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ABSTRACT. Let (A,m) be a Noetherian local ring with infinite residue field
and E be a finitely generated d dimensional Cohen-Macaulay A-module. Let
b be an ideal of A such that htpb = 0 and A(b, E) = 1. Assume that bp = 0
for all p € Min(E/bE). Let r(b, E) > 0. We show that if Gp(FE) is Cohen-
Macaulay, then r(b, E) = a(Gp(E)) + 1.
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1. Introduction

Let (A, m) be a Noetherian local ring with infinite residue field ¥ = A/m and let
E be a d-dimensional finitely generated A-module. Let b be an ideal of A. An ideal
a C b is called a reduction of b relative to E if ab”E = b"t!E for some nonegative
integer n, (see [2, Definition 4.6.4]). We denote by r4(b, E) the least integer with
this property. A reduction a of b relative to E is called a minimal reduction if it
does not properly contain any other reduction of b relative to E. Since k is infinite
it is well known that minimal reductions relative to E always exist; see [15, section
4] and [2, Proposition 4.5.8]. In this case we define the reduction number of b

relative to F by
r(b, E) = min{rq(b, F) : a is a minimal reduction of b relative to E}.

With £ = A the correspondence definitions for ideals almost immediately yields;
(see [11]). In this case we set r(b) := r(b, A) and call it the reduction number of b.
In order to state and prove our results we set up a few more notation. We denote by
Ry(E) (resp. by Gp(E)) the Rees module of E associated to b (resp. the associated
graded module of E with respect to b), namely:

Ry(E) := é b"E  and Gy(E) := é b"E/b" T E = Ry(E)/bRy(E).

n=0 n=0
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In the case E = A we denote it by R(b) (resp. by G(b)) and call it the Rees
algebra (resp. the associated graded ring) of b simply. Then both Ry(E) and
Gy (F) are finitely generated graded R(b)-module. We denote by m the unique
homogeneous maximal ideal of R(b), i.e., m := mR(b) + R(b);. Then follow-
ing [2, Definition 4.5.7], the analytic spread of b relative to E is defined to be
A, E) = dim(Rp(E)/mRy(E)) = dim(Gp(E)/mGy(E)), where dim(—) denotes
Krull dimension. Set also A(b) = dim(R(b)/mR(b)). We note that in general
htgb < A(b, F) < d = dimF and that by [7, (9.7) Theorem] dim(Gp(E)) = dimFE.
The reduction number of an ideal was introduced by Sally [12], where he used
explicitly the presence of small reduction number of the maximal ideal m in a
Cohen-Macaulay local ring in order to study Cohen-Macaulay property of associ-
ated graded ring G(m). For further results and usefulness of this notion see [3,8,15].
A question due to Sally [13], which attained much attention is; when the reduc-
tion number of b is independent of the choice of minimal reduction? Some partial
solutions of this problem were given in [8,9,10]. Most of results are based on the
”a-invariant” and the end of some local cohomology modules. So it is suitable to
describe them briefly. A nice reference for this material is [5], and the textbook
by Brodmann and Sharp [1, Chapters 15, 18]. Let S = @,>05; be a Noetherian
graded ring with (Sp,ng) a local ring. Let S; be the irrelevant ideal of S and
NN = nypS + 5+ denote the maximal homogeneous ideal of S. Let L be a Noetherain
graded S-module of dimension s. If Hi(L) denotes the i-th graded local cohomol-
ogy of L with support in graded ideal u of S, then it is well known that the n-th
homogeneous component of H §+ (L)ie., [H §+ (L)y,] is finitely generated for all 4 > 0

and all n € Z, and it is zero for large values of n. We set
ai(L) = Max{n € Z : [Hi(L)]. # 0},

and

a;(L) = Max{n € Z: [H§, (L)}, # 0}.

(Convention: If Hi (L) = 0 (resp. Hngr(L) = 0) we set a;(L) = —oo (resp. a;(L) =
—00)). Then for convenience a,(L) is denoted simply as a(L) and called a-invariant
of L.

In [8], Hoa by combining Trungs’s approaches in [14] and an idea of [6] proved
that for large values of n the reduction number of b™ is independent of n and any
minimal reduction of b” and he computed the asymptotic value of r(b™). More
exactly he proved that for n > Max{|a;(G(b))| : a;(G(b)) # 0}, »(b™) = A(b) if
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axp)(G(b)) > 0 and otherwise 7(b™) = A(b) — 1. On the other hand in [10], Marley
proved that if A is Cohen-Macaulay, b is m-primary ideal and grade(G(b)4, G(b)) >
0, then r(b) = a(G(b)) + dim A (see also [9, proposition 5.6]).

In this paper using some ideas of [4], under some assumptions on b and E, we

find a formula for the invariant (b, F'). More precisely we prove:

Theorem 1.1. Let (A,m) be a local ring and let E be a finitely generated d di-
mensional Cohen-Macaulay A-module. Let b be an ideal of A such that htgb = 0,
Ab,E) =1, r(b,E) >0 and by, =0 for all p € Min(E/bE). If Gy(E) is Cohen-
Macaulay, then r(b,E) = a(Gy(E)) + 1.

2. Proof of Theorem 1.1
We first prove some auxiliary lemmas.

Lemma 2.1. Suppose that E is Cohen-Macaulay and that by, = 0 for each p €
Min(E/bE). Let b € b such that \/0:4 E+ (b) = \/0:4 E+b. Then (0 :p b) N
bE =0.

Proof. Let 0g = Q1 N...N Q,, be a minimal primary decomposition of Og, with
associated primes p; = /Q; :a E for each i = 1,...,n, enumerated in such a way
that b Cpifori=1,...,tand b € p; for i = t+1,...,n. Since E is Cohen-Macaulay,
we have htgp; = 0 for ¢ = 1,...,n. Since b, = 0 for each p € Min(E/bE), we have
bE C @Q1N...NQ¢. Now suppose z € bE such that bx = 0g. This in particular gives
that bz € Q; for i =t +1,...,n. Since \/0:4 E+ () =0:4 E+band b ¢ p;, so
b is not an element of p; for i =t +1,...,n. Therefore z € Q; fori =t +1,...,n. So
r€e€bENQ1N..NQp CQ1N...NQ, =0g and the claim follows. O

We remind the terminology we are using with respect to G(b). If € A then
x* denotes the initial form of z in G(b), (i.e., the image of x in b"/b"! where
x € b™\ b"1) and for each ideal u of A, the notation u* denotes the ideal uG(b).

Lemma 2.2. Let x € m\ b be such that x* be a Gy (E)-regular element in G(b).
Then r(b + (z)/(z),E/zE) =r(b, E).

Proof. Let a be a minimal reduction of b relative to E such that r = r(b, E) =
rq(b, E). Then an easy calculation gives that (a + (z)/(z))(b + (z)/(z))"E/zE =
(b + (z)/(x))" " E/xE and thus r(b + (z)/(x), E/zE) < r(b, E).

To prove the opposite inequality, suppose that ¢/(z) be a minimal reduction of
b+ (z)/(x) relative to E/xE satisfying r" = r /) (b + (v)/(2), E/zE) = r(b +
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(z)/(z), E/zE). Then ¢/(z)(b + (z)/(x))” E/zE = (b + (z)/(z))" ' E/2E which
gives that b E + zE = b E + zF so that b" *'E C ¢b” E + 2E. Therefore
b E =" EN(cb” E+2E) = ¢b” E+2ENb T E. Since z* is G (E)-regular
element, we have zE Nb" 1E = zb" +1E. Hence b" T1E = ¢b" E + zb” t1E.
Now using Nakayama’s lemma we deduce that b E = b E. Consequently

r(b, E) < r’ and the proof of the claim is complete. O

Lemma 2.3. Let x € m\ b and assume that =* is Gy(E)-regular. Let b’ = b +
(x)/(z). Then Ry (E/xE) = Ry(E)/xRp(E).

Proof. We can write

Ry/(E/zE) = @b "E/zE = (" + (2)E/zE = 6" E/zENY"E.
n>0 n>0 n>0
Now since z* is G (E)-regular element, the last module is equal to @&, >ob’" E/zb" E
which is isomorphic to Ry (F)/zRp(FE). O

Lemma 2.4. Let S, L, M and ng be as in section 1 such that L is annihilated

by some power of Sy.. Then for any i > 0 and n € Z we have an isomorphism
[HE (L)), =2 HY, (Ly) of So-modules.

Proof. There exists ¢ € N such that S% L = 0. Thus L is an S/S% -module and so
by [1, 4.2.1], we may assume that S; = 0 for all large values of k. But in this case
we have M = /ngS, which gives that Hj (L) = H}, (L) and the result follows by
1, 13.1.10]. O

Here we note that if a is a reduction of b relative to E, then A(b, E') < u(a) the
number of elements of any minimal generating set for a and equality holds if and
only if a is a minimal reduction of b relative to E (see [2, Proposition 4.5.8] and also
[15, section 4]). Keeping this in mind we state the following lemma which proves

Theorem 1.1 in some special case.

Lemma 2.5. Let E be a one dimensional Cohen-Macaulay A-module and b be
an ideal of A such that htgb = 0 and A(b,E) = 1. Assume that b, = 0 for
all p € Min(E/bE). Let (b) be a minimal reduction of b relative to E and r =
Ty (b, E) > 0. Then r = a(Gy(E)) + 1.

Proof. We first show that a = a(Gp(E)) <r — 1.
Let N = (0:g,(p) b*) and G = Gy(E)/b*Gy(E). The short exact sequences

0 — N(—1) — Gp(E)(~1) 25 b*Gy(E) — 0,
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and
00— b*Gb(E) i Gb(E) — G — O7

of graded G(b)-modules induce the exact sequences of graded local cohomology

modules, from which we deduce the exact sequences
0~ H (0" Go(B)ass — Hip(N)a 5> Hip(Go(E))a % Hiy(0Go(B))atr — 0,
and
0= H\(@atr = Han (07 Go(E))ass = Hip(Co(E)asr > Hin(G)asr — 0,

of local cohomology modules (Note that by [7, (9.7) Theorem] we have dimN < 1
and dim(b*Gy(F)) < 1).
We consider the following two cases:

(i) If g: HL(Ge(E))a — HL(b*Gp(E))a+1 is the zero map, then HL (N), # 0
and in particular N, # 0 by Lemma 2.4. We claim that ¢ = 0 or else a < r — 1.
Suppose the contrary a > 0 and a > r — 1 (note that » > 0). Let 0 # 2* € N,.
Then z € b*E \ b E and b*2* = 0. This means that bz € b*T?E = (b)b*T'E
(note that a + 1 > r). Thus there exists y € b**1E such that bz = by. This gives
that x —y € (0 :g b) NbE and so in view of Lemma 2.1, we have x = y € b1 E,
which is a contradiction. So the claim is true and we have a < r — 1 in this case.

(ii) If g : HL(Go(E))a — HL (b*Gp(E))at1 is not the zero map. Then there
exists € HL (Gy(E)), such that 0 # g(x) € HL (b*Gp(E))as1 and h(g(x)) €
HL (Gy(E))ar1 = 0 by the definition of a. Therefore by the second exact sequence
0 # g(z) € HS (G)as1. This means that HY (G)ay1 # 0 and so Gyy1 # 0. From
this it follows that (b)b%E # b*'E and so a < r by the definition of r. Thus
a <7 —1 and the claim is also true in this case.

Now we show that a > r — 1. It follows from the first exact sequence that
HL (b*Gy(E)), = 0 for all n > a + 2. Hence by the second exact sequence we
have HY (G), = 0 for all n > a + 1. Also by the second exact sequence we
deduce that H} (G), = 0 for all n > a + 1. Therefore by Lemma 2.4 we have
HY(Gay2) = 0 and HL(Guy2) = 0. From this it follows that If G,io # 0 then
grade(m, Gy 2) > 1 = dimFE, which is impossible. So G442 = 0. Thus we must have
(b)bTLE + b9T3E = b2 E. It follows by the Nakayama’s lemma that (b)bt1E =
b2 2E. Therefore a +1 > rifa+1 > 0. But HL (G)o = HY:(Go) = HL(E/BE) # 0
(note that since E is Cohen-Macaulay and htgb = 0, we have dimE/bE = 1). Thus
by the second exact sequence we have H} (Gy(E))o # 0. Hence a > 0 and a+1 > 0.

The proof now is completed. O
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Remark 2.6. Let b, =0 for all p € Min(E/bE), then the set
P ={p € Supp(E) : b Cp,b, =0 and higp =1},
as a minimal elements of a Zariski-closed set is a finite set.

Proof of Theorem 1.1. We proceed by induction on d = dimF > 1. The case
d = 1 was settled in previous lemma. So let d > 2. Since Gy (FE) is Cohen-Macaulay
and A(b, ') = 1, so we have grade(m*, G (E)) = htg, (gym* —dimGy (E)/mGy (E) =
d —1> 1. Since k is infinite, it follows from this that there exists a G (E)-regular
element, of degree zero, say z*, in G(b) (that is in fact in m/b). With the same
assumption as in Remark 2.6 we have m ¢ Upepp. Hence we may select z* in such
a way that € m\Upepp. Then it follows that htpb = htg/,5(b+(2)/(x)), by =0
for all p € Min(E/(b + (x))FE) and dim(E/(b + (z))E) < dim F = d. We note that
E/zE and Gy (2)/(2)(E/2E) = Gy (E)/x*Gy(E) are Cohen-Macaulay and that by

applying the local cohomology functors HE (—) to the exact sequence
0 — Go(B) == Go(E) — Go(E)/a" Go(E) — 0,

and using the fact that «* is of degree zero, it is easy to see that a(Gy(F)/2*Gp(E)) =
a(Gy(F)). Now using Lemma 2.2, we have r(b + (z)/(x), E/xzE) = r(b, E). Also
by Lemma 2.3 we have Ry (4)/(z)(E/2E) = Ry(E)/x Ry (E). Therefore

Ab+ (2)/(2), E/2E) = dim(Ro (2) ) (z) (E/2E) /m/(2) Ro 1. (2) ) () (E/ 2 E))
= dim(Rp(E)/mRy(E)) = (b, E) = 1.
So we can reduce to the case d = 1 and the proof of the Theorem follows by Lemma
2.5.
We proved Theorem 1.1, with the assumption that htz(b) = 0. For ideals b of
arbitrary htg(b) we could not prove the same result. Although in the ring version

it has been proved in [4] for ideals of arbitrary hight. So the following question

arises.

Question. Does Theorem 1.1 hold true for ideals b of arbitrary ht(b)?
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