [8], Hoa by combining Trungs’s approaches in [14] and an idea of [6] proved

that for large values of n the reduction number of bn is independent of n and any

minimal reduction of bn and he computed the asymptotic value of r(bn). More

exactly he proved that for n > Max{|āi(G(b))| : āi(G(b)) 6= 0}, r(bn) = λ(b) if
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āλ(b)(G(b)) ≥ 0 and otherwise r(bn) = λ(b)− 1. On the other hand in [10], Marley

proved that if A is Cohen-Macaulay, b is m-primary ideal and grade(G(b)+, G(b)) >

0, then r(b) = a(G(b)) + dim A (see also [9, proposition 5.6]).

In this paper using some ideas of [4], under some assumptions on b and E, we

find a formula for the invariant r(b, E). More precisely we prove:

Theorem 1.1. Let (A, m) be a local ring and let E be a finitely generated d di-

mensional Cohen-Macaulay A-module. Let b be an ideal of A such that htEb = 0,

λ(b, E) = 1, r(b, E) > 0 and bp = 0 for all p ∈ Min(E/bE). If Gb(E) is Cohen-

Macaulay, then r(b, E) = a(Gb(E)) + 1.

2. Proof of Theorem 1.1

We first prove some auxiliary lemmas.

Lemma 2.1. Suppose that E is Cohen-Macaulay and that bp = 0 for each p ∈
Min(E/bE). Let b ∈ b such that

√
0 :A E + (b) =

√
0 :A E + b. Then (0 :E b) ∩

bE = 0.

Proof. Let 0E = Q1 ∩ ... ∩ Qn be a minimal primary decomposition of 0E , with

associated primes pi =
√

Qi :A E for each i = 1, ..., n, enumerated in such a way

that b ⊆ pi for i = 1, ..., t and b * pi for i = t+1, ..., n. Since E is Cohen-Macaulay,

we have htEpi = 0 for i = 1, ..., n. Since bp = 0 for each p ∈ Min(E/bE), we have

bE ⊆ Q1∩ ...∩Qt. Now suppose x ∈ bE such that bx = 0E . This in particular gives

that bx ∈ Qi for i = t + 1, ..., n. Since
√

0 :A E + (b) =
√

0 :A E + b and b * pi, so

b is not an element of pi for i = t + 1, ..., n. Therefore x ∈ Qi for i = t + 1, ..., n. So

x ∈ bE ∩Qt+1 ∩ ... ∩Qn ⊆ Q1 ∩ ... ∩Qn = 0E and the claim follows. ¤

We remind the terminology we are using with respect to G(b). If x ∈ A then

x∗ denotes the initial form of x in G(b), (i.e., the image of x in bn/bn+1, where

x ∈ bn \ bn+1) and for each ideal u of A, the notation u∗ denotes the ideal uG(b).

Lemma 2.2. Let x ∈ m \ b be such that x∗ be a Gb(E)-regular element in G(b).

Then r(b + (x)/(x), E/xE) = r(b, E).

Proof. Let a be a minimal reduction of b relative to E such that r = r(b, E) =

ra(b, E). Then an easy calculation gives that (a + (x)/(x))(b + (x)/(x))rE/xE =

(b + (x)/(x))r+1E/xE and thus r(b + (x)/(x), E/xE) ≤ r(b, E).

To prove the opposite inequality, suppose that c/(x) be a minimal reduction of

b + (x)/(x) relative to E/xE satisfying r′ = rc/(x)(b + (x)/(x), E/xE) = r(b +
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(x)/(x), E/xE). Then c/(x)(b + (x)/(x))r′E/xE = (b + (x)/(x))r′+1E/xE which

gives that cbr′E + xE = br′+1E + xE so that br′+1E ⊆ cbr′E + xE. Therefore

br′+1E = br′+1E ∩ (cbr′E +xE) = cbr′E +xE ∩br′+1E. Since x∗ is Gb(E)-regular

element, we have xE ∩ br′+1E = xbr′+1E. Hence br′+1E = cbr′E + xbr′+1E.

Now using Nakayama’s lemma we deduce that br′+1E = cbr′E. Consequently

r(b, E) ≤ r′ and the proof of the claim is complete. ¤

Lemma 2.3. Let x ∈ m \ b and assume that x∗ is Gb(E)-regular. Let b′ = b +

(x)/(x). Then Rb′(E/xE) = Rb(E)/xRb(E).

Proof. We can write

Rb′(E/xE) =
⊕

n≥0

b′nE/xE =
⊕

n≥0

(b′n + (x))E/xE ∼=
⊕

n≥0

b′nE/xE ∩ b′nE.

Now since x∗ is Gb(E)-regular element, the last module is equal to⊕n≥0b
′nE/xb′nE

which is isomorphic to Rb(E)/xRb(E). ¤

Lemma 2.4. Let S, L, N and n0 be as in section 1 such that L is annihilated

by some power of S+. Then for any i ≥ 0 and n ∈ Z we have an isomorphism

[Hi
N(L)]n ∼= Hi

n0
(Ln) of S0-modules.

Proof. There exists t ∈ N such that St
+L = 0. Thus L is an S/St

+-module and so

by [1, 4.2.1], we may assume that Sk = 0 for all large values of k. But in this case

we have N =
√

n0S, which gives that Hi
N(L) ∼= Hi

n0
(L) and the result follows by

[1, 13.1.10]. ¤

Here we note that if a is a reduction of b relative to E, then λ(b, E) ≤ µ(a) the

number of elements of any minimal generating set for a and equality holds if and

only if a is a minimal reduction of b relative to E (see [2, Proposition 4.5.8] and also

[15, section 4]). Keeping this in mind we state the following lemma which proves

Theorem 1.1 in some special case.

Lemma 2.5. Let E be a one dimensional Cohen-Macaulay A-module and b be

an ideal of A such that htEb = 0 and λ(b, E) = 1. Assume that bp = 0 for

all p ∈ Min(E/bE). Let (b) be a minimal reduction of b relative to E and r =

r(b)(b, E) > 0. Then r = a(Gb(E)) + 1.

Proof. We first show that a = a(Gb(E)) ≤ r − 1.

Let N = (0 :Gb(E) b∗) and Ḡ = Gb(E)/b∗Gb(E). The short exact sequences

0 −→ N(−1) −→ Gb(E)(−1) b∗−→ b∗Gb(E) −→ 0,
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and

0 −→ b∗Gb(E) −→ Gb(E) −→ Ḡ −→ 0,

of graded G(b)-modules induce the exact sequences of graded local cohomology

modules, from which we deduce the exact sequences

0 → H0
m(b∗Gb(E))a+1 → H1

m(N)a
f→ H1

m(Gb(E))a
g→ H1

m(b∗Gb(E))a+1 → 0,

and

0 → H0
m(Ḡ)a+1 → H1

m(b∗Gb(E))a+1
h→ H1

m(Gb(E))a+1
k→ H1

m(Ḡ)a+1 → 0,

of local cohomology modules (Note that by [7, (9.7) Theorem] we have dimN ≤ 1

and dim(b∗Gb(E)) ≤ 1).

We consider the following two cases:

(i) If g : H1
m(Gb(E))a → H1

m(b∗Gb(E))a+1 is the zero map, then H1
m(N)a 6= 0

and in particular Na 6= 0 by Lemma 2.4. We claim that a = 0 or else a < r − 1.

Suppose the contrary a > 0 and a ≥ r − 1 (note that r > 0). Let 0 6= x∗ ∈ Na.

Then x ∈ baE \ ba+1E and b∗x∗ = 0. This means that bx ∈ ba+2E = (b)ba+1E

(note that a + 1 ≥ r). Thus there exists y ∈ ba+1E such that bx = by. This gives

that x − y ∈ (0 :E b) ∩ bE and so in view of Lemma 2.1, we have x = y ∈ ba+1E,

which is a contradiction. So the claim is true and we have a ≤ r − 1 in this case.

(ii) If g : H1
m(Gb(E))a → H1

m(b∗Gb(E))a+1 is not the zero map. Then there

exists x ∈ H1
m(Gb(E))a such that 0 6= g(x) ∈ H1

m(b∗Gb(E))a+1 and h(g(x)) ∈
H1

m(Gb(E))a+1 = 0 by the definition of a. Therefore by the second exact sequence

0 6= g(x) ∈ H0
m(Ḡ)a+1. This means that H0

m(Ḡ)a+1 6= 0 and so Ḡa+1 6= 0. From

this it follows that (b)baE 6= ba+1E and so a < r by the definition of r. Thus

a ≤ r − 1 and the claim is also true in this case.

Now we show that a ≥ r − 1. It follows from the first exact sequence that

H1
m(b∗Gb(E))n = 0 for all n ≥ a + 2. Hence by the second exact sequence we

have H0
m(Ḡ)n = 0 for all n ≥ a + 1. Also by the second exact sequence we

deduce that H1
m(Ḡ)n = 0 for all n ≥ a + 1. Therefore by Lemma 2.4 we have

H0
m(Ḡa+2) = 0 and H1

m(Ḡa+2) = 0. From this it follows that If Ḡa+2 6= 0 then

grade(m, Ḡa+2) > 1 = dimE, which is impossible. So Ḡa+2 = 0. Thus we must have

(b)ba+1E + ba+3E = ba+2E. It follows by the Nakayama’s lemma that (b)ba+1E =

ba+2E. Therefore a + 1 ≥ r if a+1 > 0. But H1
m(Ḡ)0 = H1

m(Ḡ0) = H1
m(E/bE) 6= 0

(note that since E is Cohen-Macaulay and htEb = 0, we have dimE/bE = 1). Thus

by the second exact sequence we have H1
m(Gb(E))0 6= 0. Hence a ≥ 0 and a+1 > 0.

The proof now is completed. ¤
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Remark 2.6. Let bp = 0 for all p ∈ Min(E/bE), then the set

P = {p ∈ Supp(E) : b ⊆ p, bp = 0 and htEp = 1},

as a minimal elements of a Zariski-closed set is a finite set.

Proof of Theorem 1.1. We proceed by induction on d = dimE ≥ 1. The case

d = 1 was settled in previous lemma. So let d ≥ 2. Since Gb(E) is Cohen-Macaulay

and λ(b, E) = 1, so we have grade(m∗, Gb(E)) = htGb(E)m
∗−dimGb(E)/mGb(E) =

d− 1 ≥ 1. Since k is infinite, it follows from this that there exists a Gb(E)-regular

element, of degree zero, say x∗, in G(b) (that is in fact in m/b). With the same

assumption as in Remark 2.6 we have m * ∪p∈Pp. Hence we may select x∗ in such

a way that x ∈ m\∪p∈Pp. Then it follows that htEb = htE/xE(b+(x)/(x)), bp = 0

for all p ∈ Min(E/(b + (x))E) and dim(E/(b + (x))E) < dim E = d. We note that

E/xE and Gb+(x)/(x)(E/xE) ∼= Gb(E)/x∗Gb(E) are Cohen-Macaulay and that by

applying the local cohomology functors Hi
m(−) to the exact sequence

0 −→ Gb(E) x∗−→ Gb(E) −→ Gb(E)/x∗Gb(E) −→ 0,

and using the fact that x∗ is of degree zero, it is easy to see that a(Gb(E)/x∗Gb(E)) =

a(Gb(E)). Now using Lemma 2.2, we have r(b + (x)/(x), E/xE) = r(b, E). Also

by Lemma 2.3 we have Rb+(x)/(x)(E/xE) ∼= Rb(E)/xRb(E). Therefore

λ(b + (x)/(x), E/xE) = dim(Rb+(x)/(x)(E/xE)/m/(x)Rb+(x)/(x)(E/xE))

= dim(Rb(E)/mRb(E)) = λ(b, E) = 1.

So we can reduce to the case d = 1 and the proof of the Theorem follows by Lemma

2.5.

We proved Theorem 1.1, with the assumption that htE(b) = 0. For ideals b of

arbitrary htE(b) we could not prove the same result. Although in the ring version

it has been proved in [4] for ideals of arbitrary hight. So the following question

arises.

Question. Does Theorem 1.1 hold true for ideals b of arbitrary htE(b)?
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