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Abstract. In this paper we continue our study of classical Zariski topology

of modules, that was introduced in Part I (see [2]). For a left R-module M ,

the prime spectrum Spec(RM) of M is the collection of all prime submod-

ules. First, we study some continuous mappings which are induced from some

natural homomorphisms. Then we generalize the patch topology of rings to

modules, and show that for every left R-module M , Spec(RM) with the patch

topology is Hausdorf and it is disconnected provided |Spec(RM)| > 1. Next,

by applying Hochster’s characterization of a spectral space, we show that if

M is a left R-module such that M has ascending chain condition (ACC) on

intersection of prime submodules, then Spec(RM) is a spectral space, i.e.,

Spec(RM) is homeomorphic to Spec(S) for some commutative ring S. This

yields if M is a Noetherian left R-module or R is a PI-ring (or an FBN-ring)

and M is an Artinian left R-module, then Spec(RM) is a spectral space. Fi-

nally, we show that for every Noetherian left R-module M , Max(M) (with the

classical Zariski topology) is homeomorphic with the maximal ideal space of

some commutative ring S.
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1. Introduction

The present paper is a sequel to [2] and so the notations introduced in Intro-

duction of [2] will remain in force. In particular, all rings are associative rings

with identity elements, and all modules are unitary left modules. Let M be a left

R-module. If N is a submodule (respectively proper submodule) of M we write

N ≤ M (respectively N < M). We denote the left annihilator of a factor module

M/N of M by (N :R M). We call M faithful if (0 :R M) = 0.

Let M be a left R-module. A proper submodule P of M is called a prime

submodule if for every ideal A of R and every submodule N ⊆ M , if AN ⊆ P , then
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either N ⊆ P or AN ⊆ P . We recall that the spectrum Spec(RM) of a module M

consists of all prime submodules of M . For any submodule N of M we define V (N)

to be the set of all prime submodules of M containing N and call V (N) the variety

of N . Of course, V (M) is just the empty set and V (0) is Spec(M). Note that

for any family of submodules Ni (i ∈ I) of M ,
⋂

i∈I V (Ni) = V (
∑

i∈I Ni). Thus if

V(M)) denotes the collection of all varieties V (N) of Spec(M), then V(M) contains

the empty set and Spec(M), and V(M) is closed under arbitrary intersections.

Unfortunately, in general, V(M) is not closed under finite union (see for example

[9]).

For a left R-module M we denote Spec(RM) by XM . As in [2], we put W(M) =

{W (N) : W (N) = XM − V (N) for some N ≤ M} and we define T (M) to be the

collection U of all unions of finite intersections of elements of W(M). In fact, by [7,

page 82], T (M) is a topology on XM by the sub-basis W(M). We say that T (M) is

the classical Zariski topology of M . Clearly, B = {W (N1)∩W (N2)∩· · ·∩W (Nk) :

Ni ≤ M, 1 ≤ i ≤ k, for some k ∈ N} is a basis for this topology. In [2], it is

shown that for each left R-module M , XM is always a T0-space and every finite

irreducible closed subset Y of XM has a generic point (i.e., Y is the closure of

a unique point). In particular, for each left R-module M with finite spectrum,

Spec(RM) is a spectral space, i.e., Spec(RM) is homeomorphic to Spec(S) for

some commutative ring S (see [2, Theorem 3.9]).

In this article, we continue the study of this construction. In Section 1, we study

some continuous mappings which are induced from some natural homomorphisms.

It is shown that if f : M −→ M ′ is an R-module epimorphism, then neutral map

υ : XM ′ −→ XM , given by υ(P ) = f−1(P ) (P ∈ XM ′) is a continuous map. This

yields that for each left R-module M , the natural map ΦM : XM → XM/radR(M)

defined by Φ(P ) = P , where P ∈ XM and P = P/rad(M), is a homeomorphism,

and hence, XM
∼= XM/radR(M), where radR(M) is the prime radical of M . Let

IM/radR(M) = Ann(M/radR(M)) and R̂ := R/IM/radR(M). In Proposition 1.9, it

is shown that for any left R-module M , the natural map ΨM : XM −→ X
bR, given

by ΨM (P ) = (P :R M)/IM/radR(M) is also a continuous map. Moreover, ΨM =

ΨM/RadM
◦ ΦM . In particular, if M is a Noetherian module over a commutative

ring R, then ΨM is surjective, and if M is an Artinian module over a PI-ring (or

an FBN-ring), then ΨM is surjective, both closed and open. Also, in Theorem

1.16, we give several characterizations of an Artinian module M over a PI-ring (or

an FBN-ring), for which XM is connected. In Section 2, we generalize the patch

topology of rings to modules, and show that for any Noetherian left R-module M ,
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Spec(RM) with the patch topology is Hausdorff and compact. Moreover, if also

|Spec(RM)| > 1, then Spec(RM) is disconnected.

A spectral space is a topological space homeomorphic to the prime spectrum

of a commutative ring equipped with the Zariski topology. M. Hochster [5] has

characterized spectral spaces as quasi-compact T0-spaces X such that X has a

quasi-compact open basis closed under finite intersection and each irreducible closed

subset of X has a generic point. By [2, Proposition 3.8], for each left R-module M ,

XM is always a T0-space. In Theorem 2.4, we show that if M is a left R-module

with ACC on intersection of prime submodules, then XM is quasi-compact and

has a basis of quasi-compact open subsets. Also, in Section 3, we show that ev-

ery irreducible closed subset of XM (where M has ACC on intersection of prime

submodules), has a generic point, and hence, by applying Hochster’s characteriza-

tion of a spectral space, we conclude that; if M has ACC on intersection of prime

submodules, then Spec(RM) is a spectral space, i.e., Spec(RM) is homeomorphic

to Spec(S) for some commutative ring S. Also, we show that this fact is true for

Artinian modules over a PI-ring (or an FBN-ring). Finally, we show that for ev-

ery Noetherian left R-module M , Max(M) (with the classical Zariski topology) is

homeomorphic with the maximal ideal space of some commutative ring S (with the

topology inherited from Spec(S)).

1. Continuous mapping and homomorphisms

Let R be a ring and M , M ′ be R-modules. The following assertions are routine

to check:

1. P is a prime submodule of M if and only if for each a ∈ R and m ∈ M ,

aRm ⊆ P implies that m ∈ P or aM ⊆ P .

2. If P is a prime submodule of M , then for each submodule B of M , either

B ⊆ P or P ∩B is prime in B (see also, [8, Lemma 3]).

3. If f : M −→ M ′ is an R-module epimorphism, then there exists a bijection

between X ′
M and the set of all prime submodules of M containing kerf.

Proposition 1.1. Let f : M −→ M ′ be an R-module epimorphism, and let N be a

submodule of M such that kerf ⊆ N .Then V (N) → V (f(N)), given by P → f(P )

is a bijection, unless V (N) is the empty set, in which case so is V (f(N)).

Proposition 1.2. Let f : M −→ M ′ be an R-module homomorphism. Define

ϕ : T (M) → T (M ′) by ϕ(
⋂

i∈I(
⋃ni

j=1 V (Nij))) =
⋂

i∈I(
⋃ni

j=1 V (f(Nij))) where I is

an index set, ni ∈ N and Nij ≤ M . Then ϕ is a well-defined map.
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Proof. Assume
⋂

i∈I(
⋃ni

j=1 V (Nij)) =
⋂

t∈T (
⋃nt

j=1 V (Ktj)) where Nij ,Ktj ≤ M

and I, T are index set. We shall show that;

⋂

i∈I

(
ni⋃

j=1

V (f(Nij))) =
⋂

t∈T

(
nt⋃

j=1

V (f(Ktj))) (∗)

Let P ∈ ⋂
i∈I(

⋃ni

j=1 V (f(Nij))). Then for each i ∈ I, there exists ji (1 ≤ ji ≤ ni)

such that P ∈ V (f(Niji
)). If P ⊇ f(M), then for each t ∈ T , and each j

(1 ≤ j ≤ nt) we have P ⊇ f(Ktj). It follows that P ∈ ⋂
i∈I(

⋃m
j=1 V (f(Ktj))). Now

let P + f(M). Then P
⋂

f(M) is prime submodule of f(M). Thus for each i ∈
I, f−1(P

⋂
f(M)) ∈ V (Niji

), and hence, f−1(P
⋂

f(M)) ∈ ⋂
i∈I(

⋃ni

j=1 V (Nij)).

Therefore, f−1(P
⋂

f(M)) ∈ ⋂
t∈T (

⋃nt

j=1 V (Ktj)) and hence for each t ∈ T , there

exists jt (1 ≤ jt ≤ nt) such that f−1(P
⋂

f(M)) ∈ V (Ktjt). It follows that for each

t ∈ T , f(Ktjt
) ⊆ P

⋂
f(M), i.e. P ∈ V (f(Ktjt

)). Consequently, we have P ∈⋂
t∈T (

⋃nt

j=1 V (f(Ktj))). Thus
⋂

i∈I(
⋃ni

j=1 V (f(Nij))) ⊆
⋂

t∈T (
⋃nt

j=1 V (f(Ktj))).

By a similar argument we can show that

⋂

t∈T

(
nt⋃

j=1

V (f(Ktj))) ⊆
⋂

i∈I

(
ni⋃

j=1

V (f(Nij))).

Thus (∗) holds and this completes the proof. ¤

Theorem 1.3. Let f : M −→ M ′ be an R-module epimorphism such that M ′ is not

primeless (i.e., XM ′ = Spec(M ′) 6= ∅). Define υ : XM ′ −→ XM by υ(P ) = f−1(P )

for each P ∈ XM ′ . Then υ is a continuous map.

Proof. Clearly, υ is well-defined. Let V =
⋂

i∈I(
⋃ni

j=1 V (Ni,j)) be a closed set

in XM . We show that υ−1(V ) =
⋂

i∈I(
⋃ni

j=1 V (f(Nij))) and so it is a closed set

in X ′
M . Let P ∈ υ−1(V ). Then f−1(P ) = υ(P ) ∈ V . Thus for each i ∈ I we

have f−1(P ) ∈ ⋃ni

j=1 V (Nij), and hence, for each i ∈ I there exists ji (1 ≤ ji ≤
ni) such that f−1(P ) ∈ V (Niji). Now by Proposition 1.1, P ∈ V (f(Niji)). It

follows that P ∈ ⋂
i∈I

⋃ni

j=1 V (f(Nij)). By a similar argument we can show that⋂
i∈I(

⋃ni

j=1 V (f(Nij))) ⊆ υ−1(V ) and so we are through. ¤

Recall that a function Φ between two topological spaces X and Y is called an

open map if, for any open set U in X, the image Φ(U) is open in Y . Also, Φ is

called a homeomorphism if it has the following properties

(i) Φ is a bijection;

(ii) Φ is continuous;

(iii) Φ is an open map (i.e., the inverse function Φ−1 is continuous).
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If such a function exists we write X ∼= Y and we say X and Y are homeomorphic.

The homeomorphisms form an equivalence relation on the class of all topological

spaces. The resulting equivalence classes are called homeomorphism classes.

For a left R-module M , the prime radical of M (denoted by radR(M)) is defined

to be the intersection of all prime submodules of M (note that, if M has no any

prime submodule, then radR(M) := M). We recall that a proper submodule P

of M is called a semiprime submodule of M if, for every ideal A ⊆ R and every

submodule N ⊆ M , if A2N ⊆ P , then AN ⊆ P . Also, a left R-module M is called

a semiprime module if (0) ⊆ M is a semiprime submodule. It is clear that for a

submodule P of M , M/P is a semiprime module if and only if P is a semiprime

submodule of M . Clearly, for each left R-module M , either radR(M) = M or

radR(M) is a semiprime submodule of M .

The following proposition shows that the study of classical Zariski topology of

general modules reduces to that of semiprime modules.

Proposition 1.4. Let M be a left R-module. Then

XM

ΦM∼= XM/radR(M)

where ΦM : XM → XM/radR(M) defined by Φ(P ) = P , where P ∈ XM and P =

P/radR(M).

Proof. We define f : M → M/radR(M) by f(Nij) = N ij , where Nij ≤ M and

N ij := Nij/radR(M). Clearly,

Spec(M/radR(M)) = {P/radR(M) : P ∈ Spec(RM)},

and hence ΦM : XM → XM/radR(M) defined by Φ(P ) = P is a bijection. Now by

Theorem 1.3, Φ−1 is continuous. We claim that Φ is a continuous map. Suppose

U =
⋃

i∈I(
⋂ni

j=1 W (N ij)), where Nij ≤ M . We show that

Φ−1(U) =
⋃

i∈I

(
ni⋂

j=1

W (Nij)).

Let P ∈ Φ−1(U). Thus there exists P ∈ U such that P = Φ−1(P ), and hence,

there exists k ∈ I such that for each j (1 ≤ j ≤ ni) P ∈ W (Nkj), i.e. Nkj " P .

It follows that Nkj " P for each j (1 ≤ j ≤ ni). Thus P ∈ ⋃
i∈I(

⋂ni

j=1 W (Nij)).

Therefore, Φ−1(U) ⊆ ⋃
i∈I(

⋂ni

j=1 W (Nij)). By a similar argument we can show that⋃
i∈I(

⋂ni

j=1 W (Nij)) ⊆ Φ−1(U). Therefore we have Φ−1(U) =
⋃

i∈I(
⋂ni

j=1 W (Nij))

and so Φ is continuous. ¤
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In topology, a subspace of a topological space X is a subset Y of X which

is equipped with a natural topology induced from that of X called the subspace

topology (or the relative topology, or the induced topology). It is well-known that

if Y ⊆ X and B is a basis for X then BY = {Y ∩ U |U ∈ B} is a basis for Y .

Lemma 1.5. Let M be a left R-module and P ∈ Spec(RM). Let V (P ) be endowed

with the induced topology of XM . Then V (P ) ∼= XM/P .

Proof. Suppose P is a prime submodule of M . We define Φ : V (P ) → XM/P with

Φ(Q) = Q for each Q ∈ V (P ), where Q = Q/P . Clearly Φ is a bijection map. First

we show that Φ is continuous. Let U =
⋃

i∈I(
⋂ni

j=1 W (N ij)) is an open subset of

XM/P , where P ⊆ Nij ≤ M and N ij = Nij/P . We claim that

Φ−1(U) = V (P )
⋂

[
⋃

i∈I

(
ni⋂

j=1

W (Nij))]. (∗)

Let Q ∈ Φ−1(U). Thus Q ∈ U and so there exists t ∈ I such that for each

j (1 ≤ j ≤ nt) Q ∈ W (N tj), i.e. N tj " Q. It follows that Ntj " Q, for

each j (1 ≤ j ≤ nt), and hence Q ∈ V (P )
⋂

[
⋃

i∈I(
⋂ni

j=1 W (Nij))]. Therefore

Φ−1(U) ⊆ V (P )
⋂

[
⋃

i∈I(
⋂ni

j=1 W (Nij))]. By a similar argument we can show

that V (P )
⋂

[
⋃

i∈I(
⋂ni

j=1 W (Nij))] ⊆ Φ−1(U). Thus (∗) holds, and hence, since⋃
i∈I(

⋂ni

j=1 W (Nij)) is an open subset of XM , Φ−1(U) is an open subset of V (P ).

Thus Φ is continuous.

Now we show that Φ is open. Suppose U is an open subset of V (P ). Then

U = V (P )
⋂

[
⋃

i∈I(
⋂ni

j=1 W (Nij))], where ni ∈ N and Nij ≤ M . We will show that

Φ(U) =
⋃

i∈I

(
ni⋂

j=1

W (P + N ij)),

where P + N ij = (P + Nij)/P . Let Q ∈ Φ(U), where Q ≤ M and Q = Q/P . It

follows that Q ∈ U and so there exists k ∈ I such that for each j (1 ≤ j ≤ nk)

Q ∈ W (Nkj)
⋂

V (P ), i.e. Nkj " Q and P ⊆ Q. Therefore P + N ij ⊆ Q for

each j (1 ≤ j ≤ nk). Thus Q ∈ ⋃
i∈I(

⋂ni

j=1 W (P + N ij)), and hence Φ(U) ⊆⋃
i∈I

⋂ni

j=1 W ((P + N ij)). By a similar argument we can show that

⋃

i∈I

(
ni⋂

j=1

W (P + N ij)) ⊆ Φ(U)

and this means that Φ is open. ¤

Proposition 1.6. Let M be a Noetherian left R-module. Then

XM = V (P1) ∪ V (P2) ∪ ... ∪ V (Pn),
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where P1, P2, ..., Pn are all minimal prime submodules of M . Moreover, for each i

(1 ≤ i ≤ n), V (Pi) is a subspace of XM such that V (Pi) ∼= XM/Pi
.

Proof. Since M is a Noetherian left R-module, by [10, Theorem 4.2], M has a finite

number of minimal prime submodules, and hence XM = V (P1)∪ ...∪V (Pn), where

P1, P2, ..., Pn are all minimal prime submodules of M . The “moreover” statement

is clear by Lemma 1.5. ¤

A prime ring R will be called left bounded if, for each regular element c in R,

there exists an ideal A of R and a regular element d such that Rd ⊆ A ⊆ Rc. A

general ring R will be called left fully bounded if every prime homomorphic image

of R is left bounded. A ring R is called a left FBN-ring if R is left fully bounded

and left Noetherian. It is well known that if R is a PI-ring (ring with polynomial

identity) and P is a prime ideal of R, then the ring R/P is (left and right) bounded

and (left and right) Goldie [11, 13.6.6].

We need the following Lemma of [2].

Lemma 1.7. ([2, Proposition 2.17]). Let M be an Artinian module over a PI-

ring (or an FBN-ring) R. Then radR(M) = M or M has radR(M) is a finite

intersection of prime submodules and M/radR(M) is a Noetherian left R-module.

The following proposition shows that the facts of Proposition 1.6 are also true

for Artinian modules over a PI-ring (or an FBN-ring).

Proposition 1.8. Let R be a PI-ring (or an FBN-ring), and let M be an Artinian

left R-module. Then XM = ∅ or M has a finite number of minimal prime submod-

ules. Consequently, XM = V (P1)∪ V (P2)∪ ...∪ V (Pn), where P1, P2, ..., Pn are all

minimal prime submodules of M and for each i (1 ≤ i ≤ n), V (Pi) is a subspace of

XM such that V (Pi) ∼= XM/Pi
.

Proof. Let rad(M) 6= M . Thus by Lemma 1.7, M/radR(M) is a Noetherian

left R-module, and hence by [10, Theorem 4.2], M/radR(M) has a finite number

of minimal prime submodules. It follows that M has a finite number of minimal

prime submodules (see also the proof of Proposition 1.4). Let P1, P2, ..., Pn are

all minimal prime submodules of M . Clearly, XM = V (P1) ∪ V (P2) ∪ ... ∪ V (Pn).

Now by Lemma 1.5, for each i (1 ≤ i ≤ n), V (Pi) is a subspace of XM such that

V (Pi) ∼= XM/Pi
. ¤
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Let M be a left R-module. Then by Proposition 1.4, XM
∼= XM/radR(M). Clearly

for each prime submodule P of M , radR(M) ⊆ P and so P/radR(M) is a prime

R-submodule of M/radR(M). Thus

IM/radR(M)) := Ann(M/radR(M)) ⊆ (P/radR(M) : M/radR(M)) = (P : M),

and hence, (P : M) := (P : M)/IM/radR(M)) is a prime ideal of R/IM/radR(M)).

Now we assume that R̂ := R/IM/radR(M)) and we will use X
bR to represent Spec(R̂)

with the usual Zariski topology of rings considered in [4, Chapter 16]. From the

definition of the classical Zariski topology of M and by Proposition 1.4, it is evident

that in some instance the topological space XM is closely related to X
bR, particu-

larly, under the correspondence ΨM : XM −→ X
bR defined by ΨM (P ) = (P : M)

for every P ∈ XM . For a module M , the above notations and the notion of ΦM

(XM

ΦM∼= XM/radR(M)) considered in Proposition 1.4, are fixed for this section.

Proposition 1.9. For any left R-module M , the natural map ΨM : XM −→ X
bR

is a continuous map. Moreover, ΨM = ΨM/RadM
◦ ΦM .

Proof. Let A be a closed subset of X
bR. Then A = V (I) where I = I/IM/radR(M))

is an ideal of R̂. We claim that Ψ−1
M (V (I)) = V (IM). If P ∈ Ψ−1

M (V (I)), then

P ∈ V (I), where P = (P : M). This means that I ⊆ P i.e., I ⊆ P, and hence

IM ⊆ P i,e., P ∈ V (IM). Therefore, Ψ−1
M (V (I)) ⊆ V (IM). One can easily see

that, P ∈ V (IM) follows that P ∈ Ψ−1
M (V (I)). Thus Ψ−1

M (V (I)) = V (IM) for

each ideal I of R such that IM ⊆ I, i.e., the natural map ΨM is continues. For

“moreover” statement we note that XM/radR(M) = {P/radR(M) : P ∈ Spec(RM)},
and by Proposition 1.4, XM

∼= XM/radR(M) by the natural map

Φ : XM/radR(M) → XM

with Φ(P ) = P where P ∈ XM and P := P/radR(M). It is clear that for

each P ∈ XM , (P :R M) = (P/radR(M) :R M/radR(M)), i.e., (P :R M) =

(P/RadR(M) :R M/radR(M)). This means that ψM/radR(M)(Φ−1(P )) = ΨM (P ),

for each P ∈ XM , i.e., ΨM/radR(M) ◦ Φ = ΨM . ¤

Lemma 1.10. Let R be a ring and M be a left R-module. Then for each maximal

ideal P of R, either PM = M or PM is a prime submodule of M .

Proof. Let PM 6= M . Since P is maximal and P ⊆ (PM : M), (PM :R M) = P.

Thus R/P is a simple ring and M/PM is a left R/P-module. Clearly, every module

over a simple ring is prime. Thus M/PM is a prime left R/P-module. It follows

that PM is a prime left R-submodule of M . ¤



CLASSICAL ZARISKI TOPOLOGY OF MODULES AND SPECTRAL SPACES II 139

Lemma 1.11. Let R be a PI-ring (or an FBN-ring), and let M be a homogeneous

semisimple left R-module with P = Ann(M). Then P is a maximal ideal of R.

Moreover, the ring R/P is simple Artinian.

Proof. Since M is semisimple and homogeneous, Ann(M) = Ann(Rm) = P , for

all 0 6= m ∈ M . Let 0 6= m ∈ M . Then Rm is a simple R/P-module. Since R is

a PI-ring (or an FBN-ring), the ring R/P is a left bounded, left Goldie ring. Now

[4, Proposition 9.7] gives that R/P embeds as a left R-module in a finite direct

sum of copies of Rm. Thus R/P is a left Artinian ring, and hence, R/P is simple

Artinian. ¤

We need the following lemma of [6].

Lemma 1.12. ([6, Theorem 2]). Let R be a commutative ring, and let M a faithful

Noetherian R-module. Then for each prime ideal P of R, there exists a prime

submodule P of M such that (P :R M) = P.

Corollary 1.13. Let R be a commutative ring, and let M be a Noetherian R-

module. Then then the natural map ΨM : XM −→ X
bR is surjective.

Proof. By Proposition 1.9, we have ΨM = ΨM/RadM
◦ ΦM . Now apply Lemma

1.12. ¤

Let M be a left R-module. A submodule P of M will be called maximal prime

if P is a prime submodule of M and there is no prime submodule Q of M such

that P ⊂ Q. Also, P is virtually maximal if the factor module M/P is a homoge-

neous semisimple module (see for example [1] and [2] for others various maximality

conditions on submodules and relationship between those conditions).

Lemma 1.14. Let R be a PI-ring (or an FBN-ring), and let M be an Artinian left

R-module XM 6= ∅. Then X
bR is a discrete space.

Proof. Let R be a PI-ring (or an FBN-ring), and let M be an Artinian left R-

module. By Proposition 1.8, radR(M) = P1 ∩ · · · ∩ Pn where P1, · · · , Pn are all

minimal prime submodules of M . It follows that

Ann(M/radR(M)) =
n⋂

i=1

Ann(M/Pi) = P1 ∩ · · · ∩ Pn,

where Pi = (Pi :R M) for each i (1 ≤ i ≤ n). By [1, Corollary 1.6], for each i, Pi is

a virtually maximal submodule of M , i.e., M/Pi is a homogeneous semisimple R-

module. Thus by Lemma 1.11, each Pi is a maximal ideal of R and so V (Pi) = {Pi},
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i.e. X
bR is T1-space. Also, since P1, · · · , Pn are all minimal prime submodules of

M , X
bR = {P1, · · · ,Pn}. Therefore X

bR is a discrete space. ¤

Theorem 1.15. Let R be a PI-ring (or an FBN-ring), and let M be an Artinian

left R-module with XM 6= ∅. Then the natural map ΨM : XM −→ X
bR is surjective,

both closed and open.

Proof. Since XM 6= ∅, by Proposition 1.8, radR(M) = P1 ∩P2 ∩ ...∩Pn where P1,

P2, ..., Pn are all minimal prime submodules of M . It follows that Ann(M/radR(M)) =⋂n
i=1 Ann(M/Pi) = P1∩P2∩ ...∩Pn, where Pi = (Pi :R M) for each i (1 ≤ i ≤ n).

By [1, Corollary 1.6], for each i, Pi is a virtually maximal submodule of M , i.e.,

M/Pi is a homogeneous semisimple R-module. Thus by Lemma 1.11, each Pi is a

maximal ideal of R. This yields that X
bR = {P1,P2, ...Pn}, and hence the natural

map ΨM/radR(M) : XM/radR(M) −→ X
bR is surjective. On the other hand by Propo-

sition 1.4, XM

ΦM∼= XM/radR(M) and by Proposition 1.9, ΨM/radR(M) ◦ ΦM = ΨM .

This yields that the natural map ΨM : XM −→ X
bR is also surjective. Moreover,

by Lemma 1.14, X
bR is a discrete space. Thus ΨM : XM −→ X

bR is both closed

and open. ¤

We are in position to give several characterizations of an Artinian module M

over a PI-ring (or an FBN-ring), for which XM is connected.

Theorem 1.16. Let R be a PI-ring (or an FBN-ring), and let M be an Artinian

left R-module with XM 6= ∅. Then the following statements are equivalent:

(1) XM is connected.

(2) X
bR is connected.

(3) The ring R̂ contains no idempotent other than 0, 1.

(4) R̂ is a simple Artinian ring.

(5) radR(M) is a prime submodule of M .

(6) M/radR(M) is a homogeneous semisimple R-module.

(7) XM = V (P ) for some prime submodule P of M .

Proof. (2 ⇔ 3) is well-known (see for example [3]).

(1 ⇒ 2) Assume that XM is connected. Since the natural map Ψ is surjective, X
bR

is also connected.

(2 ⇒ 4) Assume that X
bR is connected. If |X bR| = n, where n > 1, then there

exist distinct prime ideals P1,P2, ...,Pn ∈ X
bR. Since by Lemma 1.14, X

bR is

a discrete space and each Pi is maximal, we have V (P1)
⋂

V (∩n
i=2Pi) = ∅ and
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V (P1)
⋃

V (∩n
i=2Pi) = X

bR. It follows that

W (P1)
⋂

W (∩n
i=2Pi) = ∅ and W (P1)

⋃
W (∩n

i=2Pi) = X
bR,

a contradiction (since X
bR is connected). Thus X

bR = {P} for some prime (max-

imal) ideal P of R. Since M/radR(M) is a semiprime module, IM/radR(M) is a

semiprime ideal of R i.e., R̂ is a semiprime ring. This yields that P = (0). Thus

M := M/radR(M) is a faithful Artinian left R̂-module, and hence, by Lemma 1.11,

R̂ is simple Artinian.

(4 ⇒ 5) is clear (since every module over a simple ring is prime).

(5 ⇒ 6) Since radR(M) is a prime submodule of M , by [1, Corollary 1.6], radR(M)

is a virtually maximal submodule of M i.e., M/radR(M) is a homogeneous semisim-

ple R-module.

(6 ⇒ 7) It is clear that for each left R-module M , XM = V (radR(M)). Since

radR(M) = P is a prime submodule of M , XM = V (P ).

(7 ⇒ 1) Suppose XM = V (P ) for some prime submodule P of M . If XM is discon-

nected, then there exist nonempty open subsets Y1 and Y2 such that XM = Y1

⋃
Y2

and Y1

⋂
Y2 = ∅. Since P ∈ XM , without loss of generality we can assume that

P ∈ Y1 and P /∈ Y2. Since Y2 is open subset, Y2 =
⋃

i∈I(
⋂ni

j=1 W (Nij)), where

ni ∈ N (i ∈ I) and Nij ≤ M . Thus there exists k ∈ I such that for each j

(1 ≤ j ≤ nk), P ∈ W (Nkj) i.e. Nkj " P . Since XM = V (P ), for each Q ∈ XM

we have Nkj " Q and so Q /∈ Y2. Therefore Y2 = ∅, a contradiction. Thus XM is

connected. ¤

2. Patch topologies associated to the classical Zariski topology of a

module

We need to recall the patch topology (see for example [4,9] for definition and

more details). Let X be a topological space. By the patch topology on X, we mean

the topology which has as a sub-basis for its closed sets the closed sets and compact

open sets of the original space. By a patch we mean a set closed in the patch topol-

ogy. The patch topology associated to a spectral space is compact and Hausdorff

[5]. Also, the patch topology associated to the Zariski topology of a ring R (R is

not necessarily commutative) with ACC on ideals is compact and Hausdorff (see,

[4, Proposition 16.1]).

Definition 1. Let M be a left R-module, and let U(M) be the family of all sub-

sets of XM of the form V (N)
⋂

W (N) where N ≤ M such that W (N) is a classical

Zariski-quasi-compact subset of XM . Clearly U(M) contains XM and the empty



142 M. BEHBOODI AND M. R. HADDADI

set, since XM equals V (0)
⋂

W (M) and the empty set equals V (0)
⋂

W (0). Let

Tp(M) to be the collection U of all unions of finite intersections of elements of

U(M). Then Tp(M) is a topology on XM and is called the patch topology or con-

structible topology (in fact, U(M) is a sub-basis for the patch topology of M).

Definition 2. Let M be a left R-module, and let Ũ(M) be the family of all sub-

sets of XM of the form V (N)
⋂

W (K) where N , K ≤ M . Clearly U(M) contains

XM and the empty set, since XM equals V (0)
⋂

W (M) and the empty set equals

V (0)
⋂

W (0). Let Tp(M) to be the collection Ũ of all unions of finite intersections

of elements of Ũ(M). Then T̃p(M) is a topology on XM and is called the finer

patch topology or finer constructible topology (in fact, Ũ(M) is a sub-basis for the

finer patch topology of M).

Clearly, if M = R, R commutative, then the patch topology on R as an R-

module coincides with the patch topology of R as a ring. But, in general for a

non-commutative ring R, Tp(RR) is not equal to the patch topology of R as a ring,

since not necessarily prime left ideals of R and prime two-sided ideals of R coincide.

Later, in Corollary 2.6, we show that for a Noetherian left R-module M , the patch

topology and the finer patch topology of M coincide.

Proposition 2.1. Let M be a left R-module. Then XM with the finer patch topol-

ogy is Hausdorff. Moreover, XM with this topology is disconnected if and only if

|XM | > 1.

Proof. Suppose distinct points P , Q ∈ XM . Since P 6= Q, either P * Q or

Q * P . Assume that P * Q. By Definition 2, U1 := W (M)
⋂

V (P ) is a finer

patch-neighborhood of P and U2 := W (P )
⋂

V (Q) is a finer patch-neighborhood

of Q. Clearly W (P )
⋂

V (P ) = ∅ and hence U1 ∩ U2 = ∅. Thus XM is a Hausdorff

space. On the other hand for every submodule N of M , observe that the sets

W (N) and V (N) are open in finer patch topology, since V (N) = W (M)
⋂

V (N)

and W (N) = W (M)
⋂

V (0). Since W (N) and V (N) are complements of each

other, these are both closed as well. It follows that “moreover” statement. ¤

We recall the prime radical of a submodule. Let R be a ring and M be a left

R-module. For a submodule N of M , if there is a prime submodule containing N ,

then we define
√

N =
⋂{P : P is a prime submodule of M and N ⊆ P}.
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If there is no prime submodule containing N , then we put
√

N = M . In par-

ticular, for any module M , we have radR(M) =
√

(0). It is easy to see that for a

submodule N of M , V (N) = V (
√

N). In particular, for every left R-module M ,

we have V (0) = V (
√

(0)) = XM .

Theorem 2.2. Let M be a left R-module such that M has ACC on intersection of

prime submodules. Then XM with the finer patch topology is a compact space.

Proof. Suppose M is a left R-module such that M has ACC on intersection of

prime submodules. Let A be a family of finer patch-open sets covering XM , and

suppose that no finite subfamily of A covers XM . Since V (
√

0) = V (0) = XM , we

may use the ACC on intersection of prime submodules to choose a submodule N

maximal with respect to the property that no finite subfamily of A covers V (N)

(note that e have N =
√

N , since V (N) = V (
√

N)). We claim that N is a prime

submodule of M , for if not, then there exist m ∈ M and a ∈ R, such that aRm ⊆ N

and m 6∈ N and aM * N . Thus N $ N + Rm ⊆ √
N + Rm and N $ N + aM ⊆√

N + aM . Hence without loss of generality, there must be a finite subfamily A′ of

A that covers both V (N +aM) and V (N +Rm). Let P ∈ V (N). Since aRm ⊆ N ,

aRm ⊆ P and since submodule P is prime, Rm ⊆ P or aM ⊆ P . Thus either

P ∈ V (N + Rm) or P ∈ V (N + aM), therefore

V (N) ⊆ V (N + aM)
⋃

V (N + Rm).

Thus V (N) cover with the finite subfamily A′, a contradiction. Therefore, N is a

prime submodule of M .

Now choose U ∈ A such that N ∈ U . Thus N must have a patch-neighborhood⋂n
i=1(W (Ki)

⋂
V (Ni)), for some Ki, Ni ≤ M , n ∈ N, such that

n⋂

i=1

[W (Ki)
⋂

V (Ni)] ⊆ U.

We claim that for each i (1 ≤ i ≤ n),

N ∈ W (Ki + N)
⋂

V (N) ⊆ W (Ki)
⋂

V (Ni).

For see this, assume that P ∈ W (Ki + N)
⋂

V (N) i.e., Ki + N 6⊆ P and N ⊆ P .

Thus Ki 6⊆ P i.e., P ∈ W (Ki). On the other hand, N ∈ V (Ni) i.e., Ni ⊆ N .

Therefore, Ni ⊆ P i.e., P ∈ V (N). Consequently,

N ∈
n⋂

i=1

[W (Ki + N)
⋂

V (N)] ⊆
n⋂

i=1

[W (Ki)
⋂

V (Ni)] ⊆ U.
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Thus [
⋂n

i=1[W (K ′
i)]

⋂
V (N), where N $ K ′

i := Ki + N , is a neighborhood of N ,

such that [
⋂n

i=1[W (K ′
i)]

⋂
V (N) ⊆ U . Since for each i (1 ≤ i ≤ n), N $ K ′

i, V (K ′
i)

can be covered by some finite subfamily A′i of A. But

V (N) \ [
n⋃

i=1

V (K ′
i)] = V (N) \ [

n⋂

i=1

W (K ′
i)]

c = [
n⋂

i=1

[W (K ′
i)]

⋂
V (N) ⊆ U.

and so V (N) can be covered by A′i
⋃A′2

⋃
...

⋃A′n
⋃{U}, contrary to our choice of

N . Thus there must exist a finite subfamily of A which covers XM . Therefore XM

is compact in the finer patch topology of M . ¤

We need the following evident lemma.

Lemma 2.3. Assume τ and τ∗ are two topologies on X such that τ ⊆ τ∗. If X

is quasi-compact (i.e., any open cover of it has a finite subcover) in τ∗, then X is

also quasi-compact in τ .

Theorem 2.4. Let M be a left R-module such that M has ACC on intersection

of prime submodules. Then for each n ∈ N and submodules Ni (1 ≤ i ≤ n) of

M , W (N1) ∩ W (N2) ∩ · · · ∩ W (Nn) is a quasi-compact subset of XM with the

classical Zariski topology. Consequently, XM is quasi-compact and has a basis of

quasi-compact open subsets.

Proof. By Definition 2, for each submodule N of M , V (N) = V (N)
⋂

W (M) is

an open subset of XM with finer patch topology, and hence, for each submodule

N of M , W (N) is a closed subset in XM . Thus, for each n ∈ N and Ni ≤
M (1 ≤ i ≤ n), W (N1) ∩ W (N2) ∩ · · · ∩ W (Nn) is also a closed subset in XM

with finer patch topology. By Theorem 2.2, XM is a compact space with the

finer patch topology and since every closed subset of a compact space is compact,

W (N1)∩W (N2)∩ · · · ∩W (Nn) is compact in XM with finer patch topology and so

by Lemma 2.3, it is quasi-compact in XM with the classical Zariski topology. Now,

since XM = W (M), and

B = {W (N1) ∩W (N2) ∩ · · · ∩W (Nn) : Ni ≤ M, 1 ≤ i ≤ n, for some n ∈ N}

is a basis for the classical Zariski topology of M , the proof is complete. ¤

We conclude this section with the following evident corollaries.

Corollary 2.5. Let M be left R-module such that M has ACC on intersection of

prime submodules. If U is a classical Zariski-quasi-compact open subset of XM ,
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then U =
⋃m

i=1(
⋂ni

j=1 W (Nj)). Consequently, the family of classical Zariski-quasi-

compact open subsets of XM is closed under finite intersections.

Corollary 2.6. Let M be left R-module such that M has ACC on intersection

of prime submodules. Then the finer patch topology and the patch topology of M

coincide.

Also, by applying Proposition 1.4, Lemma 1.7 and Theorem 2.4, we have the

following corollary.

Corollary 2.7. For each Artinian left R-module M over a PI-ring (or an FBN-

ring), the finer patch topology and the patch topology of M coincide.

3. Modules whose classical Zariski topology are spectral space

A topological space X is called irreducible if X 6= ∅ and every finite intersection

of non-empty open sets of X is non-empty. A (non-empty) subset Y of a topology

space X is called an irreducible set if the subspace Y of X is irreducible. For this

to be so, it is necessary and sufficient that, for every pair of sets Y1, Y2 which are

closed in X and satisfy satisfy Y ⊆ Y1 ∪ Y2, Y ⊆ Y1 or Y ⊆ Y2 (see, for example

[3, page 94]).

Let Y be a closed subset of a topological space. An element y ∈ Y is called a

generic point of Y if Y = {y}. Note that a generic point of the irreducible closed

subset Y of a topological space is unique if the topological space is a T0-space.

A spectral space is a topological space homeomorphic to the prime spectrum of

a commutative ring equipped with the Zariski topology. By Hochster’s character-

ization [5], a topology T on a set X is spectral if and only if the following axioms

hold:

(i) X is a T0-space.

(ii) X is quasi-compact and has a basis of quasi-compact open subsets.

(iii) The family of quasi-compact open subsets of X is closed under finite inter-

sections.

(iv) XM is a sober space (i.e., every irreducible closed subset of XM has a

generic point).

Proposition 3.1. Let M be a left R-module such that M has ACC on intersection

of prime submodules. Then every irreducible closed subset of XM (with the classical

Zariski topology) has a generic point.
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Proof. Let Y be an irreducible closed subset of XM . First, we show that Y =⋃
P∈Y V (P ). Clearly Y ⊆ ⋃

P∈Y V (P ). By [2, Corollary 3.2(a)], for each P ∈ Y

we have V (P ) = {P} ⊆ Y , and since Y = Y ,
⋃

P∈Y V (P ) ⊆ Y . Thus Y =⋃
P∈Y V (P ). By Definition 2, for each P ∈ Y , V (P ) is an open subset of XM

with the finer patch topology. On the other hand since Y ⊆ XM is closed with

the classical Zariski topology, the complement of Y is open by this topology. This

yields that the complement of Y is open with the finer patch topology i.e., Y ⊆ XM

is closed with the finer patch topology. By Theorem 2.2, XM is compact with the

finer patch topology and since Y ⊆ XM is closed, Y is also compact. Now since

Y =
⋃

P∈Y V (P ) and each V (P ) is finer patch-open, there exists a finite subset Y ′

of Y such that Y =
⋃

P∈Y ′ V (P ). Now since Y is irreducible Y = V (P ) for some

P ∈ Y ′. Therefore, we have Y = V (P ) = {P} for some P ∈ Y i.e., P is a generic

point for Y . ¤

In [2, Theorem 3.9], it is shown that for every left R-module M with finite

spectrum, XM is a spectral space. We are in position to give a nice generalization

of this result, which yields directly for every Noetherian left R-module M , XM is

a spectral space.

Theorem 3.2. Let M be a left R-module such that M has ACC on intersection of

prime submodules. Then XM (with the classical Zariski topology) is spectral spaces.

Proof. By [2, Proposition 3.8.], XM is a T0-space. Since M has ACC on intersec-

tions of prime submodules, by Theorem 2.4, XM is quasi-compact and has a basis

of quasi-compact open subsets. Also, by Corollary 2.5, the family of quasi-compact

open subsets of XM is closed under finite intersections. Finally, by Proposition

3.1, every irreducible closed subset of XM has generic point. Thus by Hochster’s

characterization, XM is spectral spaces. ¤

Corollary 3.3. Let M be a Noetherian left R-module. Then XM (with the classical

Zariski topology) is spectral spaces.

Theorem 3.4. Let R be a PI-ring (or an FBN-ring), and let M be an Artinian

R-module. Then XM (with the classical Zariski topology) is spectral spaces.

Proof. By Lemma 1.7, M/radR(M) is a Noetherian left R-module and by Propo-

sition 1.4, XM
∼= XM/radR(M)). Now apply Theorem 3.2. ¤

Looking at Theorems 3.2, 3.4, the following questions arise in a natural way.

Question 3.5. Let M be a left R-module with Noetherian spectrum. Is Spec(RM)

a spectral space?



CLASSICAL ZARISKI TOPOLOGY OF MODULES AND SPECTRAL SPACES II 147

Question 3.6. Let M be an Artinian left R-module. Is Spec(RM) a spectral space?

For a left R-module M we denote the set of all maximal prime submodules of

M by Xm
M . We will show that for a each left R-module M , the subspace Xm

M (with

the topology inherited from XM ) is homeomorphic with the maximal ideal space

of some commutative ring S if and only if Xm
M 6= ∅ and Xm

M is quasi-compact.

Lemma 3.7. Let M be a left R-module. Then Xm
M (with the topology inherited

from XM the classical Zariski topology) is a T1-space.

Proof. Clearly for each P ∈ Xm
M , V (P ) = {P}. Thus V (P )

⋂
Xm

M = {P} is a

closed set in Xm
M , i.e., Xm

M is a T1-space. ¤ ¤

Hochster in [5, Proposition 11], proved that a topological space X (X 6= ∅) is

homeomorphic with the maximal ideal space of some commutative ring S (with the

topology inherited from Spec(S)) if and only if X is T1 and quasi-compact. Thus

we have the following proposition.

Proposition 3.8. Let M be a left R-module. Then Xm
M (with the topology inherited

from XM with the classical Zariski topology) is homeomorphic with the maximal

ideal space of some commutative ring S if and only if Xm
M 6= ∅ and Xm

M is quasi-

compact.

Theorem 3.9. Let M be a left R-module such that XM 6= ∅ and M has ACC on

intersections of prime submodules. Then Xm
M (with the classical Zariski topology)

is homeomorphic with the maximal ideal space of some commutative ring S.

Proof. Since XM 6= ∅ and M has ACC on intersections of prime submodules,

Xm
M 6= ∅. Clearly for each P ∈ Xm

M , V (P ) = {P} and hence by [2, Proposition

3.1], Xm
M =

⋃
P∈Xm

M
V (P ) =

⋃
P∈Xm

M
{P} = Xm

M , i.e., Xm
M is closed in XM . Since

XM is quasi-compact (see Theorem 2.4), Xm
M is also quasi-compact. Now apply

Proposition 3.8. ¤

We conclude this paper with the following interesting result.

Corollary 3.10. Let M be a Noetherian left R-module. Then Max(M) (with the

classical Zariski topology) is homeomorphic with the maximal ideal space of some

commutative ring S.

Proof. Since M is Noetherian, Xm
M = Max(M) 6= ∅ and also M has ACC on

intersections of prime submodules. Now apply Theorem 3.9. ¤
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