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ABSTRACT. Let 7 be a group and let H = {Hq }aer be a Hopf w-coalgebra in
the sense of Turaev [8]. Let H act weakly on an algebra Aando : H1®QH; — A
a k-linear map. Then we first introduce the notion of a m-crossed product
A#TH = {A#sHa}aer and find some sufficient and necessary conditions
under which each A#,H, forms an algebra. Next we define a comultiplica-
tion, a counit and an antipode on A#Z H making it into a Hopf m-coalgebra.
Finally, we obtain the duality theorem of m-crossed product A#7Z H, general-
izing Corollary 5.8 in the authors’ paper [6].
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Introduction

As a generalization of ordinary Hopf algebras ([7]), Hopf group-colgebras were
studied in the work of Turaev [8] related to homotopy quantum field theories. Let us
note that there exists a symmetric monoidal category, the so called Turaev category,
the Hopf algebras in which are the same as Hopf group-coalgebras ([4]). A purely
algebraic study of Hopf group-coalgebras can be found in the references [9, 10, 11,
12).

It is well-known that crossed products of an algebra and a Hopf algebra are
important tools in classical Hopf algebra theory (see [1, 3]). It is natural to ask
whether or not there exists an analogue of the crossed product for Hopf algebras in
the setting of Hopf m-coalgebras. This becomes a motivation of our paper.

This paper is organized as follows.

In Section 1, we recall definitions and basic results related to Hopf group-
coalgebras.

In Section 2, we introduce the notion of a m-crossed product and give a sufficient

and necessary condition making each A#,H,, into an algebra and A#ZH become
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a Hopf m-coalgebra under group-crossed product and the usual tensor product coal-
gebra (see Theorem 2.5) which extends the results of crossed product and group
smash product (cf. [6, 10]). We also get a sufficient condition for m-crossed product
algebra to be semisimple in Theorem 2.7.

In Section 3, we prove an analogue of the Blattner-Cohen-Montgomery’s duality
theorem in [2] for m-crossed products with convolution invertible o, generalizing

Corollary 5.8 in the authors’ paper [6] (see Theorem 3.4).

1. Preliminaries

Throughout this paper, we let 7 be a discrete group (with neutral element 1), k
will be a fixed field, and the tensor product ® = ®;, is always assumed to be over
k. If U and V are k-vector spaces, Tyy : U ®V — V ® U will denote the flip
map defined by Ty v(u®@v) =vQu, forallu € U and v € V.

Definition 1.1. ([8] and [9]) A w-coalgebra is a family of k-spaces C' = {Cy}aecn
together with a family of k-linear maps A = {A, g : Cap — Ca®@Cpla ger (called
a comultiplication ) and a k-linear map ¢ : C; — k (called a counit), such that A

is coassociative in the sense that,

o (Anp®idc,)Anpy = (idc, @ Apy)Aa,py, for any a,3,v € 7.
o (idc, ®e)Ap1 =idc, = (e®idc,)A,q, for all a €.

We use the Sweedler’s notation (see Virelizier [9]) for a comultiplication in the

following way: for any o, 8 € m and ¢ € Cyp, we write
Aap(€) = (1,0 @ C(2,8)-

Definition 1.2. ([8] and [9]) A Hopf 7-coalgebra is a w-coalgebra H = ({H,}, A, €)
endowed with a family of k-linear maps S = {S, : Hy, — Ha-1}aer (called an-
tipode) such that:

(1) each H, is an algebra with multiplication m, and unit element h, € H,,

(2) e:Hy—kand A, pg: Hys — H, ® Hp are algebra maps, for all «, 8 € m,
(3) for each o € m, M (Sp—1 @ idm,)An-1 o = €la = Mo (idp, @ So-1)Ag, o-1-
If a m-coalgebra H satisfies conditions (1) and (2), we call it a semi-Hopf 7-

coalgebra.

We remark that the notion of a Hopf 7w-coalgebra is notself-dual and In particular,
(Hq,m1,11,A11,¢,51) is an ordinary Hopf algebra. The antipode S = {Sqy}aer of
H is said to be bijective if each S, is bijective. The antipode of a Hopf 7-coalgebra
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is anti-multiplicative and anti-comultiplicative, i.e., for all o, 8 € 7,a,b € H,,
Sa(ab) = S4(b)Sa(a), Sa(le) = 1g-1,
Ap-1,0-18a =ThH,_, 1, ,(5a ® Sg)Aas, €51=c¢.
Definition 1.3. Let H be a Hopf w-coalgebra and A an algebra over k. H acts

weakly on A if there exists a family of maps : H, ® A — A, h® a+— h-a, Va €
w, h € H,, such that

(1) lora=a, foranya € A, a €7,
(2) h-(ab) = (h(1,a) - @)(h(2,p) - b), for allh € Hap, a,b € A,
(3) h-14 =e(h)ly, for everyh € Hy.
Furthermore, if A is an H,-module for each « € 7 and satisfies (2) and (3), we

call that A is a m-H-module algebra.

2. m-Crossed Products

Definition 2.1. Let H be a Hopf m-coalgebra and A an algebra over k. H act
weakly on A. Let o : Hi® H; — A be a k-linear map. Define AQH = {AQH, }aer-
For each A ® H,, we define a multiplication by

(a®@h)(b®g)=alhay)  bo(heiy,90.1) @ hza)9d@a)- (1)
If each A ® H, is associative with 14 ® 1, as identity element, we call A® H a
m-crossed product, denoted by A#7H.

We now determine simple necessary and sufficient conditions on ¢ and the weak

action for A#7H to be a w-crossed product.

Proposition 2.2. A#7H is a w-crossed product if and only if
o(ly,h) =e(h)1a =0o(h,11), VY h € Hy, here 11 is the unit of Hy, (2)
(ha11) - (9(1,1) - @))o(h,1)s 92.1)) = o b1y, 90,1)) (h2,1)92.1) - @), (3)
o(h,1),90,1))0(h2,1921). k) = (b1 - o(9a), kan))o(hey, 9enken) (4)
Proof. It is similar to the proof of crossed product in [1]. O
Example 2.3. (1) If we set 7 = {1}, then the m-crossed product is the general
crossed product.
(2) If we take o(h,l) = e(h)e(l)14, then the m-crossed product has the form of

m-smash product. From Proposition 2.2, we get each A#H, forms an algebra if A

is m-H-module algebra.
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If A#7H is a m-crossed product, we will consider the conditions making it be a

Hopf m-coalgebra.

Proposition 2.4. Let A#LH be a w-crossed product and A a bialgebra. Define the

comultiplication and counit as follows:

Aap o AfteHop — (A#oHa) © (A#oHp),
a#oh —  (a1#oh(1,a) @ (a2#sh(2,6))
e A#,H, — Fk,
aftoh — ea(a)e(h),

then A#IH is a semi-Hopf m-coalgebra if and only if

A(o(h,1)) = U(h(1,1), l(1,1)) Y U(h(2,1), l(2,1))7 ea(o(h,l)) =e(h)e(l).

(
h(l,a) ® h(g}l) -b= h(g,a) & h(l,l) -b, Vhe H,,be A. (6
(
hi,a)l,e) ® a(h@1),li2,1) = Pealea @ o(hay, o), Yhile Hy (

Proof. If A#TH satisfy Eqs.(5)-(8), then we prove A#TH is a semi-Hopf -
coalgebra. It is easy to see A = {A, g}ta ger and € are comultiplication and counit.

We prove them are algebra maps. For all a,b € A and h,g € Hug,

Acxﬁ((a#oh) (b#og))
= Aaglatha,)  b)olhen, 90.1)#ehi.em92.08)

—
—

=" (a1(ha ) -b1)o(hey, 90,0) #olis,0)93.0) @

(az(h(2,1) - 02)o(h(a,1y, 92,0)) Fohi6,5)9(4,8))

= (a1(ha) -b1)o(he), 90,1))#Fohe,a93,0) @
(az(hs,y - b2)o(hn), 92,0)) Fol6,5)9(4.8))

=" (a1(ha,p) -b1)o(h,1), 90.1)H#FohG,a92,.a) @
(ag(h(471) . bg)O’(h(

= Aupla#oh)Au s(b#09).

5.1),93,1)) o N6.8)9(4.8))



ON GROUP CROSSED PRODUCTS 181

and for all h,g € Hy, we compute

e((attoh)(b#og)) = elalhan) - b)o(hea), 90.0)#ohs1)9@1)
= ela)e(hayy -b)e(o(hzy, 90.1)))e(h1))e(92.)
CLY caabe(hg)
= ela#toh)e(b#q9).

Conversely, if e((a#,h)(b#9)) = e(a#.h)e(b#,9), then we take a = b = 14,

and we get

e(o(h, g)) = e(h)e(g).
If we take a = 14,9 = 11, we prove

ca(h-b) =e(h)ea(b).

If Apg((a#oh)(b#69)) = Ao plaFtoh) Ao g(b#og), taking a =b =14 and h,g €
H,y, we get

A(o(h,g)) = o(ha iy, 91,1)) @ o(h@1),92,1))-
Taking @ = b = 14 and h,g € H,, we have [(o(h(1,1),9(1,1))#cN3.0)93,0))] @
[o(h(2,1),92,1))
#ah(4,1)9(4,1)] = [(U(h(l,l)vg(l,l))#dh(la)g(la))} ® [J(h(S,l)»g(3,1))#ah(4,1)9(4,1)]7
applying e4 ® H, ® A ® € to both sides, and we obtain
ha.al,e) @ o(hen: 1) = healea @ olha),lan)
If we take a = 14,9 =11, h € Hy, we get
A(h . b) = h(l,l) . bl ® h(gyl) . b2.

and if we take a = 14,9 = 11,h € Hqa, we get (h(11) - biFohsa)) @ (A -
bi#ohu,y) = (ha1) - 0i#oh2,0) @ (A -biF#Faha,), applying ea® Iy, ® A®eq,
to both sides, we obtain

h1,0) @ h2,1) - b= M2,0) @ h(11) - b.
0

Theorem 2.5. If A#IH is a semi-Hopf m-coalgebra, A is a Hopf algebra, and H
is a Hopf m-coalgebra, then A#TH is a Hopf m-coalgebra. The antipode is defined

as :
Sa : A#UHOL - A#O'HQ*U
aftoh —  (Sa(o(Si(he1)), hz,1))#oSa(h,a)))(S(a)#ola-1).
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Conversely, if A#>H is a Hopf m-coalgebra, then A is a Hopf algebra and H is a
Hopf w-coalgebra.

Proof. We prove {S,}acr is the antipode of A#TH. For all h € H;, we compute

Sa-1(a1#oh(1,0-1)) (a2F# o (2,0))
= (Sa(a(S1(he1))s hian))#oSa—1(h1,a-1)))(S(a1)#ola)(@2# o M(4,a))
= ¢e(a)Sa(o(S (h<3’1>)’h<4,1>))0(51(h(2,1>)7h(5,1>)#05a—1(h<1,a*1))h<6,a)
(a)Sa((a(S1(h(2,1)), hz,1)))1)(0(S1(h2,1))s h3,1)))2# o Sa—1 (M1,a-1)) (4,0
= e(a)la#sSa-1(h,a-1))h(2,0)
= ela#oh)(la#ols).

= £

and define o=! : Hy ® Hy — A, 07 (h,g) = Sa(o(h,g)). Since Eq.(7) satisfies,

o~ ! is the convolution inverse of . And from Eq.(4), for all h, g,k € Hy, we have

h-o"g.k) = a(ha ). 90,0ka,1)0  (hin), 9e.1)0 (A1) 96,1)- 9)

So

(al#ah(l a) )Sofl (QQ#Jh(Q,afl))

[(11)0

(
[ar(h1,1y - 0 (S1(hean)): his1))) o (heany, S1(han) #o1a)](S(az) #ela)
= [aro(h,1), 11)o " (b, S1 (k) han) #olal (S(a2)#01a)

= e(h)(a1#1a)(S(az)#o1a)

= e(a#oh)(1a#ol1).

—~
=

Conversely, if A#7 H is a Hopf m-coalgebra, and define i, : Hy, — A#,Hq, ia(h) =
1a#oh, Vh € Hy, then i = {iq}aer is a m-coalgebra map. Define a family of al-
gebra maps p, : A#,Hy — He, pa(b#sh) = e(b)h. For all h € H,, setting
S/ (h) = pa-1 0 S 0iy(h), we prove S" = {5/ }aer is the antipode of H.

o1 (h(a-1)hz,a)
= (paoSoiag-1(ha,a-1)))(Paoialh(2a))
= Pa(S(ia-1(ha,a-1)))ia(h(2,a)))
= e(h)pa(la#ola)
= e(h)la,

! Sl(h 6 1))7 h(7,1)))0(h(2,1), Sl(h(S,l)))#ah(S,a)Sa*1(h(4,a*1))}(s(a2>#0

1a)
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and similarly we can prove h(1,4)S), _1(h(2,0-1)) = €(h)1a, Vh € Hy,a € w. So H is
a Hopf m-coalgebra.

Next, we will prove A is a Hopf algebra. Define maps

ba : A#O'Hl - Aa b#ah = E(h)ba
Jja A= AffoHi, b bifsly.

It is obvious that j4 is a bialgebra map. We set A = A#,11 and ¢ = ja o pa,

o((b#to11)(attah)) = @(battsh)
= e(h)(bat#s11)
= e(h)(b#o11)(astch)
= (b#o11)p(aztsh).

So ¢ is a left A#,1;1-module map. Since (b1#,11)S(ba#,11) = e(b)(1a#s11), we
get (bi#o11)p 0 S(ba#s11) = e(b)(1a#511). This means ¢ o S|ax,1, is the right
inverse of Tg#,11. So ¢ oS =S5 in A#,1; and we get S(A#,11) C A#,1,. We
prove A is a Hopf algebra. a

Let H be a Hopf m-coalgebra. H is said to be of finite type if, for all « € w, H,,
is finite-dimensional as a k-vector space. A Hopf w-coalgebra H = {H, }acr is said

to be semisimple if each algebra H, is semisimple.

Lemma 2.6. ([9]) Let H = {Hy }aer be a finite type Hopf w-coalgebra. Then H is

semisimple if and only if Hy is semisimple.
From Propositions 2.3, 2.4, 2.5, Lemma 2.6, and Theorem 2.6 of [3], we get

Theorem 2.7. Let A be a finite dimensional Hopf algebra and H a finite type Hopf
m-coalgebra. Then the mw-crossed product A#TH satisfying Eq.(5)-(8) is a finite type
Hopf m-coalgebra with o invertible. If A and Hy are semisimple, then A#,H; is

semisimple and furthermore A#5H is semisimple.

3. The Duality Theorem for n-Crossed Products

In this section, we will construct the duality theorem for a group-crossed product.
We assume throughout this section that H is a finite type Hopf m-coalgebra, and
A is an algebra with weak H-action.

Let H be a finite type Hopf m-coalgebra, then H; is a finite dimensional Hopf

algebra. So the dual vector space Hf has a natural structure of a Hopf algebra
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with the structure operations dual to those of H;:

<¢()07 h‘> = <¢ ® @, A(h)> = <¢7 h(1,1)><()07 h(2,1)>7
(1,¢) = (c), where 1 is the unit of H},
(A(¢),h® g) = (¢, hg) £ (d1,h) (42, 9),

e~ (p) = (P, 11), where 17 is the unit of Hy,

(S(), h) = (6, S1(h)).

Lemma 3.1. Let H be a finite type Hopf mw-coalgebra. Then for each a € m,
A#,H, is a left HY -module algebra via

[ (a#toh) = afte f = h = a#toh,a)(f  h2,1)), f € H{,h € Hy,a € A.

Proof. It is easy to see A#,H, is a left Hy-module. We compute

(f1- (a#tah))(f2 - (b#49))
= ([, hengen)(a#eh(i,6) 0#c91,q0))
= ({f,h@angen)(alha - b)olhe), 90,1)#e G0 92,0)
= f- (a(h(l,l) 'b)U(h(Q,l)ag(l,l))#dh(&a)g(la))

[ ((a#sh)(b#09)),

and
[ (La#ola) = (f, 11)(1a#ola) = em-(f)(LaFtola)
So A#,H, is a left Hyf-module algebra, as needed. O

Lemma 3.2. The map « : (A#,Ho)#H; — End(A#,Hy)a (here # means
smash product and End(A#,H,)a means the ring of right A-module endomor-
phisms) defined by

a((m#ah)#f)(y#ag) = (x#ah)(y#af - g) = (x#oh)(y#a<fa g(2,1)>g(1,a))

for all x,y € A h,g € Hy, f € HY is a homomorphism of algebras where each
A#,H, is a right A-module via (x#.h) - w = (x#h)(WH#s1a)-
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Proof. First, we will show that o commutes with the right action of all w € A.

a((a#th)#[)((b#49) - w)
= a(a#h)#f)(b(90,1) - 0)H#o92,0))
= (a#:h)(b(9(1,1) - w)H#o ([ 93.1))92.0))
= a(h(l,l) 'b)(h(Q,l) : (9(1,1) 'w))a(h(3,1)7g(2,1))#0'<f7 g(4,1)>h(4,a)9(3,a)
= a(h@ - 0)o(hen.90.1)(hE 9@ - W) He(f: 94,1 h4,0)93,0)
= (a(h(l,l) : b)U(h(z,l), g(l,l))#a<fa 9(3,1)>h(3,a)9(2,a)) Cw
= (a((a#ch)#f)(b#:9)) - w.
Next, for all a,b,x € A, h,l,y € H, and f,g € HY,
o([(a#oh)# [1[(0#:1)#9]) (2#y)
= a((fi,lz ) (alha - b)o(h@y, L)) #ohz.al2.ae))#29)(@#ey)
= (Hlsnyen)(9yan)alhay - b)o(hey, lan)(henle) - )
o(hanl@), Y1) #ohsalaayea

and
a((a#toh)#[) o a((b#:1)#9)(@#oYy)
= al(a#)# ) O - 2)ol2,1), Y1) Fo (9 ¥ (3,0)Y(2,q))
= (a#oh) 0,1y - ) (li2,1), y,1)#o (f lan¥E,0)(9 Ya )60 Yea)
= a(h(m) ‘b)(h(271) : (1(1,1) ~x))(h(3)1) '0(1(271)7y(171)))0(h(4,1)’1(3,1)y(2,1))
#o (f 15,1 Y195 Y5, 25,00l (4,0)Y(3,0)
= alhin) - 0)(hen - (L - 2))o(hE ), le,n)o(hanlen: yan)
#o(f2 U 0)Y3.1)(9: Ya,1)) P50l (4,0)Y(2,0)
@ (£l Y3009, Yan)alhay - b)o(hey, L) (haaylen - )
o(ha,nle1:¥0,0)) #ohealta Y@
Therefore, o is a homomorphism of algebras. O

Let {f;} be a basis of H; and {t;} be the dual basis of Hf, i.e., such that
(fi, ;) = d;; for all 4, j. Then we have identities:

Z filh, i) = h, Z<fi, i = ¢,

for all h € Hy,¢ € HY.
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Lemma 3.3. Let A#5H be a w-crossed product with o convolution invertible. De-
fine a linear map B : End(A#.Huo)a — (A#,Hy)#HT by

BT Z[T(Ufl(fi(s,n? ST (fie)#o fita)) La#to Sa  (fir,a-1)))|#:.

The maps o and B are inverses of each other.

Proof. We need to check that

Boa=idag,m)4Hr, 00 =1dEnd(A#, Ho)a-

For all x € A,h € H,,¢ € Hf, we have

Boa((x#sh)#)
= Z[(I#ah)(afl(fi(g,n’Sfl(fi(2,1)))#a<¢, fis ) fita) Qa#te Sy (fi1,a-1)))|#i

(2

> [w(haay - o (fiany ST (fis))o (b, fis)o(haa fien), St (fie))

#oh(1,0)fi(7.0)5  (fit,a-1)]#0i (0, fis.1))
= Z[I(h(l,l) 2o (fis,) St (fiany))) (B2 - 0 (fie) St (fisn))

9

—~
Z

a(he,, fi(?,l)Sl_l(fi(2,1)))#ah(4,a)fi(8,a)5(;1(fi(l,a*l))]#¢i<¢7 fi9,1))
Z[x(h(l,l) : (Uﬁl(fi(&l)aSfl(fi(4,1)))0(fi(6,1)aSfl(fi(&l))))a(h(&l),fi(?,l)Sfl(fi(Z,l)))

g

#oh(3,0)fi(8,0)5  (fit,a-1))#Wi(®, fi0.1))
= Z[xo'(h(l,l)afi(S,l)Sl_l(fi(2,1)))#ah(2,a)fi(4,a)‘9;1(fi(l,a*l))]#wi<¢7fi(5,1)>

7

= Y (@Hh) B, i) = (w#oh)#o.

(2

From Eq.(3) and Eq.(4), we get the following equations.

Uﬁl(h(l,l)ag(l,l))(h(Q,l) (92,1 - @) = (ha,ny9(1,1) a)Uil(h(m),g(Q,l))’ (10)
o h11,90.) (hey - 0(92,1): k) = o(ha,n90.1) k) (b, 9enke)- (11)
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Also for every T € End(A#,H,)a, we compute
ao B(T)(y#49)
= Z a([T(o™ (fiz1), St (fien))#o fiao)) Qatto S (ficr.a-1)#Y:) (y#09)
= Z T(o™ " (fiz1), ST (fie ) #o fita,a)) La#eSa  (fict,a-1))) WHe (Vi 9(2,1))9(1,0))

= T(0 " (95.1) 51 (9a,0)#096,0) (ST (93,1)) - 1) (ST (92,1)) 9(1,1)) F#o La]
= T (965,1), ST (9,1))#e96,0)) (ST (93.1) - 9o (ST g2.1)), 91.1)) #o La)]

= Tl " (9.1): ST (9. (9e6.1) - (ST (93.1)) - ¥ (gez.1y - (ST (ge2.1))s 9(1.1))) # o I(s,0)]

= T(96.1)51  (9a,1)) - ¥ (96.1), S (9. (97.1) - o(S7 (921 9(1.1)) #od(s.0)]
= Tlyo "(9a.1), 51 (96.1))96.1) - o(ST (92.1)), 90.1))#e9(6.0)]
= Tlyo(9(5,1)S1 " (94.1))> 91.1))0~ (9(6.1): ST (9(3,1))9(2.1)) #0 9 (7.0)]
= T(y#q9)-
So End(A#ty Ho)a = (Adty Ho)#H;. 0

Now we have the main result of this section as follows:

Theorem 3.4. Let H be a finite type Hopf m-coalgebra and A#5TH be a m-crossed
product with convolution inverse o, then there is a canonical isomorphism between
the algebras (A#,Hy)#H; and End(A#.,Hy)A.

From Example 2.3 and Theorem 3.4, we immediately get the following results.

Corollary 3.5. Let H a finite dimensional Hopf algebra and A#,H be a crossed
product with convolution inverse o, then there is a canonical isomorphism between

the algebras (A#.H)#H* and End(A#.H)4.

Corollary 3.6. ([6]) Let A be a w-H-module algebra and H be a finite type Hopf -
coalgebra, then there is a canonical isomorphism between the algebras (A#H,)#H;

and End(A#Hy)A.
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