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Abstract. Let π be a group and let H = {Hα}α∈π be a Hopf π-coalgebra in

the sense of Turaev [8]. Let H act weakly on an algebra A and σ : H1⊗H1 → A

a k-linear map. Then we first introduce the notion of a π-crossed product

A#π
σH = {A#σHα}α∈π and find some sufficient and necessary conditions

under which each A#σHα forms an algebra. Next we define a comultiplica-

tion, a counit and an antipode on A#π
σH making it into a Hopf π-coalgebra.

Finally, we obtain the duality theorem of π-crossed product A#π
σH, general-

izing Corollary 5.8 in the authors’ paper [6].
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Introduction

As a generalization of ordinary Hopf algebras ([7]), Hopf group-colgebras were

studied in the work of Turaev [8] related to homotopy quantum field theories. Let us

note that there exists a symmetric monoidal category, the so called Turaev category,

the Hopf algebras in which are the same as Hopf group-coalgebras ([4]). A purely

algebraic study of Hopf group-coalgebras can be found in the references [9, 10, 11,

12].

It is well-known that crossed products of an algebra and a Hopf algebra are

important tools in classical Hopf algebra theory (see [1, 3]). It is natural to ask

whether or not there exists an analogue of the crossed product for Hopf algebras in

the setting of Hopf π-coalgebras. This becomes a motivation of our paper.

This paper is organized as follows.

In Section 1, we recall definitions and basic results related to Hopf group-

coalgebras.

In Section 2, we introduce the notion of a π-crossed product and give a sufficient

and necessary condition making each A#σHα into an algebra and A#π
σH become
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a Hopf π-coalgebra under group-crossed product and the usual tensor product coal-

gebra (see Theorem 2.5) which extends the results of crossed product and group

smash product (cf. [6, 10]). We also get a sufficient condition for π-crossed product

algebra to be semisimple in Theorem 2.7.

In Section 3, we prove an analogue of the Blattner-Cohen-Montgomery’s duality

theorem in [2] for π-crossed products with convolution invertible σ, generalizing

Corollary 5.8 in the authors’ paper [6] (see Theorem 3.4).

1. Preliminaries

Throughout this paper, we let π be a discrete group (with neutral element 1), k

will be a fixed field, and the tensor product ⊗ = ⊗k is always assumed to be over

k. If U and V are k-vector spaces, TU,V : U ⊗ V −→ V ⊗ U will denote the flip

map defined by TU,V (u⊗ v) = v ⊗ u, for all u ∈ U and v ∈ V .

Definition 1.1. ([8] and [9]) A π-coalgebra is a family of k-spaces C = {Cα}α∈π

together with a family of k-linear maps ∆ = {∆α,β : Cαβ −→ Cα⊗Cβ}α,β∈π (called

a comultiplication ) and a k-linear map ε : C1 −→ k (called a counit), such that ∆

is coassociative in the sense that,

• (∆α,β ⊗ idCγ )∆αβ,γ = (idCα ⊗∆β,γ)∆α,βγ , for any α, β, γ ∈ π.

• (idCα ⊗ ε)∆α,1 = idCα = (ε⊗ idCα)∆1,α, for all α ∈ π.

We use the Sweedler’s notation (see Virelizier [9]) for a comultiplication in the

following way: for any α, β ∈ π and c ∈ Cαβ , we write

∆α,β(c) = c(1,a) ⊗ c(2,β).

Definition 1.2. ([8] and [9]) A Hopf π-coalgebra is a π-coalgebra H = ({Hα}, ∆, ε)

endowed with a family of k-linear maps S = {Sα : Hα −→ Hα−1}α∈π (called an-

tipode) such that:

(1) each Hα is an algebra with multiplication mα and unit element hα ∈ Hα,

(2) ε : H1 → k and ∆α,β : Hαβ → Hα ⊗Hβ are algebra maps, for all α, β ∈ π,

(3) for each α ∈ π, mα(Sα−1 ⊗ idHα)∆α−1, α = ε1α = mα(idHα ⊗ Sα−1)∆α, α−1 .

If a π-coalgebra H satisfies conditions (1) and (2), we call it a semi-Hopf π-

coalgebra.

We remark that the notion of a Hopf π-coalgebra is notself-dual and In particular,

(H1,m1, 11, ∆1,1, ε, S1) is an ordinary Hopf algebra. The antipode S = {Sα}α∈π of

H is said to be bijective if each Sα is bijective. The antipode of a Hopf π-coalgebra
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is anti-multiplicative and anti-comultiplicative, i.e., for all α, β ∈ π, a, b ∈ Hα,

Sα(ab) = Sα(b)Sα(a), Sα(1α) = 1α−1 ,

∆β−1,α−1Sαβ = THα−1 ,Hβ−1 (Sα ⊗ Sβ)∆α,β , εS1 = ε.

Definition 1.3. Let H be a Hopf π-coalgebra and A an algebra over k. H acts

weakly on A if there exists a family of maps : Hα ⊗ A −→ A, h⊗ a 7→ h · a, ∀α ∈
π, h ∈ Hα, such that

(1) 1α · a = a, for any a ∈ A, α ∈ π,

(2) h · (ab) = (h(1,α) · a)(h(2,β) · b), for all h ∈ Hαβ , a, b ∈ A,

(3) h · 1A = ε(h)1A, for everyh ∈ H1.

Furthermore, if A is an Hα-module for each α ∈ π and satisfies (2) and (3), we

call that A is a π-H-module algebra.

2. π-Crossed Products

Definition 2.1. Let H be a Hopf π-coalgebra and A an algebra over k. H act

weakly on A. Let σ : H1⊗H1 → A be a k-linear map. Define A⊗H = {A⊗Hα}α∈π.

For each A⊗Hα, we define a multiplication by

(a⊗ h)(b⊗ g) = a(h(1,1) · b)σ(h(2,1), g(1,1))⊗ h(3,α)g(2,α). (1)

If each A ⊗ Hα is associative with 1A ⊗ 1α as identity element, we call A ⊗ H a

π-crossed product, denoted by A#π
σH.

We now determine simple necessary and sufficient conditions on σ and the weak

action for A#π
σH to be a π-crossed product.

Proposition 2.2. A#π
σH is a π-crossed product if and only if

σ(11, h) = ε(h)1A = σ(h, 11), ∀ h ∈ H1, here 11 is the unit of H1, (2)

(h(1,1) · (g(1,1) · a))σ(h(2,1), g(2,1)) = σ(h(1,1), g(1,1))(h(2,1)g(2,1) · a), (3)

σ(h(1,1), g(1,1))σ(h(2,1)g(2,1), k) = (h(1,1) · σ(g(1,1), k(1,1)))σ(h(2,1), g(2,1)k(2,1)). (4)

Proof. It is similar to the proof of crossed product in [1]. ¤

Example 2.3. (1) If we set π = {1}, then the π-crossed product is the general

crossed product.

(2) If we take σ(h, l) = ε(h)ε(l)1A, then the π-crossed product has the form of

π-smash product. From Proposition 2.2, we get each A#Hα forms an algebra if A

is π-H-module algebra.
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If A#π
σH is a π-crossed product, we will consider the conditions making it be a

Hopf π-coalgebra.

Proposition 2.4. Let A#π
σH be a π-crossed product and A a bialgebra. Define the

comultiplication and counit as follows:

∆α,β : A#σHαβ → (A#σHα)⊗ (A#σHβ),

a#σh 7→ (a1#σh(1,α))⊗ (a2#σh(2,β)),

ε : A#σH1 → k,

a#σh 7→ εA(a)ε(h),

then A#π
σH is a semi-Hopf π-coalgebra if and only if

∆(h · b) = h(1,1) · b1 ⊗ h(2,1) · b2, εA(h · b) = ε(h)εA(b), ∀h ∈ H1, b ∈ A. (5)

h(1,α) ⊗ h(2,1) · b = h(2,α) ⊗ h(1,1) · b, ∀h ∈ Hα, b ∈ A. (6)

∆(σ(h, l)) = σ(h(1,1), l(1,1))⊗ σ(h(2,1), l(2,1)), εA(σ(h, l)) = ε(h)ε(l). (7)

h(1,α)l(1,α) ⊗ σ(h(2,1), l(2,1)) = h(2,α)l(2,α) ⊗ σ(h(1,1), l(1,1)), ∀h, l ∈ Hα. (8)

Proof. If A#π
σH satisfy Eqs.(5)-(8), then we prove A#π

σH is a semi-Hopf π-

coalgebra. It is easy to see ∆ = {∆α,β}α,β∈π and ε are comultiplication and counit.

We prove them are algebra maps. For all a, b ∈ A and h, g ∈ Hαβ ,

∆α,β((a#σh)(b#σg))
(1)
= ∆α,β(a(h(1,1) · b)σ(h(2,1), g(1,1))#σh(3,αβ)g(2,αβ))

(5)(7)
= (a1(h(1,1) · b1)σ(h(3,1), g(1,1))#σh(5,α)g(3,α))⊗

(a2(h(2,1) · b2)σ(h(4,1), g(2,1))#σh(6,β)g(4,β))

(6)
= (a1(h(1,1) · b1)σ(h(2,1), g(1,1))#σh(5,α)g(3,α))⊗

(a2(h(3,1) · b2)σ(h(4,1), g(2,1))#σh(6,β)g(4,β))

(6)(8)
= (a1(h(1,1) · b1)σ(h(2,1), g(1,1))#σh(3,α)g(2,α))⊗

(a2(h(4,1) · b2)σ(h(5,1), g(3,1))#σh(6,β)g(4,β))

= ∆α,β(a#σh)∆α,β(b#σg).
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and for all h, g ∈ H1, we compute

ε((a#σh)(b#σg)) = ε(a(h(1,1) · b)σ(h(2,1), g(1,1))#σh(3,1)g(2,1)

= ε(a)ε(h(1,1) · b)ε(σ(h(2,1), g(1,1)))ε(h(3,1))ε(g(2,1))
(5)(7)
= εA(ab)ε(hg)

= ε(a#σh)ε(b#σg).

Conversely, if ε((a#σh)(b#σg)) = ε(a#σh)ε(b#σg), then we take a = b = 1A,

and we get

ε(σ(h, g)) = ε(h)ε(g).

If we take a = 1A, g = 11, we prove

εA(h · b) = ε(h)εA(b).

If ∆α,β((a#σh)(b#σg)) = ∆α,β(a#σh)∆α,β(b#σg), taking a = b = 1A and h, g ∈
H1, we get

∆(σ(h, g)) = σ(h(1,1), g(1,1))⊗ σ(h(2,1), g(2,1)).

Taking a = b = 1A and h, g ∈ Hα, we have [(σ(h(1,1), g(1,1))#σh(3,α)g(3,α))] ⊗
[σ(h(2,1), g(2,1))

#σh(4,1)g(4,1)] = [(σ(h(1,1), g(1,1))#σh(2,α)g(2,α))] ⊗ [σ(h(3,1), g(3,1))#σh(4,1)g(4,1)],

applying εA ⊗Hα ⊗A⊗ ε to both sides, and we obtain

h(1,α)l(1,α) ⊗ σ(h(2,1), l(2,1)) = h(2,α)l(2,α) ⊗ σ(h(1,1), l(1,1)).

If we take a = 1A, g = 11, h ∈ H1, we get

∆(h · b) = h(1,1) · b1 ⊗ h(2,1) · b2.

and if we take a = 1A, g = 11, h ∈ Hα, we get (h(1,1) · b1#σh(3,α)) ⊗ (h(2,1) ·
b1#σh(4,1)) = (h(1,1) ·b1#σh(2,α))⊗(h(3,1) ·b1#σh(4,1)), applying εA⊗IHα⊗A⊗εH1

to both sides, we obtain

h(1,α) ⊗ h(2,1) · b = h(2,α) ⊗ h(1,1) · b.

¤

Theorem 2.5. If A#π
σH is a semi-Hopf π-coalgebra, A is a Hopf algebra, and H

is a Hopf π-coalgebra, then A#π
σH is a Hopf π-coalgebra. The antipode is defined

as :

Sα : A#σHα → A#σHα−1 ,

a#σh 7→ (SA(σ(S1(h(2,1)), h(3,1)))#σSα(h(1,α)))(S(a)#σ1α−1).
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Conversely, if A#π
σH is a Hopf π-coalgebra, then A is a Hopf algebra and H is a

Hopf π-coalgebra.

Proof. We prove {Sα}α∈π is the antipode of A#π
σH. For all h ∈ H1, we compute

Sα−1(a1#σh(1,α−1))(a2#σh(2,α))

= (SA(σ(S1(h(2,1)), h(3,1)))#σSα−1(h(1,α−1)))(S(a1)#σ1α)(a2#σh(4,α))

= ε(a)SA(σ(S1(h(3,1)), h(4,1)))σ(S1(h(2,1)), h(5,1))#σSα−1(h(1,α−1))h(6,α)

(7)
= ε(a)SA((σ(S1(h(2,1)), h(3,1)))1)(σ(S1(h(2,1)), h(3,1)))2#σSα−1(h(1,α−1))h(4,α)

= ε(a)1A#σSα−1(h(1,α−1))h(2,α)

= ε(a#σh)(1A#σ11).

and define σ−1 : H1 ⊗ H1 → A, σ−1(h, g) = SA(σ(h, g)). Since Eq.(7) satisfies,

σ−1 is the convolution inverse of σ. And from Eq.(4), for all h, g, k ∈ H1, we have

h · σ−1(g, k) = σ(h(1,1), g(1,1)k(1,1))σ−1(h(2,1), g(2,1))σ−1(h(3,1), g(3,1)). (9)

So

(a1#σh(1,α))Sα−1(a2#σh(2,α−1))

= [a1(h(1,1) · σ−1(S1(h(6,1)), h(7,1)))σ(h(2,1), S1(h(5,1)))#σh(3,α)Sα−1(h(4,α−1))](S(a2)#σ1α)

= [a1(h(1,1) · σ−1(S1(h(4,1)), h(5,1)))σ(h(2,1), S1(h(3,1)))#σ1α)](S(a2)#σ1α)
(9)
= [a1σ(h(1,1), 11)σ−1(h(2,1)S1(h(3,1)), h(4,1))#σ1α](S(a2)#σ1α)

= ε(h)(a1#σ1α)(S(a2)#σ1α)

= ε(a#σh)(1A#σ11).

Conversely, if A#π
σH is a Hopf π-coalgebra, and define iα : Hα → A#σHα, iα(h) =

1A#σh, ∀h ∈ Hα, then i = {iα}α∈π is a π-coalgebra map. Define a family of al-

gebra maps pα : A#σHα → Hα, pα(b#σh) = ε(b)h. For all h ∈ Hα, setting

S′α(h) = pα−1 ◦ S ◦ iα(h), we prove S′ = {S′α}α∈π is the antipode of H.

S′α−1(h(1,α−1))h(2,α)

= (pα ◦ S ◦ iα−1(h(1,α−1)))(pα ◦ iα(h(2,α)))

= pα(S(iα−1(h(1,α−1)))iα(h(2,α)))

= ε(h)pα(1A#σ1α)

= ε(h)1α,
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and similarly we can prove h(1,α)S
′
α−1(h(2,α−1)) = ε(h)1α, ∀h ∈ H1, α ∈ π. So H is

a Hopf π-coalgebra.

Next, we will prove A is a Hopf algebra. Define maps

pA : A#σH1 → A, b#σh 7→ ε(h)b,

jA : A → A#σH1, b 7→ b#σ11.

It is obvious that jA is a bialgebra map. We set A = A#σ11 and ϕ = jA ◦ pA,

ϕ((b#σ11)(a#σh)) = ϕ(ba#σh)

= ε(h)(ba#σ11)

= ε(h)(b#σ11)(a#σh)

= (b#σ11)ϕ(a#σh).

So ϕ is a left A#σ11-module map. Since (b1#σ11)S(b2#σ11) = ε(b)(1A#σ11), we

get (b1#σ11)ϕ ◦ S(b2#σ11) = ε(b)(1A#σ11). This means ϕ ◦ S|A#σ11 is the right

inverse of IA#σ11. So ϕ ◦ S = S in A#σ11 and we get S(A#σ11) ⊂ A#σ11. We

prove A is a Hopf algebra. ¤

Let H be a Hopf π-coalgebra. H is said to be of finite type if, for all α ∈ π, Hα

is finite-dimensional as a k-vector space. A Hopf π-coalgebra H = {Hα}α∈π is said

to be semisimple if each algebra Hα is semisimple.

Lemma 2.6. ([9]) Let H = {Hα}α∈π be a finite type Hopf π-coalgebra. Then H is

semisimple if and only if H1 is semisimple.

From Propositions 2.3, 2.4, 2.5, Lemma 2.6, and Theorem 2.6 of [3], we get

Theorem 2.7. Let A be a finite dimensional Hopf algebra and H a finite type Hopf

π-coalgebra. Then the π-crossed product A#π
σH satisfying Eq.(5)-(8) is a finite type

Hopf π-coalgebra with σ invertible. If A and H1 are semisimple, then A#σH1 is

semisimple and furthermore A#π
σH is semisimple.

3. The Duality Theorem for π-Crossed Products

In this section, we will construct the duality theorem for a group-crossed product.

We assume throughout this section that H is a finite type Hopf π-coalgebra, and

A is an algebra with weak H-action.

Let H be a finite type Hopf π-coalgebra, then H1 is a finite dimensional Hopf

algebra. So the dual vector space H∗
1 has a natural structure of a Hopf algebra
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with the structure operations dual to those of H1:

〈φϕ, h〉 = 〈φ⊗ ϕ,∆(h)〉 , 〈φ, h(1,1)〉〈ϕ, h(2,1)〉,
〈1̃, c〉 = ε(c), where 1̃ is the unit of H∗

1 ,

〈∆(φ), h⊗ g〉 = 〈φ, hg〉 , 〈φ1, h〉〈φ2, g〉,
εH∗(φ) = 〈φ, 11〉, where 11 is the unit of H1,

〈S̃(φ), h〉 = 〈φ, S1(h)〉.

Lemma 3.1. Let H be a finite type Hopf π-coalgebra. Then for each α ∈ π,

A#σHα is a left H∗
1 -module algebra via

f · (a#σh) = a#σf ⇀ h = a#σh(1,α)〈f, h(2,1)〉, f ∈ H∗
1 , h ∈ Hα, a ∈ A.

Proof. It is easy to see A#σHα is a left H∗
1 -module. We compute

(f1 · (a#σh))(f2 · (b#σg))

= 〈f, h(2,1)g(2,1)〉(a#σh(1,α))(b#σg(1,α))

= 〈f, h(4,1)g(3,1)〉(a(h(1,1) · b)σ(h(2,1), g(1,1))#σh(3,α)g(2,α))

= f · (a(h(1,1) · b)σ(h(2,1), g(1,1))#σh(3,α)g(2,α))

= f · ((a#σh)(b#σg)),

and

f · (1A#σ1α) = 〈f, 11〉(1A#σ1α) = εH∗(f)(1A#σ1α).

So A#σHα is a left H∗
1 -module algebra, as needed. ¤

Lemma 3.2. The map α : (A#σHα)#H∗
1 −→ End(A#σHα)A (here # means

smash product and End(A#σHα)A means the ring of right A-module endomor-

phisms) defined by

α((x#σh)#f)(y#σg) = (x#σh)(y#σf ⇀ g) = (x#σh)(y#σ〈f, g(2,1)〉g(1,α))

for all x, y ∈ A, h, g ∈ Hα, f ∈ H∗
1 is a homomorphism of algebras where each

A#σHα is a right A-module via (x#σh) · w = (x#σh)(w#σ1α).
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Proof. First, we will show that α commutes with the right action of all w ∈ A.

α((a#σh)#f)((b#σg) · w)

= α((a#σh)#f)(b(g(1,1) · w)#σg(2,α))

= (a#σh)(b(g(1,1) · w)#σ〈f, g(3,1)〉g(2,α))

= a(h(1,1) · b)(h(2,1) · (g(1,1) · w))σ(h(3,1), g(2,1))#σ〈f, g(4,1)〉h(4,α)g(3,α)

(3)
= a(h(1,1) · b)σ(h(2,1), g(1,1))(h(3,1)g(2,1) · w)#σ〈f, g(4,1)〉h(4,α)g(3,α)

= (a(h(1,1) · b)σ(h(2,1), g(1,1))#σ〈f, g(3,1)〉h(3,α)g(2,α)) · w
= (α((a#σh)#f)(b#σg)) · w.

Next, for all a, b, x ∈ A, h, l, y ∈ Hα and f, g ∈ H∗
1 ,

α([(a#σh)#f ][(b#σl)#g])(x#σy)

= α(〈f1, l(3,1)〉(a(h(1,1) · b)σ(h(2,1), l(1,1))#σh(3,α)l(2,α))#f2g)(x#σy)

= 〈f, l(5,1)y(3,1)〉〈g, y(4,1)〉a(h(1,1) · b)σ(h(2,1), l(1,1))(h(3,1)l(2,1) · x)

σ(h(4,1)l(3,1), y(1,1))#σh(5,α)l(4,α)y(2,α)

and

α((a#σh)#f) ◦ α((b#σl)#g)(x#σy)

= α((a#σh)#f)(b(l(1,1) · x)σ(l(2,1), y(1,1))#σ〈g, y(3,1)〉l(3,α)y(2,α))

= (a#σh)(b(l(1,1) · x)σ(l(2,1), y(1,1))#σ〈f, l(4,1)y(3,1)〉〈g, y(4,1)〉l(3,α)y(2,α))

= a(h(1,1) · b)(h(2,1) · (l(1,1) · x))(h(3,1) · σ(l(2,1), y(1,1)))σ(h(4,1), l(3,1)y(2,1))

#σ〈f, l(5,1)y(4,1)〉〈g, y(5,1)〉h(5,α)l(4,α)y(3,α)

(4)
= a(h(1,1) · b)(h(2,1) · (l(1,1) · x))σ(h(3,1), l(2,1))σ(h(4,1)l(3,1), y(1,1))

#σ〈f, l(5,1)y(3,1)〉〈g, y(4,1)〉h(5,α)l(4,α)y(2,α)

(3)
= 〈f, l(5,1)y(3,1)〉〈g, y(4,1)〉a(h(1,1) · b)σ(h(2,1), l(1,1))(h(3,1)l(2,1) · x)

σ(h(4,1)l(3,1), y(1,1))#σh(5,α)l(4,α)y(2,α)

Therefore, α is a homomorphism of algebras. ¤

Let {fi} be a basis of H1 and {ψi} be the dual basis of H∗
1 , i.e., such that

〈fi, ψj〉 = δij for all i, j. Then we have identities:
∑

i

fi〈h, ψi〉 = h,
∑

i

〈fi, φ〉ψi = φ,

for all h ∈ H1, φ ∈ H∗
1 .
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Lemma 3.3. Let A#π
σH be a π-crossed product with σ convolution invertible. De-

fine a linear map β : End(A#σHα)A −→ (A#σHα)#H∗
1 by

β : T 7→
∑

i

[T (σ−1(fi(3,1), S
−1
1 (fi(2,1)))#σfi(4,α))(1A#σS−1

α (fi(1,α−1)))]#ψi.

The maps α and β are inverses of each other.

Proof. We need to check that

β ◦ α = id(A#σHα)#H∗
1
, α ◦ β = idEnd(A#σHα)A

.

For all x ∈ A, h ∈ Hα, φ ∈ H∗
1 , we have

β ◦ α((x#σh)#φ)

=
∑

i

[(x#σh)(σ−1(fi(3,1), S
−1
1 (fi(2,1)))#σ〈φ, fi(5,1)〉fi(4,α))(1A#σS−1

α (fi(1,α−1)))]#ψi

=
∑

i

[x(h(1,1) · σ−1(fi(4,1), S
−1
1 (fi(3,1))))σ(h(2,1), fi(5,1))σ(h(3,1)fi(6,1), S

−1
1 (fi(2,1)))

#σh(4,α)fi(7,α)S
−1
α (fi(1,α−1))]#ψi〈φ, fi(8,1)〉

(4)
=

∑

i

[x(h(1,1) · σ−1(fi(5,1), S
−1
1 (fi(4,1))))(h(2,1) · σ(fi(6,1), S

−1
1 (fi(3,1))))

σ(h(3,1), fi(7,1)S
−1
1 (fi(2,1)))#σh(4,α)fi(8,α)S

−1
α (fi(1,α−1))]#ψi〈φ, fi(9,1)〉

=
∑

i

[x(h(1,1) · (σ−1(fi(5,1), S
−1
1 (fi(4,1)))σ(fi(6,1), S

−1
1 (fi(3,1))))σ(h(2,1), fi(7,1)S

−1
1 (fi(2,1)))

#σh(3,α)fi(8,α)S
−1
α (fi(1,α−1))]#ψi〈φ, fi(9,1)〉

=
∑

i

[xσ(h(1,1), fi(3,1)S
−1
1 (fi(2,1)))#σh(2,α)fi(4,α)S

−1
α (fi(1,α−1))]#ψi〈φ, fi(5,1)〉

=
∑

i

(x#σh)#ψi〈φ, fi〉 = (x#σh)#φ.

From Eq.(3) and Eq.(4), we get the following equations.

σ−1(h(1,1), g(1,1))(h(2,1) · (g(2,1) · a)) = (h(1,1)g(1,1) · a)σ−1(h(2,1), g(2,1)), (10)

σ−1(h1,1, g(1,1))(h(2,1) · σ(g(2,1), k)) = σ(h(1,1)g(1,1), k(1,1))σ−1(h(2,1), g(2,1)k(2,1)). (11)
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Also for every T ∈ End(A#σHα)A, we compute

α ◦ β(T )(y#σg)

=
∑

i

α([T (σ−1(fi(3,1), S
−1
1 (fi(2,1)))#σfi(4,α))(1A#σS−1

α (fi(1,α−1)))]#ψi)(y#σg)

=
∑

i

T (σ−1(fi(3,1), S
−1
1 (fi(2,1)))#σfi(4,α))(1A#σS−1

α (fi(1,α−1)))(y#σ〈ψi, g(2,1)〉g(1,α))

= T (σ−1(g(5,1), S
−1
1 (g(4,1)))#σg(6,α))[(S−1

1 (g(3,1)) · y)σ(S−1
1 (g(2,1)), g(1,1))#σ1α]

= T [(σ−1(g(5,1), S
−1
1 (g(4,1)))#σg(6,α))((S−1

1 (g(3,1)) · y)σ(S−1
1 (g(2,1)), g(1,1))#σ1α)]

= T [σ−1(g(5,1), S
−1
1 (g(4,1)))(g(6,1) · (S−1

1 (g(3,1)) · y))(g(7,1) · σ(S−1
1 (g(2,1)), g(1,1)))#σg(8,α)]

(10)
= T [(g(5,1)S

−1
1 (g(4,1)) · y)σ−1(g(6,1), S

−1
1 (g(3,1)))(g(7,1) · σ(S−1

1 (g(2,1)), g(1,1)))#σg(8,α)]

= T [yσ−1(g(4,1), S
−1
1 (g(3,1)))(g(5,1) · σ(S−1

1 (g(2,1)), g(1,1)))#σg(6,α)]

(11)
= T [yσ(g(5,1)S

−1
1 (g(4,1)), g(1,1))σ−1(g(6,1), S

−1
1 (g(3,1))g(2,1))#σg(7,α)]

= T (y#σg).

So End(A#σHα)A
∼= (A#σHα)#H∗

1 . ¤

Now we have the main result of this section as follows:

Theorem 3.4. Let H be a finite type Hopf π-coalgebra and A#π
σH be a π-crossed

product with convolution inverse σ, then there is a canonical isomorphism between

the algebras (A#σHα)#H∗
1 and End(A#σHα)A.

From Example 2.3 and Theorem 3.4, we immediately get the following results.

Corollary 3.5. Let H a finite dimensional Hopf algebra and A#σH be a crossed

product with convolution inverse σ, then there is a canonical isomorphism between

the algebras (A#σH)#H∗ and End(A#σH)A.

Corollary 3.6. ([6]) Let A be a π-H-module algebra and H be a finite type Hopf π-

coalgebra, then there is a canonical isomorphism between the algebras (A#Hα)#H∗
1

and End(A#Hα)A.
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