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ABSTRACT. As a generalization of the notion of a group coring in the sense of
Caenepeel et al. [7], we introduce the notion of a lax group coring. Firstly, we
provide a large class of examples of such a lax group coring by considering so-
called lax group entwining structures and partial group entwining structures.
Secondly, over a lax group entwining structure one can consider two different
categories of modules M(L/))g and M(d))z_c, which are in fact nothing else
than categories of (group) comodules over the group coring one can associate to

each lax group entwining structure. Finally, we study the category gopyc+ M™

of m-graded modules over the m-graded A-ring A°P§C*, and show that it is
isomorphic to the category M(w)z_c. Moreover, if 7 is a finite group, then

we have an equivalence of categories between gopyo+ M and M(w)g
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Introduction

On one hand, recently, the concept of a group coring was introduced by Caenepeel
et al. [7] as a powerful tool to study group coalgebras and Hopf group coalgebras.
Then it is natural to ask how to construct new examples of such group corings. This
is one of the motivations of writing this paper. On the other hand, we can learn
a lot of structural properties from [2] and [16] about corings and weak corings.
In particular, in [6] the authors introduced the notion of a lax coring, inspired
by the theory of partial actions of discrete groups on C*-algebras [10] (a further
investigation of these partial actions from a purely algebraic point of view was
carried out in [8, 9, 11]). It is also natural to study how to unify these notions
above to one, and then to study and apply its structural properties to the theory

of Hopf group coalgebras. This is another motivation for our paper.

This work was partially supported by the FNS of CHINA (10571026), the SRFD-
PHE(20060286006) and the Southeast University Fund (XJ0707273).
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In fact, let 7 be a group (written multiplicatively and with unit 1) and A a (non-
commutative) associative ring with unit 1,4. We introduce the notion of a left unital
lax m-A-coring, i.e. a triple C = (C, A, ¢) consisting of a family C = {Cq }aer of left
unital A-bimodules, a family A = {A, g : Cag — Co ®4 Ca}a, ger of A-bimodule

maps and an A-bimodule map ¢ : C; — A, such that
(Aa,ﬁ ®A C’y)Aaﬁ,’y - (Ca ®a AB,'y)Aa,B’ya
and

c=¢e(ca,1))ce, o) = ca,a)elce, 1),

for all v, 8, v € w and ¢ € C,. Here we used the notation C, = Cola, Ay, g(c) =
C(1,a) @A (2, ). The definition is designed in such a way that C = {Cola}aecr can
be given the structure of an ordinary m-A-coring in the sense of [7].

If we take the group m = {1} to be trivial, we get that C; = (C1,4A1,1,¢) is a left
unital lax A-coring as introduced in [6]. If all the A-bimodules C, are also right
unital, then we recover the notion of 7-A-coring in the sense of [7]. If A =k is a
commutative ring or a field, and the left and the right k-actions on C, coincide, for
all @ € 7, then we recover the notion of a m-coalgebra over k, as in [13].

This paper is organized as follows.

In Section 1, we recall some basic definitions and results about group corings and
Hopf m-coalgebras that we will need later. In Section 2, we study some relations
between lax group corings and their dual notions, a class of lax group rings (cf.
Proposition 2.6). In Section 3, we provide a class of examples by introducing
lax group entwining structures and show that for a lax group entwining structure
(A, C,4), we have two different isomorphisms of categories: M™ € = M(i/));rfc
and ME = M(Ql))g (cf. Proposition 3.5). In the final section we investigate the
notion of a lax and partial group smash product structure. In particular, we prove
that the category sorgc=MT™ of m-graded modules over A°P§C* which is a direct
summand of the lz@up smash product A°P{C* is isomorphic to the category
M(lﬁ)gfc. Furthermore, if 7 is a finite group, then we have an equivalence of

categories between gopyc-M and M()§ (cf. Proposition 4.7).

1. Preliminaries

Throughout this paper we will adopt the following notational conventions. Let
7w be a group with unit 1. For an object M in a category, M will also denote the
identity morphism on M. A will be an associative ring with unit 14, and k will be a

commutative ring. If a tensor product is written without index, then it is assumed
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to be taken over k, that is, ® = ®j. For a right (not necessarily unital) A-module
N, we will denote N = N1y4.

Recall from [13] that a m-coalgebra is a family of k-modules C' = {Cy}aen
together with a family of k-linear maps A = {Ay 3 : Cop — Co ® C3}a ger and

a k-linear map ¢ : C; — k, such that A is coassociative in the sense that

o (Ayp®C,)Ansy = (Co ®Ap)Ay gy, for any «, 5,7 € m,and
o (Ca®e)An1=Coh=(eRCy)A1, 4, foralla em.

We use the Sweedler’s notation (see [13]) for a comultiplication in the following
way: for any a, 3 € 7 and ¢ € Cap, we write Ay g(c) = ¢(1,q) @ ¢(2,8)-

Let C' = {Cy}acr be a m-coalgebra. Set C* = Hom(C,, k), for every a € w. Take
f € Hom(Cy, k), g € Hom(Cpg, k), we define the convolution product as follows:

frg=m(f©g)Aa p € Homp(Cap, A), (f*9g)(c) = flca,m)9(c2 p)

for any c € Cug.

Furthermore, if every C, with o € 7 is finitely generated projective, then we
call C = {C4}aer a m-coalgebra of finite type.

One verifies that the k-module C* = @, Ci endowed with the convolution
product * and the unit element ¢, is a m-graded algebra, called convolution algebra.

We now recall from [13, 15] that a semi-Hopf m-coalgebra is a w-coalgebra H =
({Hu}, A, €) such that

(1) each H, is an algebra with multiplication m,, and unit element 1, € H,,

(2)e: Hy — kand A, g: Hyg — H, ® Hg are algebra homomorphisms, for all
a, Bem.

Recall from [7] that a 7-A-coring C is a family C = {C4}aer of A-bimodules
together with A-bimodule maps

A={A, 3:Cop—Co®4Cs}a, perande:C; — A
satisfying the coassociativity in the sense that, for any «, 3, v € 7,
(Ao, 3 ®4Cy)Aap, y = (Ca ®a Bp,7)Aa, gy, (1)
and the counit properties in the sense that, for all a € ,
(Co®ae)Aq1=Co=(e®4Ca)A1 4.

Let C = {Cu, A, €}a, ger be a m-A-coring. Recall from [7] that we can define two
different types of comodules over C. A right C-comodule is a right A-module M
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together with a family of right A-linear maps (p*)aer, pM : M — M ®4C,, such
that

(paf ®aCp)opy = (M @4 Aa,p) 0 pof, (2)
and
(M@4e)op = M. (3)
We will use the following Sweedler-type notation:
Pgl(m) = m[o] @4 M1, q]-
In this case, Eq.(2) justifies the notation
(08! ©4Cg) 0 py' (m) = (M ®a Aa,p) 0 phjs(m)
= Mjo] ©AM[1,a] @4 M2, 5]

and Eq.(3) is equivalent to mge(my 1) = m, for all m € M.
A morphism of right C-comodules is a right A-linear map f : M — N satisfying

the condition
P of =(f®aCa)oph!
for all o € . ME will be our notation for the category of right C-comodules.
A right 7-C-comodule M is a family of right A-modules (M, )qcr, together with
a family of right A-linear maps
Pa s = Pary: Map — Mo ®4Cp
such that
(Mo ®4 83,5) © pa, 8y = (a8 ®4 Cy) © pag, (4)
and
(Mo ®a€) 0 pa,1 = Ma, (5)
for all «, 3, v € m. We now use the following Sweedler-type notation:
pa, 3(M) = mpo, o] ®a M1, 3],
for m € M,g. Then Eq.(4) justifies the notation
(Mo ®4 Ag,y) © pa,sy(Mm) = (pa,s ®aCy) 0 pag,~(m)
= Mo,a] BAML, 5] ©A M2, 4]

for all m € Mup,, and Eq.(5) implies that my 4je(mp,1]) = m, for all m € M,. A
morphism between two right 7-C-comodules M and N is a family of right A-linear

maps fo : M, — N, such that

M N
(fa®a Cﬁ) ©Pa, g = Pa,p° fas-
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The category of right 7-C-comodules will be denoted by M7™€.

2. Lax Group Corings And Lax Group Rings

In this section we will introduce the notion of a lax group coring and investigate
its structural properties.

We take a family of left unital A-bimodules C = {Cy}aer and (4, A)-bimodule
maps A = {A, 3:Cap — Co ®a Cg} and € : C; — A satistying (1).

We counsider a family of projections p = {ps : Co — C,, = Calatacr. Obviously

the inclusion map ¢, is a right inverse of p,. For every c € C,3, we have that
Anplcla) = Aap(e)la = c,a)®alace gla =ca,a)la®aceplac€l,®aCg

So A, g can be restricted to a map Aa,ﬁ 1 Cop — Co ®a Ly €01y is then the

restriction of € to C;.

Definition 2.1. We call C = (C,A,¢) a left unital lax 7-A-coring if C = (C =
{Cotaem A ={A, g}a,ser €0t1) is a m-A-coring. This is equivalent to the equality

c=e(c(1,1))C@2,0) = c,aE(c@2)), (6)

forallceC, and a € 7.

Remark 2.2. (1) If all A-bimodules C, are also right unital, then C becomes a
m-A-coring in the sense of [7]. In particular, when 7 is trivial, C = C; is an A-coring.
(2) If m# = {1} is trivial, then C is a left unital lax A-coring (see Section 1 of [6]).
(3) If A =F is a commutative ring or a field, and the left and right k-actions on
C, coincide, for all o € 7, then we recover the notion of a m-coalgebra over k, as in
[13].

Recall that a m-A-ring R = (R,u,n) is a triple consisting of a family R =
{Ra}tacr of A-bimodules, a family A-bimodule maps g = {ta, 8 : Ra ® Rg —
Raopta, per and an A-bimodule map 1 : A — Ry, such that

Hap,~ © (Moz,ﬂ XA Rv) = Ma,py © (Ra XA MB,’Y)z (7)

and
M1, © (77 XA Ra) = Ha,1© (Ra XA 77) = Rom (8)

for all «, 8, v € m. A morphism between two m-A-rings R = (R, u,n) and R’ =
(R, p/,n') is a family ¢ = {p4 : Ra — R, }aer of A-bimodule maps such that
Pap © Mo, = Mo, 5 © (Pa @4 ¢p), and 1 0n = 7', The category of 7-A-rings and

morphisms between them form a category, which we will denote by m-A-Ring.
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Over a m-A-ring R = (R, u,n), we can define two different types of modules and
we denote 1g = 1(1a). A left R-module is a left A-module M together with a
family of left A-linear maps == {—4,: Ro ®4 M — M },c, satisfying

s =g (r—=qm)=sr —gom, forallme M,r € R, and s € Rg;

and
g =1 m=m.
A morphism of two left R-modules M and N is a left A-linear map f: M — N
satisfying the condition
fr—=am)=r—q f(m),

for all m € M, and r € R,. We will use g M to denote the category of left
R-modules.

A left m-R-module M is a family of left A-modules (My)acq together with a
family of left A-linear maps == {—4, 3: Ra ®4 Mg — Mup}a, ger such that

5=y a8 (r —a,gm)=sr —,q gm, forall me Mg, reR, and s € Ry;

and

Ir =1, m =m, for all m € M,,.

A morphism between two left 7-R-modules M and N is a family of left A-linear
maps {fo : My — Ny }tacr such that

fap(r —=a,pm) =1 —a 5 fz(m),

for all » € Ro,m € Mg. The category of left m-R-modules will be denoted by
rRMT.

Remark 2.3. It is well-known (and easy to see) that there is a categorical one-
to-one correspondence between 7-A-rings and w-graded A-rings. By the latter we
mean 7w-graded rings R together with a ring morphism ¢ : A — R;. Under this
correspondence g M and g M™ are nothing else than the category of (usual) left
modules respectively the category of m-graded left modules over the m-graded A-ring
R.

Definition 2.4. A left unital lax 7 A-ring R is a triple R = (R, i, 1)) consisting of a
family R = {Raq }aer of left unital A-bimodules, a family = {pta, 3 : Ra®aRg —
Rapta, per of A-bimodule maps and an A-bimodule map 1 : A — Rq, such that
(7) holds and

r=1gr=rlg, (9)
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for all r € R, and a € 7. Here we used the notation R, = Ro14 and 1g = n(14).
So R is a left unital lax m-A-ring if and only if R = {R, }aenrs {Ha,g}aﬁ@” q1om)
is a m-A-ring, or a m-graded ring, in view of the preceding Remark 2.3. Here Bog
is the restriction of j1q,3 to R, ®4 Eﬁ, and ¢; : R1 — R, the canonical projection.

Let R = ({Ra}taers {ta, 8ta, ger,n) be a left (resp. right) unital lax 7-A-ring.
Write o, g(r®a48) = s, for each r € R, and s € Rg. Then it is easy to check that
R?P = ({Ra-1}aen, {fta, 3}a, pen,n) is a right (resp. left) unital lax 7-A°P-ring,
where fiq, g(r ®a s) = sr € Rap)-1, for each r € R,-1 and s € Rg-1. Also it is

straightforward to see that (R)°? = R°P as m-A°P-rings.
Similarly, we can define right unital lax m-A-rings .

Remark 2.5. (1) If all A-bimodules R,, are also right unital, then R is a m-A-ring.
In particular, when 7 is trivial, then R = Ry is an A-ring.

(2) If 7 is trivial and R = R, satisfies the weak unitary property in the sense
that r14 = lgr =rlg for all r € R, then we call R a left unital weak A-ring (see
Section 1 in [6]).

(3) If 7 is trivial, then R = R4 is a left unital lax A-ring (see Section 1 in [6]).

In what follows, we will study some duality properties of lax group corings. Let
C = {Ca}aecr be a family of left unital A-bimodules, then *C =R = ({Ra}aer) is
a family of right unital A-bimodules, where R, = s4Hom(C,-1, A) with A-action,

(a-f-b)(c) = flcab,

for all a,b € A,c € Cp-1,f € Roand a € 1. If Aypg : Cap — Ca ®aCs is a
coassociative A-bimodule map, for all o, 8 € 7, then we define 14, 3 : Ra®aRg —

Raﬁ7 Ma,ﬁ(fa ®A gﬁ) = faﬁgﬁ by
(fatgp)(c) = gp(ca 1) falc2,a-1))),

for all ¢ € Cup)-1, fa € Ra,9s € Rp, and o, B € m. It is easily verified that pa, g

is an associative A-bimodule map and we can compute that

(fallgsthy)(c) = hy(cay-1)95(c2,8-1) falc@3,a-1))));

for all ¢ € C(apy)-1, fo € Ra,9p € Rp, and h, € R,,.
Let € : C; — A be an A-bimodule map. For all a € A, and ¢ € C;, we have

(a-e)(c) = e(c)a = (- a)(c),

son:A— Ry, n(a) =c-a=a-cis an A-bimodule map.
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For all f € R,,c € Cy-1, we compute that

(eff)(c) = f(C(l,afl)éf(C(z,l)));
(fte)(e) = 5(0(1,1)f(0(2,a*1))) = 5(0(1,1))]0(0(2,(1*1)) = f(5(0(1,1))0(2,a*1))-

Proposition 2.6. Let C = (C,A,e) be a left unital lax w-A-coring. Then we
have that *C = R = ({Rataer:{la,8}a,per,n) is a right unital lax 7-A-ring,
and the w-A-rings (or w-graded A-rings) R = *C and *C are isomorphic. Here
*C=@cr alom(C,-1, A) is the left dual w-graded A-ring of the w-A-coring C in
the sense of [7], and C -1 = Cq-1 - 14.

Proof. Assume that C = {Ca,Aq, 8,€}a, gex is a left unital lax m-A-coring. We
first claim that *C = R is a right unital lax 7-A-ring. Indeed, for all f = 14-f € R,,,

we have
(etf)(c) = (efla- f)(c) = (a- f)lca,a-1)elc1))) = flca,a-1)e(c2,1))1a)
= fleaanelcen)) L fleta) = (- o),

and

(fte)(c) = elcana- flleaa-1y)) = Aa- flle(cany)ee, a-1y)
= flelcan)e@anla) € Flela) = (1a- £)(0).

=

Therefore, one gets ef f = ffie = f, and so (9) holds. This completes the first claim.
To prove the second statement, we notice that f € 14- R, ifand only if 14-f = f,
or f(cla) = f(c), for all ¢ € Cy-1, 0 € 7. Define a map

Fa i1a 'Roz —>Ra7 Fa(f) = .f|Ca,11A
with an inverse G, given by the formula

Ga(g)(c) = g(C]-A)a

forall g e R,,.
It is easy to check that F' = {F, }qer gives rise to an isomorphism between the
m-A-rings *C and *C. O

3. Lax Group Entwining Structures

In this section we will provide a class of examples of a lax group coring by

introducing lax group entwining structures and study their structural properties.
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Definition 3.1. Let A be a k-algebra, C' = {Cy,0q, 8, €}a,3er be a m-coalgebra
over k and ¥ = {¢pp : Co ® A — AR Cylacr be a family of k-linear maps
satisfying the following relations:
(ab)y, ® ¢’ = ay, by, ® V¥
ayoylag, ® Cwaﬁ(17a)¢a ® cYos
e(c”) 1y a = e(c™ )ay,;

Lay, ® ¥ = elcan™)ag,e @ c2,a",

(2.8) = Ggin @ C1,0)"" @2,

where we use the notation 1, (c ® a) = ay, ® c¥. Then we say that (4,C, 1) is a
lax m-entwining structure. It is not hard to verify that this quadruple of conditions
is equivalent to the quadruple of conditions (10), (11), (12) and (14).

Loy, ® e = 5(0(171)¢1)1A¢11Awa ® 0(27a)w“. (14)
Remark 3.2. (1) If ¢ satisfies the relations (10), (11), (12) and
Lay, ®c¥ =e(ca1) ) ay, @2, a) (15)
or 1 satisfies the relations (10), (15), (12) and
oy @ 0, p(€V7) = ayp0, ® €(1,0)" @ €2, )", (16)
then we call (A, C,%) a weak group entwining structure.
(2) If 1) satisfies the relations (10), (16) and
lay, ®c™ =1®e¢, (17)
e(c)a = e(c*)ay, , (18)

then we call (A, C,4) a group entwining structure.

(3) If (A, C, ) is a lax group entwining structure and satisfies
€(c?)1ay, = €(c)la, (19)

then we call (A4,C,v¢) a partial group entwining structure. We can show that
(A, C, ) is a partial group entwining structure if and only if ¢ satisfies the relations
(10), (11) and (18).

(4) If 7 is trivial, one recovers the notions introduced in [6].
The following proposition is easy to prove:

Proposition 3.3. (A,C,v) is a group entwining structure if and only if it is at

the same time a partial and weak group entwining structure.
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Theorem 3.4. Let A be a k-algebra, C = {Cy,dq, 3, €}a,per be a m-coalgebra over
k. Assume that AQ C = {A® Cytaenr is a family of A-bimodules such that the left
actions are canonical, for all o € . Consider the following left A-linear maps:
Aup:A®Cas — ARCL, QA ARCE= AR Co ® Cp,
Aa,pla®@c) = (a®ca) ®a (la@cep) = (@@ cq,a) - 1a@cq, p);
e AR (CT — (A@Cl)'lA — A,
ela@c)=(A®e)((a®c)-14).
where A® C,, = (A® Cy) - 1a. Then the following assertions are equivalent:
(1) (A C,A ={Aqgtapen €) is a left unital lax w-A-coring;
(2) There exists a family of k-linear maps ¥ = {tpq : Co ® A — AR Cqtacn

such that (A, C,4) is a lax group entwining structure.
Proof. (1) = (2). Define a family of k-linear maps:
Y ={thg : Ca ®A — A® Cotacr,Va(c®a)=(1a®c) a=ay, ® Ve,

We have to prove that (10), (11), (12) and (13) hold. By the associativity of the

right A-action, one has
(ab)y, @V =(1®@c)-ab= ((1®c)-a) b= ay,bg, @cto?.

A, g is right A-linear if and only if A, g(1a ® ¢)a = Ay, 3((14 ® ¢)a). Indeed, we

have
Ao p(la®c)a=(1a®ca,a) @a (ap, @ c2,p") = ay,p, @ ca,m’ @@ n??,
and

Ao p((la®c)a) = Agplag,, ®cP?)

= (agoy ®a¢7(1 ) @a (14 @4 " (5 )

) ¢D/
= ayylag, ©0 0 @ ).

¢ is right A-linear if and only if (b ® ¢)a = ((b ® ¢)a), for all a,b € A and ¢ € C;.
This is obvious.
Take 1y, ® c¥># € A® Cyg, then
A, (Lpy ® ) = (L, ® 7 (1,0) @4 (L@ P73, )

Pa
= (Lyople, @10y ) @a (1@ PP (5 g).
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From the counit property (6) of ¢, it follows that

Ly, ®c = ((fou)®aA®CA, 4(1y, ® )

¢
= (A9)(Ly.lo ® P (1) )1 @ P 5 0)

[
= G(Cw“u,n 1)1%1@ ®C¢“(2,a)

- 6(0(1,1)¢1)1¢a¢1 ® C(2,a)wa7

and so (13) is proved.

(2) = (1). Define the right A-module structures of A ® Cy, as (a®c¢) - b =
aby, @ c¥e, for all ¢ € Cp,a0 € m. A straightforward computation shows that
(A® C,A¢) is a left unital lax 7m-A-coring. O

Let (A,C, ) be a lax group entwining structure, C = A® C = {C, = A ®
Co,Aq, 8,6} a, pen the associated lax m-A-coring, and C = (A® C) - 14 = {C, =
A®Cy, Ay, 8,80 t1}a, ger the associated m-A-coring.

Over a lax group entwining structure, we can define the following two different
notions of lax entwined modules.

For a family of k-linear maps p = {pn, 53 : Mo — Mo®Cs}a, ger, we will adopt
the notation pa, 5(m) = Mo, o) @M1, 5], (Pa, 8 @ Cr)(Pap,~(M)) = Mo, o) @M1, 51 @
mya, ), for all m € Mag, o, 3, v € m. We don’t assume that p is coassociative.

A lax m-entwined module M is a family of right A-modules (M, )qer, together
with a family of k-linear maps p = {pa, 3 : Mag — My ® Cgla, ger such that the

following conditions are satisfied:

mpo, a)€(myi, 1) = m, (20)

for all m € My;

(Pa, 5 @ Cy)(pap,~(M)) = Mo, a)lay, 6, @ M py11, 5" @ M,y (21)

for all m € Myg,;

Pa, 5(ma) = M0, o)Ay X m[l,ﬁ]wﬁ, (22)

for all m € M,g.

A morphism between two lax m-entwined modules M and N is a family of right
A-linear maps fo : Mo — N, such that fo(mp,q)) ® mp, g = fap(m)o,a @
Jap(m)p, g, for all m € Myg, , B € . M ()5 ¢ will denote the category of lax

m-entwined modules.
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For a family of k-linear maps p = {po : M — M ® Cy}acr, we will adopt the
notation p,(m) = m @ M1, o, (Pa @ Cp)(pa(m)) = mjo) @ m[1, o] ® M2, g), for all
m € M,a, € m. We don’t assume that p is coassociative.

A lax entwined module M is a right A-module together with a family of k-linear
maps p = {pa : M — M ®C,, }oer such that the following conditions are satisfied,
forallme M, «a, 8 €,

mipe(mp,y) = m,
(Pa ® Cp)(ps(m)) = mglay,e, @ m[l,a,@](l,a)¢a ® m[1,aﬁ](2,ﬁ)w57
pa(ma) = Mo] A, @ M1, a]%.

A morphism between two lax entwined modules M and N is a right A-linear map
[+ M — N such that f(mjo)®@mp o) = f(Mm)@f(Mm)p,q , forallm e M,a € .
M(1)G will denote the category of lax entwined modules.

Proposition 3.5. For a lax w-entwining structure (A, C, ), we have two different
isomorphisms of categories, namely:

(1) the categories M™C and M(1)""C are isomorphic;

(2) the categories M and M) are isomorphic.

Proof. We will just show that (1) holds, and in a similar way we can prove (2).

Let M = (M,)aer be a family of right A-modules. We will first show that for all
o, €m, Homy (Mg, Ma®AQ6) is isomorphic to the submodule of Hom(M,3, Mo®
Cj) consisting of maps p,, g satisfying (22). Take po, g : Map — My ® Cp satis-
fying (22), and define F(pa, 3) : Map — Mo @4 Cj as follows:

F(pa,)(m) =mpp, o] @4 (Lay, @my, ).

We can check that F'(p,,3) is right A-linear as follows:

Fpa,p)(ma) = mp,aay; @a (Lag, @ mpg""?)
= Mip,a @4 (ayslag, ® mp, gv?%°)
=" mp,a) ®a (ay, @mp, ")
= M) ®a (Lag, @mp,"*)a
= F(pa,p)(m)a
Conversely, take po, 3 € Homa(Mag, Moa®aCp), and define G (pa, 5) € Hom(Myg, Mo®
Cp) as follows: for m € M,g, there exist (a finite number of) m; € M, and ¢; € Cp
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such that pa, 3(m) =3, m; ®a (lay, ® ¢;¥?); then we define
G(pa,p)(m) = ZmilquB ® c;¥e.
G(pa, ) satisfies (22), since
Pa, p(ma) = Zmi ®4 (ay, ® cﬂﬁ) = Zmiaw ®a (1,4% ® ciwﬁw),
hence
G(pa,p)(ma) = Zmiawﬁ lag, ® c;¥e? = Zmi1A¢ﬁa¢/, ® ¢ V9%,
F and G are mutually inverse:

F(G(pa,5))(m) = ZmilAwﬁ D4 (Lag, ®c;¥59%)

K2

= Zmz' ®a (lay, ® ") = Pa, p(m).

K2

(22)
G(F(pa,p))(m) = m[o,a]lAw3®m[1,mw5 = Pa,p(m).

Now take po, g : Moy — M, ® Cjs satisfying (22) and the corresponding right
A-linear map po, 3. We claim that p,, g is coassociative if and only if p,, g satisfies

(21). First we compute

(a8 ®C)Pap,~(m) = Mg a) ®a (Lay, @mp,5"") @4 (Lag, ® mp,4"7),
and
(Mo ®4 Ag ) 0 pa,py)(m) = mpg o] ®a (lay,, ® m[l,ﬁw}wmu,g)) ®a(la® m[lyﬂv]wm(z,v))'

If p is coassociative, then it follows that

M0, a1l ay, Lag, oy @ mp, g "7 @ myg, 1%

(10)
=" Mg, a1lag,p, © My, 5" @ mp, 5
(22)

(2
=" pa, 5(M[o, ag 1ag,) @ mp, 1%

2)
=" Pa, 8(M0,ap) ® M1, 4],

equals

s
M0, Layy, Lag, @ mp, s """ 4 5 @ mp, a7 5

(11)

= Mo, ]l Ay, 6, © M1, 411, 9" @M1 g2, )"
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and (21) follows for p, g. Conversely, if (21) holds, then

(Mo ®4 Ag ) © pa, py)(m)
b5
mio,a] @4 (lay, lag, ® m[1,gy]w‘”(17m ) ®a (L4 @ mp, g Yo (2.)) " 1a

11
) mio,o] @4 (Lay, Lag, @ mp pya,5”") @4 (1a @ mp, pyy2,4)%7) - 1a

=mpo, o) L4y, 149, ®a (1La @mp,g90.9)") 14 @4 (La ©@mp, gyy2,)"7) - 1a
(2 Mo, o] @4 (La@mp, g) - 1a®a (la®@mp2, 4)) - 1a

= (Pa, 8 @ C,)Dap,~(m),
so p is coassociative. Finally, p satisfies the counit property if and only if

(22)

m = m[o,a]1¢1€(m[171]w1) = m[07a]e(m[171]).

O

Remark 3.6. Let (4, C,4) be a weak m-entwining structure. Using (16), we find
that (21) is equivalent to

(Pa, 5 © Cy)pap,~(m) = Mo, o) Lyg, ® 85,7 (M11, 3)"*7) = M0, 0] @ 055 (M1, )
so (20), (21) are equivalent to saying that M is a right 7-C-comodule.

Let A be a k-algebraand H = {Hy, Mq, Lo, 0, 8; € }a, ger a semi-Hopf w-coalgebra.

Consider a family of k-linear maps
p=1{pa:A— AR Ha,pala) = ap @ ap, o] }acnr-

To p, we associate a family of k-linear maps

Y={g : Hy ® A — A® H,},
Ya(h ®a) = aj) ® hap, o) = ay, @ h¥e, foralla € A,h € H.
Lemma 3.7. 1 satisfies (10) if and only if

pa(ab) = apb) @ aq1, a1bp1, of- (23)
Y satisfies (17) if and only if

pa(la) =14 ® ly,. (24)

¥ satisfies (11) if and only if

palal]) ® ap, g = ajlao ® a1, ap1(1,0) 1411, 0] ® 1, ap)(2, 5)- (25)
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Y satisfies (12) if and only if

e(a[l’l])a[o] = 6(1A[1’1])1A[0]CL. (26)

Y satisfies (18) if and only if

e(ap, 11)ap = a. (27)

Y satisfies (15) if and only if
p1(1a) = €(ap,1)1ag) © 1, (28)

Y satisfies (16) if and only if
palag) ® ap, g = ag) ® da, g(ag, ag))- (29)

Y satisfies (13) if and only if
p1(1a) = e(Lajoy, 1)) Lajo)0) ® Lap, 13- (30)

Y satisfies (14) if and only if
p1(1a) = e(lapy 1))l lag ® Lap, 1) (31)

Y satisfies (19) if and only if
€(Lap,1)lajo = 1a. (32)
Proof. Straightforward. U

Example 3.8. It follows immediately from Lemma 3.7 that

1. (A, H,v) is a m-entwining structure if and only ifA is a right 7-H-comodule
algebra;

2. (A, H,v) is a partial m-entwining structure if and only if (23), (25), (27)
hold. We will then say that H coacts m-partially on A, or that A is a right partial
m-H-comodule algebra;

3. (A, H,) is a lax m-entwining structure if and only if (23), (25), (26) and (30)
or (31) are satisfied, we then say that H is a right lax m-H-comodule algebra,;

4. (A, H,v) is a weak m-entwining structure if and only if (23), (26), (28) and
(25) or (29) are satisfied, we then say that H is a right weak m-H-comodule algebra.

Example 3.9. Let H = {Hq,Maq, Lo, 0q, 8, €}a, ger be a semi-Hopf m-coalgebra,
e = (€a)qer € [[ner Ha such that e, ®@eg = da, gleas)(ea®1), €2 = ey, eley) = 1.

Then we can define the following partial 7-H-coaction on an algebra A:

p= {pa : Poz(a) =a®eqy € A®Ha}a€7r~
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It is straightforward to verify that (23), (25), and (27) hold :
pa(@)pald) = ab® el = ab® o = palab),
Pa(ao) ®ap g = a®ea®eg=a®eag 4 Ca® €ap(q, g
= aolao ®ap, ap)(1,0) 1A, 0] @ A1, ap)(2, )5
ae(e1) = a.

Such an idempotent e exists in a semisimple Hopf w-coalgebra of finite type (see
[13]) and the proof is left to the reader.
4. Partial Group Smash Products

In this section, we introduce and investigate the notion of a lax w-smash product.
Definition 4.1. Let A be an algebra with unit 14, B = @, Ba a m-graded
algebra with unit 15 and R = {Ry : Bo ® A — A ® By }tacr & family of k-linear

maps satisfying the relations:
(a0)r, @b = an,cr, @ b=,
(acr, )r, @ D0d™ = ap,ep, ® (BF2d)™,
alag, ® 1™ =ap, @ 15",
alap, ®b% = (ala,,)r, ® 15707,

where we use the notation R, (b ® a) = ar, ® b¥ = a,, ®b". Then we say that
(A, B, R) is a lax m-smash product structure. It is not hard to verify that this
quadruple of conditions is equivalent to the quadruple of conditions (33), (34), (35)

and
alap, @b =ag,1a,, ® (1p10)"7, (37)
Remark 4.2. (1) If R satisfies (33), (34), (35) and
lag, ® 0% =14, ® 150, (38)
or R satisfies (33), (35), (38) and
ap,r, ®b7d% = ap, ® (bd)Fo, (39)

then we call (A4, B, R) a weak m-smash product structure.
(2) If R satisfies (33), (39) and

a®13:aRl®13R1, (40)
1@b=1p, @bl (41)
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then we call (A, B, R) a m-smash product structure.
(3) If (A, B, R) a lax m-smash product structure and R satisfies

la®1lp=1lap ®1p™, (42)

or R satisfies (33), (34) and (40), then we call (A, B, R) a partial m-smash product

structure.
It is easy to obtain the following proposition.

Proposition 4.3. (A, B, R) is a w-smash product structure if and only if it is at

the same time a weak and a partial T-smash product structure.

Let A be an algebra with unit 14, B = @, Ba a m-graded algebra with unit
1. We define R = A$B = {AtBa}acn, where A$B, := A ® B, as a k-module.
The multiplication pq g : (A® Ba) ®4 (A® Bg) — A® Bag of R is defined as

fa, 8((a ®b) @4 (c ® d)) = (aib)(ctd),
for all a,c € A, be B,, d € Bg.

Theorem 4.4. Let A be an algebra with unit 14, B = @, ¢, Ba a m-graded algebra

with unit 1g and R = {Ry : Bo ® A — A ® By }aer a family of k-linear maps.
Assume that AtB = {A#Bs}acr is a family of A-bimodules with canonical left

A-action. Consider the maps

p="{ta,p: (A®Ba) ®a (A® Bg) — (A® Bag)},

pa, 5((a @ b) @4 (c® d)) = acg, ©bd,

n:A—A®B, n(a)=(a®1p)-1a =alap, ® 1%,
where A® By = (A® B1)la, then the following assertions are equivalent:

(1) (AEB, p,m) is a left unital lax w-A-ring.
(2) (A, B, R) is a lax w-smash product structure.

Proof. The proof is dual to the proof of Theorem 3.4 and left to the reader. [

Theorem 4.5. Let A be a k-algebra and C = {Cy, Ay, 3,€}a, ger @ T-coalgebra of
finite type. Then there is a one-to-one correspondence between lax group entwining

structures of the form (A,C,v) and lax m-smash product structures of the form
(A°P,C*, R).
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Proof. For all a € m, let {(eq,;,£*") |i=1,...,n4} C Cy x CX be a dual basis of
C,. Then it is easy to check that:

D Aapleaps) P = eqi®ep; @ €M x0T,
i 0.

for all a, B € m.

Let (A,C,4) be a lax group entwining structure. We define R = {Rg : Ch ®
A — A® Ch}per by the formula

Rs(¢" ®a) = ap, @ ()% =Y ("5 )ay, © €77, (43)
i

for any ¢* € C and a € A. A routine computation shows that the (A7, C*, R) is
a lax (resp. partial) m-smash product structure.

Conversely, if (A°?,C* R) is a lax (resp. partial) m-smash product structure,
then one defines ¥ = {ty : Co ® A — A ® Cyp}aen by

Yal(c®a) = ay, ® P =Y (™), c)agr, @ eay, (44)

forany a € A,c € C, and « € . We can prove that (A, C, ) is a lax (resp. partial)
m-entwining structure, although the calculations are quite tedious. Eqs.(43) — (44)

define the required one-to-one correspondence. O

Remark 4.6. Theorem 4.5 also holds for weak group entwining structures versus

weak group smash product structures.

Let (A, C, v) be alax group entwining structure, i.e. AQC = {ARC,, Ay, 3, aen
is a left unital lax 7-A-coring. Set *(A®C) = {yHom(A® Cy-1, A) }aer. Consider

the family of k-module isomorphisms
AHom(A® Cp-1,A) 2 Hom(Cy-1,A), f — fo(na® Cy-1)

for all f € sHom(A® C,-1,A),a € .
The right unital lax 7- A-ring structure on *(A®C) induces a right unital lax 7-A-

ring structure on R’ = {Hom(Cy-1, A) }aer. It is given by the following formulas,
(afb)(c) = ay,_, f(cP==1)b,
for all a,b € A,c € C,, and f € 4JHom(Cy-1, A).
(f19)(c) = f(C(z,owl))%_l9(0(1,[371)%’1 );
for all f € sHom(Cy-1,A),g9 € AHom(Cg-1,A), and c € Capy-1.

n:A— sHom(Cy, A),n(a)(c) = €(c*")ay, ,
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foraec A,ce Cy.
If R = {Hom(Cy-1, A)}aer is equipped with the above right unital lax A-ring
structure, then we call it a lax Koppinen m-smash product and denote it by §(C, A).
The left dual of the corresponding m-A-coring C = C1 4, regarded as a m-A-ring,

is then isomorphic to the m-A-ring

Ij(Cv A) = 1Aﬁ(cv A) = {]-Aﬁ(ca A)a}aew

where we have
148(C, A)q :=={f € Hom(C,-1,4) | f(c) = lAwaflf(cwafl), for all c € Cp-1}

for any « € .

Proposition 4.7. Assume that A is a k-algebra and C = {Co,Aq, 8,6}a, gen
a -coalgebra of finite type. Let (A,C,v) be a lax m-entwining structure, and
(A°P C*  R) the corresponding lax w-smash product structure. Then *(A ® C)°P
is isomorphic to A°PEC* as left unital lax w-A°P-rings, and *(A ® C)°P is isomor-
phic to A°PHC* as w-A°P-rings (or w-graded A°P-rings). Consequently we have that

the categories povgc-M™ and M(z/;)z_c are isomorphic. Moreover, if m is a finite

group, then we have an equivalence of categories between govycxM and M(Q/J)g.

Proof. Since *(A ® C) is a right unital lax 7-A-ring, we know
(A C)" = ({Hom(A ® Ca, A)taer) = ({Hom(Co, A) baer) = §(C, A)*
is left unital lax m-A°P-rings, with multiplication
(Fe9)(©) =glci p)vaflca,a)™™)
for all f € Hom(C,,A),g € Hom(Cp,A),c € Cup,a, f € w. Since C is a =-
coalgebra of finite type, the map F' is an isomorphism of k-module defined as
F: A®? @ C: — Hom(Cy, A), F(afc*)(c) = a < ¢, ¢ >,

for all a € A,c* € C, and ¢ € C,. It is straightforward to check that F’ preserves
the multiplication. Then the first statement holds.

Applying Proposition 2.6, we see that

FARC)P 2 (14-"(ARC))P="(ARC)P - 14 = (AP4C™) - 14 = APHC™.
From Proposition 3.5, we know M(¢))%~¢ = M™A8C and M(4)§ = MASC 5o

the last two statements follow immediately from Propositions 5.1 and 5.4 of [7]. O
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