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Abstract. A ring R is called left nil−injective if every R–homomorphism

from a principal left ideal which is generated by a nilpotent element to R is

a right multiplication by an element of R. In this paper, we first introduce

and characterize a left nil−injective ring, which is a proper generalization of

left p−injective ring. Next, various properties of left nil−injective rings are

developed, many of them extend known results.
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1. Introduction

Throughout this paper R denotes an associative ring with identity, and R–

modules are unital. For a ∈ R, r(a) and l(a) denote the right annihilator and

the left annihilator of a, respectively. We write J(R), Zl(R) (Zr(R)), N(R), N1(R)

and Sl(R) (Sr(R)) for the Jacobson radical, the left (right) singular ideal, the set

of nilpotent elements, the set of non-nilpotent elements and the left (right) socle of

R, respectively.

2. Characterizations of left nil−injective rings

Call a left R−module M nil−injective if for any a ∈ N(R), any left R− ho-

momorphism f : Ra −→ M can be extended to R −→ M , or equivalently,

f = ·m where m ∈ M . Clearly, every left p−injective module (c.f.[8] or [16])

is left nil−injective. If RR is nil−injective, then we call R a left nil−injective ring.

Hence every left p−injective ring (c.f [16]) is left nil−injective. Our interest here is

in left nil−injective rings. The following theorem is an application of [16, Lemma

1.1].
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Theorem 2.1. The following conditions are equivalent for a ring R.

(1) R is a left nil−injective ring.

(2) rl(a) = aR for every a ∈ N(R).

(3) b ∈ aR for every a ∈ N(R), b ∈ R with l(a) ⊆ l(b).

(4) r(l(a) ∩Rb) = r(b) + aR for all a, b ∈ R with ba ∈ N(R).

Proof. (1) ⇒ (2) aR ⊆ rl(a) is clear. Now let x ∈ rl(a). Then f : Ra −→ R

defined by f(ra) 7−→ rx, r ∈ R is a left R−homomorphism. Since R is a left

nil−injective ring and a ∈ N(R), there exists a c ∈ R such that f = ·c. Therefore

x = f(a) = ac ∈ aR. Hence rl(a) ⊆ aR and so aR = rl(a).

(2) ⇒ (3) Assume that a ∈ N(R), b ∈ R and l(a) ⊆ l(b). By (2), b ∈ rl(b) ⊆
rl(a) = aR.

(3)⇒ (4) Obviously, r(b)+aR ⊆ r(l(a)∩Rb) always holds. Let x ∈ r(l(a)∩Rb).
Then l(ba) ⊆ l(bx). By (3), bx ∈ baR because ba ∈ N(R). Write bx = bac, c ∈ R.

Then x− ac ∈ r(b) and so x ∈ r(b) + aR. Therefore r(l(a) ∩Rb) = r(b) + aR.

(4)⇒ (1) Let a ∈ N(R) and f : Ra −→ R be any left R−homomorphism. Since

l(a) ⊆ l(f(a)) and a ∈ N(R), f(a) ∈ rl(f(a)) ⊆ rl(a) = r(l(a)∩R1) = r(1) +aR =

aR by (4). This shows that R is left nil−injective ring. �

Example 2.2. The ring Z of integers is left nil−injective ring which is not p–

injective.

The following corollary is an immediate consequence of Theorem 2.1.

Corollary 2.3. Let R =
∏

i∈I Ri be a direct product of rings. Then R is left

nil−injective if and only if Ri is left nil−injective for all i ∈ I.

Recall that a ring R is left universally mininjective [14] if kR = rl(k) for every

minimal left ideal Rk of R. R is called right minannihilator [14] if Rk being minimal

left ideal of R always implies that kR is a minimal right ideal. R is called left

universally mininjective [14] if Rk being a minimal left ideal of R implies that

Rk = Re, e2 = e ∈ R. Call a ring R left MC2 [19] if aRe = 0 implies eRa = 0,

where a, e2 = e ∈ R and Re is a minimal left ideal of R. A ring R is called left

Johns [15] if it is left noetherian and every left ideal is an annihilator. R is said to

be a left CEP−ring [15] if every cyclic left R−module can be essentially embedded

in a projective module.

Corollary 2.4. Let R be a left nil−injective ring. Then

(1) R is a left mininjective ring.

(2) R is left minsymmetric ring.
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(3) R is left MC2−ring.

(4) R is a right minannihilator ring.

(5) If R is a left Johns ring, then R is quasi-Frobenius.

(6) If R is a left CEP−ring, then R is quasi-Frobenius.

(7) If R is a left noetherian ring with essential left socle, then R is left artinian.

(8) If R is a left continuous ring and R/Sr(R) is left Goldie, then R is quasi-

Frobenius.

Proof. (1) Assume that Rk is any minimal left ideal of R. If (Rk)2 = 0, then

k ∈ N(R). By hypothesis and Theorem 2.1, Rk = rl(k); we are done. If (Rk)2 6= 0,

then Rk = Re, e2 = e ∈ R. Write e = ck, c ∈ R. Then k = ke = kck. Set g = kc.

Then g2 = g, k = gk and kR = gR. Hence l(k) = l(g) and so kR = gR = rl(g) =

rl(k); we are also done. Therefore R is a left mininjective ring.

(2) It follows from [14, Theorem 1.14].

(3) Assume that Re, e2 = e ∈ R is a minimal left ideal of R and a ∈ R with

aRe = 0. If eRa 6= 0, then there exists a b ∈ R such that eba 6= 0. Since

eba ∈ N(R), ebaR = rl(eba) by hypothesis. Clearly, l(e) = l(eba), so ebaR = eR.

Therefore eR = eReR = ebaReR = 0, which is a contradiction. Hence eRa = 0

and so R is a left MC2 ring.

(4) Assume that kR is a minimal right ideal of R. If (kR)2 6= 0, then kR =

eR, e2 = e ∈ R. So rl(k) = rl(kR) = rl(eR) = rl(e) = eR = kR. If (kR)2 = 0,

then k ∈ N(R) so, by hypothesis, rl(k) = kR

(5) It follows from [15, Theorem 4.6].

(6) Since any left CEP− ring is left Johns, (6) follows from (5).

(7) According to [17, Theorem 2], any left noetherian left minsymmetric ring

with essential left socle is left artinian, so we derive (7).

(8) This is an immediate consequence of [18, Corollary 1]. �

Example 2.5. Let V = Fv⊕Fw be a two-dimensional vector space over a field F .

The trivial extension R = T (F, V ) = F ⊕ V is a commutative, local, artinian ring

with J(R)2 = 0 and J(R) = Zl(R). Since (0, v) ∈ N(R) and rl((0, v)) 6= (0, v)R,

R is not a left nil−injective ring.

Example 2.6. If R is not a left nil−injective, then the polynomial ring R[x] is

not nil−injective (In fact, there exists 6= a ∈ N(R) such that rRlR(a) 6= aR. Hence

a ∈ N(R[x] and rR[x]lR[x](a) = (rRlR(a))[x] 6= (aR)[x] = a(R[x])). On the other

hand, since Sl(R[x]) = 0, R[x] is a left mininjective ring. Hence there exists a left

mininjective ring which is not left nil−injective.
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Hence we have: {left p−injective rings} $ { left nil−injective rings} $ {left

mininjective rings}.

A ring R is said to be NI if N(R) forms an ideal of R. A ring R is said to be

2 − prime if N(R) = P (R), where P (R) is the prime radical of R. Clearly, every

2− prime ring is NI.

A ring R is called zero commutative (briefly ZC )[4] if for a, b ∈ R, ab = 0

implies ba = 0. A ring R is called ZI [4] if for a, b ∈ R ab = 0 implies aRb = 0.

According to [4], every ZC ring is ZI. A ring R is called reduced if N(R) = 0.

Clearly, reduced rings are ZC. A ring R is Abelian if every idempotent of R is

central.

Corollary 2.7. Let R be a left nil−injective ring. Then the following statements

hold:

(1) If a ∈ N(R) and RRa is projective, then Ra = Re with e2 = e ∈ R.

(2) P (R) ⊆ Zl(R).

(3) If R is an NI ring, then N(R) ⊆ Zl(R).

(4) If R is a 2− prime ring, then N(R) ⊆ Zl(R).

(5) The following conditions are equivalent:

(a) R is a reduced ring.

(b) R is a ZC left nonsingular ring.

(c) R is a ZI left nonsingular ring.

(d) R is a left nonsingular 2− prime ring.

(e) R is a left nonsingular NI ring.

Proof. (1) Since RRa is projective, l(a) = Rg, g2 = g ∈ R. By hypothesis and

Theorem 2.1, (1− g)R = r(Rg) = rl(a) = aR. Write 1− g = ac and e = ca. Then

a = (1− g)a = aca = ae, e2 = e and Ra = Re.

(2) If b ∈ P (R) and b /∈ Zl(R), then there exists a nonzero left ideal I of R

such that I ∩ l(b) = 0. Let 0 6= c ∈ I. Then cb 6= 0. Set f : Rcb −→ R

via rcb 7−→ rc, r ∈ R. Then f is a well-defined left R−homomorphism. Since

cb ∈ P (R) ⊆ N(R), f = ·u, u ∈ R. Therefore c = f(cb) = cbu and so c(1− bu) = 0

and so c = 0 because 1− bu is invertible. This is a contradiction. Hence b ∈ Zl(R)

and so P (R) ⊆ Zl(R)

(3) The proof is similar to that of (2).

(4) Follows by (3).

(5) Since every ZI ring is a 2− prime, (c)⇒ (d) holds.
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(e) ⇒ (a) Since R is an NI ring, by Corollary 2.4, N(R) ⊆ Zl(R). Hence

N(R) = 0 because Zl(R) = 0 by (e). This shows that R is a reduced ring.

The rest of the implications are clear. �

Recall that a ring R is left PP if every principal left ideal of R is projective as

a left R−module. A ring R is left PS [13] if every minimal left ideal is projective

as a left R−module. A ring R is said to be left NPP if RRa is projective for all

a ∈ N(R). Hence left PP rings, Von Neumann regular rings and reduced rings are

left NPP .

Example 2.8. Since there exists a reduced left p−injective ring which is not Von

Neumann regular, there exists a left p−injective left NPP ring which is not Von

Neumann regular. Since a ring R is Von Neumann regular if and only if R is left

p−injective left PP ring, there exists a left p−injective left NPP ring which is not

left PP . Therefore there exists a left NPP ring which is not left PP .

Theorem 2.9. The following conditions are equivalent for a ring R.

(1) R is a reduced ring.

(2) R is a left NPP ZC ring.

(3) R is a left NPP ZI ring.

(4) R is a left NPP Abelian ring.

Proof. (1)⇒ (2)⇒ (3)⇒ (4) are obvious.

(4)⇒ (1) Let a ∈ R with a2 = 0. Since R is a left NPP ring, RRa is projective,

so l(a) = R(1− e) where e2 = e ∈ R. Hence a = ea = ae because R is an Abelian

ring. Since a ∈ l(a) = R(1− e), a = a(1− e). Thus a = ae = a(1− e)e = 0, which

implies that R is reduced. �

Theorem 2.10. (1) R is a left NPP ring if and only if every homomorphic image

of any nil−injective left R−module is nil−injective.

(2) If R is a left NPP ring, then R is a left nonsingular ring.

(3) If R is a left NPP ring, then R is a left PS ring.

(4) Let R be a ring such that the polynomial ring R[x] is left NPP ring. Then

R is a left NPP ring.

Proof. (1) Assume that R is a left NPP ring and f : Q −→ W is an R−epic

where RQ is left nil−injective. Let a ∈ N(R) and g : Ra −→ W be a left

R−homomorphism. Since RRa is projective, there exists a left R−homomorphism

h : Ra −→ Q such that fh = g. Since RQ is nil−injective and a ∈ N(R), there

exists a left R−homomorphism γ : R −→ Q such that γi = h where i : Ra ↪→ R is
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the inclusion map. Set σ = fγ : R −→ W . Then σi = fγi = fh = g. This shows

that RW is nil−injective.

Conversely, suppose that every homomorphic image of any nil−injective left

R−module is nil−injective and a ∈ N(R). In order to show that Ra is projec-

tive, let g : E −→ W be an epimorphism of left R−module and h : Ra −→ W

an R−homomorphism where RE is any injective module. By hypothesis, RW is

nil−injective, so there exists a left R−homomorphism γ : R −→ W such that

γi = h. Therefore there exists a left R−homomorphism σ : R −→ E such that

gσ = γ. Set f = σi : Ra −→ E. Then gf = gσi = γi = h. This implies that RRa

is projective.

(2) Let 0 6= a ∈ Zl(R) with a2 = 0. Since R is a left NPP ring, RRa is projective.

So l(a) is a direct summand of R as a left R−module. But a ∈ Zl(R), l(a) must be

essential in RR, which is a contradiction. Hence Zl(R) = 0.

(3) By (2), Zl(R) = 0 and so Sl(R) ∩ Zl(R) = 0. By [2], R is a left PS ring.

(4) Assume that a ∈ N(R). Then a ∈ N(R[x]) and so lR[x](a) = R[x]e where

e2 = e ∈ R[x] by hypothesis. Let e = e0 + e1x+ e2x
2 + · · ·+ enx

n where ei ∈ R, i =

1, 2, · · · , n. Thus e20 = e0 and lR(a) = Re0, which implies that R is a left NPP

ring. �

Example 2.11. The trivial extension R = T (Z,Z2∞) is a commutative ring for

which Zr = J 6= 0 and Sl(R) is simple and essential in R. Hence Sl(R) ∩ Zl(R) =

Sl(R) 6= 0, so R is not left PS by [13]. By Theorem 2.10(3), R is not left NPP .

Hence R[x] is not left NPP . But R[x] is left PS because Sl(R[x]) = 0. Therefore

there exists a left PS ring which is not left NPP .

Example 2.12. Let F be a division ring and R =

(
F F

0 F

)
. Then N(R) =(

0 F

0 0

)
. Let 0 6= u ∈ F . Then

(
0 u

0 0

)
R =

(
0 uF

0 0

)
=

(
0 F

0 0

)
.

On the other hand, rl(

(
0 u

0 0

)
) =

(
F F

0 0

)
6=

(
0 F

0 0

)
=

(
0 u

0 0

)
R.

Hence R is not left nil−injective. Since R is left PP , R is left NPP . Therefore

there exists a left NPP ring which is not left nil−injective.

Example 2.13. If RVR is a bimodule over a ring R, then the trivial extension

R = T (Z,Q/Z) is a commutative ring with J(R) = Zl(R) 6= 0 and Sl(R) = 0.

Hence R is a left PS ring that is not left nonsingular.
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Remark 2.14. Since there exists a commutative nonsingular semiprimary ring R

which is not semisimple. Hence R is not left NPP ring by Theorem 2.9. This

implies that there exists a left nonsingular ring which is not left NPP . Hence we

have:

{left PP rings} $ { left NPP rings} $ {left nonsingular rings} $ {left PS

rings}.

Recall that a ring R is I−finite if it contains no infinite orthogonal family of

idempotents. Evidently, every semiperfect ring is I−finite. Call a nonzero right

ideal I of R right weakly essential if I ∩ aR 6= 0 for all 0 6= a ∈ N(R). Clearly,

every essential right ideal of R is right weakly essential.

Theorem 2.15. Let R be a left nil−injective ring and let a ∈ N(R), b ∈ R.

(1) If σ : RRa −→ RRb is epic, then bRR can be embedded in aRR.

(2) Let R be a ZC ring or N(R) ⊆ c(R). If RRa ∼= RRb, then aRR
∼= bRR.

(3) If R is a left Kasch ring, then r(J) is weakly essential as a right ideal of R.

(4) If K is a singular simple left ideal of R, then KR is the homogeneous com-

ponent of Sl(R) containing K.

(5) If R is I−finite, then R = R1×R2, where R1 is semisimple and every simple

left ideal of R2 in nilpotent.

Proof. (1) Let σ = ·u, u ∈ R. Then au = σ(a) = vb, v ∈ R. Set ϕ : bR −→ aR

defined by ϕ(br) = vbr = aur ∈ aR. Then ϕ is a right R−homomorphism. If

ϕ(br) = 0, then aur = vbr = 0. Since b = σ(ca), c ∈ R, b = cau. Hence br =

caur = 0, which implies that ϕ is a monic.

(2) Let ϕ, u, v as (1). Under the hypothesis, we can show that σ(a) ∈ N(R).

Since l(a) = l(σ(a)), σ(a)R = rl(σ(a)) = rl(a) = aR by Theorem 2.1. Thus

aR = auR, which implies that ϕ is epic.

(3) Assume that 0 6= a ∈ N(R) and M is a maximal submodule of RRa. Then

there exists a left R−monic σ : Ra/M −→ R because R is a left Kasch ring. Let

ρ : Ra −→ R defined by ρ(ra) = σ(ra+M). Then ρ = ·u, u ∈ R because R is a left

nil−injective ring. Clearly au = ρ(a) = σ(a + M) 6= 0 and Jau = Jσ(a + M) =

σ(Ja + M) = 0 because JRa ⊆ M . Hence 0 6= au ∈ aR ∩ r(J), which shows that

r(J) is right weakly essential.

(4) Let K = Rk, k ∈ R and σ : K −→ S be a left R−isomorphism, where S

is a left ideal of R. Since K is a singular simple left ideal of R, K2 = 0, and so

k ∈ N(R). By hypothesis, kR = rl(k) = rl(σ(k)) = σ(k)R because l(k) = l(σ(k))
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and σ(k) ∈ N(R). Hence S = Rσ(k) ⊆ RkR = KR, so the K−component is in

KR. The other inclusion always holds.

(5) By Corollary 2.4, this is an immediate consequence of [14, Theorem 1.12]. �

Remark 2.16. If R is a commutative nil−injective ring, then the singular ho-

mogeneous component of Sl(R) are simple. We generalize this fact as follows: If

A ∩B = 0 where A and B are left ideals of left nil−injective ring R. If A is a nil

ideal of R, then HomR(A,B) = 0 by Theorem 2.1.

Theorem 2.17. Let R be a left nil−injective ring. If ReR = R where e2 = e ∈ R,

then eRe is left nil−injective.

Proof. Assume that a ∈ N(S) where S = eRe. Then a ∈ N(R) and so aR =

rRlR(a) by Theorem 2.1. Let x ∈ rSlS(a). Then lS(a) ⊆ lS(x) ⊆ lR(x). Now let

y ∈ lR(a). Then ya = 0. Write 1 = Σn
i=1uievi, ui, vi ∈ R. Clearly eviyx = eviyex =

0 for all i because lS(a) ⊆ lS(x). Therefore yx = Σn
i=1uieviyx = 0, so y ∈ lR(x).

This implies that lR(a) ⊆ lR(x) and so x ∈ rRlR(x) ⊆ rRlR(a) = aR. Therefore

x = xe ∈ aRe = aeRe = aS, which shows that rSlS(a) ⊆ aS. Hence aS = rSlS(a)

and so eRe = S is a left nil−injective ring by Theorem 2.1. �

Call a ring R n−regular if a ∈ aRa for all a ∈ N(R). Examples include Von Neu-

mann regular rings and reduced rings. Clearly, every n−regular ring is semiprime.

Theorem 2.18. The following conditions are equivalent for a ring R.

(1) R is a n−regular ring.

(2) Every left R−module is nil−injective.

(3) Every cyclic left R−module is nil−injective.

(4) R is left nil−injective left NPP ring.

Proof. (1) ⇒ (2) Assume that M is left R−module and f : Ra −→ M is any

left R−homomorphism for a ∈ N(R). By (1), a = aba, b ∈ R. Write e = ba.

Then e2 = e and a = ae. Set m = f(e). Then f = ·m, which implies that RM is

nil−injective.

(2)⇔ (3) It is clear.

(3) ⇒ (4) Clearly R is a left nil−injective ring by (3). Assume that a ∈ N(R).

Then RRa is nil−injective by (3), so I = ·c, c ∈ Ra where I : RRa −→ RRa is

the identity map. Therefore a = I(a) = ac ∈ aRa. Write c = ba, b ∈ R. Then

a = ac = aba, c2 = baba = ba = c and Ra = Rc is a projective left R−module.

(4) ⇒ (1) Suppose that a ∈ N(R). By (4) and Theorem 2.1, aR = rl(a). Since

R is left NPP ring, l(a) = R(1 − e), e2 = e ∈ R. Therefore aR = eR. Write
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e = ac, c ∈ R. Then a = ea = aca ∈ aRa, which implies that R is n−regular

ring. �

Remark 2.19. Since there exists a reduced ring which is not Von Neumann regular

ring, there exists an n−regular ring which is not Von Neumann regular ring. For

example, Z.

Remark 2.20. The ring introduced in Example 2.12 is left NPP which is not

n−regular because R is not left nil−injective.

According to [14], a ring R is left universally mininjective if and only if R is left

mininjective left PS. Since n−regular rings are semiprime, every n−regular ring

is left universally mininjective. On the other hand, the ring R[x] in Example 2.11

is left universally mininjective which is not left NPP and so is not n−regular by

Theorem 2.18. It is well known that there exists a semiprime ring R such that

Zl(R) 6= 0. Hence there exists a semiprime ring which is not left NPP by Theorem

2.10(2). Therefore there exists a semiprime ring which is not n−regular. Since

there exists a polynomial ring R[x] which is not semiprime and all polynomial rings

are left universally mininjective, we have:

{Von Neumann regular rings} $ { n−regular rings} $ {semiprime rings} $ {left

universally mininjective rings}.
Call a ring R left NC2 if RRa projective implies Ra = Re, e2 = e ∈ R for all

a ∈ N(R). Clearly, every left C2 ring (c.f. [15]) is left NC2. By Corollary 2.7(1),

we know that every left nil−injective ring is left NC2.

Example 2.21. The trivial extension R = T (Z,Z2∞) is a commutative ring with

Zl(R) = J(R) 6= 0 which is not left C2 by [15, Example 3.2]. Since N(R) ⊆ J(R),

R is left NC2. Therefore there exists a left NC2 ring which is not left C2.

The ring Z of integers is also left NC2 ring which is not left C2.

The ring R in Example 2.5 is left NC2 which is not left nil−injective.

Theorem 2.22. (1) If R is a left NC2 ring, then R is left MC2 ring.

(2) If R[x] is a left NC2 ring, then so is R.

Proof. (1) Assume that Rk is a minimal projective left ideal R. If (Rk)2 6= 0, then

Rk = Re, e2 = e ∈ R, we are done; If (Rk)2 = 0, then k ∈ N(R). Since R is a left

NC2 ring, Rk = Rg, g2 = g ∈ R.

(2) Suppose that a ∈ N(R) and RRa is projective. Then lR(a) = Re, e2 = e ∈ R.

Since lR[x](a) = R[x]e and a ∈ N(R[x]), R[x]R[x]a is projective. Therefore R[x]a =
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R[x]h, h2 = h ∈ R[x] by hypothesis. Let h = h0 + h1x + h2x
2 + · · · + hnx

n where

hi ∈ R, i = 1, 2, · · · , n. Clearly, Ra = Rh0, h
2
0 = h0. �

Remark 2.23. Let F be a division ring and let R =

(
F F

0 F

)
. Then R is not

left MC2 ring, so R is not left NC2 by Theorem 2.22 (1). Therefore R[x] is not

left NC2 by Theorem 2.22 (2). But R[x] is left mininjective, so R[x] is left MC2.

Hence there exists a left MC2 ring which is not left NC2. Hence we have:

{left C2 rings} $ { left NC2 rings} $ {left MC2 rings}

Theorem 2.24. (1) R is n−regular ring if and only if R is left NC2 left NPP

ring.

(2) If R is n−regular ring, then N(R) ∩ J(R) = 0.

Proof. (1) By Theorem 2.18, every n−regular ring is left NC2 left NPP ring.

Conversely, let a ∈ N(R). Since R is left NPP , RRa projective. Since R is left

NC2 ring, Ra = Re, e2 = e ∈ R. Thus a = ae ∈ aRa. Hence R is left n−regular

ring.

(2) If a ∈ N(R) ∩ J(R), then a = aba, b ∈ R. Hence a(1 − ba) = 0. Since

a ∈ J(R), ba ∈ J(R). Hence 1− ba is invertible and so a = 0. �

According to [15], a ring R is said to be left weakly continuous if Zl(R) =

J(R), R/J(R) is Von Neumann regular ring and idempotents can be lifted modulo

J(R). Every Von Neumann regular ring is left weakly continuous. Since every Von

Neumann regular ring is left PP , we have the following corollary.

Corollary 2.25. The following conditions are equivalent for a ring R.

(1) R is an Von Neumann regular ring.

(2) R is a left weakly continuous left PP ring.

(3) R is a left weakly continuous left NPP ring.

(4) R is a left weakly continuous left nonsingular ring.

3. Wnil−injective Modules

Call a left R−module M Wnil−injective if for any 0 6= a ∈ N(R), there exists

a positive integer n such that an 6= 0 and any left R−morphism f : Ran −→ M

can be extends to R −→M , or equivalently, f = ·m where m ∈M . Clearly, every

left Y J−injective module (c.f. [3], [20] or [4]) and left nil−injective modules are

all left Wnil−injective. The following theorem is a proper generalization of [10,

Proposition 1].
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Theorem 3.1. Let R be a ring whose every simple singular left R−module is

Wnil−injective. If R satisfies one of the following conditions, then the following

statements hold.

(1) Zr(R) ∩ Zl(R) = 0.

(2) Zl(R) ∩ J(R) = 0.

(3) If R is left MC2 ring, then Zr(R) = 0.

(4) R is a left PS ring.

Proof. (1) If Zr(R)∩Zl(R) 6= 0, then there exists a 0 6= b ∈ Zr(R)∩Zl(R) such that

b2 = 0. We claim that RbR+ l(b) = R. Otherwise there exists a maximal essential

left ideal M of R containing RbR+l(b). So R/M is a simple singular left R−module,

and then it is left Wnil−injective by hypothesis. Set f : Rb −→ R/M defined by

f(rb) = r+M . Then f is well-defined left R−homomorphism. Hence f = ·c̄, c ∈ R
and so 1 − bc ∈ M . Since bc ∈ RbR ⊆ M, 1 ∈ M , which is a contradiction.

Therefore 1 = x + y, x ∈ RbR, y ∈ l(b), and so b = xb. Since RbR ⊆ Zr(R),

x ∈ Zr(R). Thus r(1 − x) = 0 and so b = 0, which is a contradiction. This shows

that Zr(R) ∩ Zl(R) = 0.

(2) can be done with an argument similar to that of (1).

(3) Suppose that Zr(R) 6= 0. Then there exists 0 6= a ∈ Zr(R) such that a2 = 0.

If there exists a maximal left ideal M of R containing RaR + l(a). then M must

be an essential left ideal. Otherwise M = l(e), e2 = e ∈ R. Hence aRe = 0. We

claim that eRa = 0. Otherwise there exists a c ∈ R such that eca 6= 0. Since

RRe ∼= RReca, RReca is projective. Thus Reca = Rg, g2 = g ∈ R, which implies

that reca = Rg = RgRg = RecaReca = Rec(aRe)ca = 0. This is a contradiction.

Therefore eRa = 0 and so e ∈ l(a) ⊆M = l(e), which is a contradiction. Hence M

is essential and so R/M is Wnil−injective by hypothesis. As proved in (1), there

exists a c ∈ R such that 1 − ac ∈ M . Since ac ∈ RaR ⊆ M , 1 ∈ M , which is also

a contradiction. Thus RaR+ l(a) = R and so 1 = x+ y, x ∈ RaR, y ∈ l(a). Hence

a = xa. and so a = 0 because x ∈ RaR ⊆ Zr(R). This is also a contradiction,

which shows that Zr(R) = 0.

(4) Let Rk be minimal left ideal of R. If (Rk)2 6= 0, then Rk = Re, e2 = e ∈ R,

so RRk is projective. If (Rk)2 = 0, then l(k) is a summand of RR. Otherwise l(k)

is a maximal essential left ideal. So R/l(k) is a Wnil−injective left R−module by

hypothesis. Therefore the left R−homomorphism f : Rk −→ R/l(k) defined by

f(rk) = r + l(k), r ∈ R can be extended to R −→ R/l(k). This implies that there

exists a c ∈ R such that 1 − kc ∈ l(k). Since RkRkR = 0, 1 − kc is invertible.
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Hence l(k) = R, which is a contradiction. Thus l(k) is a summand of RR and so

RRk is projective. Consequently, R is a left PS ring. �

Recall that R is a left GQ−injective ring [9] if, for any left ideal I isomorphic

to a complement left ideal of R, every left R−homomorphism of I into R extends

to an endomorphism of RR. It is clear that left GQ−injective rings generalize left

continuous rings. We know that if R is left GQ−injective, then J(R) = Zl(R) and

R/J(R) is Von Neumann regular ring. Since every left module over a Von Neumann

regular ring is p−injective, the following corollary to Theorem 3.1 generalizes [3,

Theorem 2] and [10, Corollary 1.2].

Corollary 3.2. (1) R is a Von Neumann regular ring if and only if R is a left

weakly continuous ring whose simple singular left R−modules are Wnil−injective.

(2) Let R be a left GQ−injective ring whose simple singular left R−module is

Wnil−injective. Then R is a Von Neumann regular ring.

(3) Let R be a ring whose simple singular left R−module is Wnil−injective.

Then Zl(R) = 0 if and only if Zl(R) ⊆ J(R).

(4) Let R be a ring whose simple singular left R−module is nil−injective. Then

Zl(R) = 0 if and only if Zl(R) ⊆ Zr(R).

(5) If R is a left MC2 right GQ−injective ring such that every simple singular

left R−module is Wnil−injective. Then R is a Von Neumann regular ring

(6) If R is a left MC2 right weakly continuous ring such that every simple sin-

gular left R−module is Wnil−injective. Then R is a Von Neumann regular ring

According to [6], a left R−module M is called Small injective if every homo-

morphism from a small left ideal to RM can be extended to an R−homomorphism

from RR to RM .

A left R−module M is said to be left weakly principally small injective (or,

WPSI) if for any 0 6= a ∈ J(R), there exists a positive integer n such that an 6= 0

and any left R−homomorphism from Ran −→ M can be extended to R −→ M .

Evidently, left Small injective modules are left WPSI. We do not know whether

the converse is true. A ring R is called left WPSI if RR is a left WPSI. It is easy

to show that R is a left WPSI ring if and only if for every 0 6= a ∈ J(R), there

exists a positive integer n such that an 6= 0 and rl(an) = anR. Clearly, every left

Y J−injective ring is left WPSI. The following corollary generalizes [10, Corollary

1.3].
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Corollary 3.3. (1) If R is a left WPSI ring, then the following statements hold:

(a) J(R) ⊆ Zl(R).

(b) R is a left mininjective ring.

(c) If e2 = e ∈ R is such that that ReR = R, then eRe is a left WPSI ring.

(d) If R is an NI, then R is a left nil−injective ring.

(2) If R is a left WPSI ring whose every simple singular left R−module is

Wnil−injective, then

(a) J(R) = 0 = Zr(R).

(b) If R is a right GQ−injective, then R is Von Neumann regular ring.

(c) If R is a right weakly continuous, then R is Von Neumann regular ring.

(3) If R is a right WPSI left MC2 ring whose every simple singular left R−module

is Wnil−injective, then J(R) = 0.

Proof. (1) (a) If there exists a b ∈ J(R) with b /∈ Zl(R). Then there exists a

nonzero left ideal I of R such that I ∩ l(b) = 0. Let 0 6= a ∈ I. Then ab 6= 0.

Evidently, ab ∈ J(R). Hence there exists a positive integer n such that (ab)n 6= 0

and (ab)nR = rl((ab)n). Since l((ab)n−1a) = l((ab)n), (ab)n−1a ∈ rl((ab)n−1a) =

rl((ab)n) = (ab)nR. Write (ab)n−1a = (ab)nc, c ∈ R. Then (ab)n−1a(1 − bc) = 0

and so (ab)n−1a = 0 because 1 − bc is invertible. Hence (ab)n = (ab)n−1ab = 0,

which is a contradiction. Hence J(R) ⊆ Zl(R).

(b) Assume that Rk is a minimal left ideal of R. If (Rk)2 6= 0, then Rk =

Re, e2 = e ∈ R. Set e = ck, c ∈ R and g = kc. Then k = ke = kck = gk,

g2 = kckc = kc = g and kR = gR. Therefore kR = gR = rl(g) = rl(k), we are

done. If (Rk)2 = 0, then k ∈ J(R). Since R is a left WPSI ring, rl(k) = kR.

Hence R is a left mininjective ring.

(c) Similar to the proof of Theorem 2.24.

(2) (a) By Theorem 3.1 and (1), J(R) = Zl(R) ∩ J(R) = 0 and R is a left

mininjective ring, so R is a left MC2 by [1]. Hence Zr(R) = 0 by Theorem 3.1.

(b) Since R is a right GQ−injective, R/J(R) is Von Neumann regular. Hence R

is Von Neumann regular ring because J(R) = 0 by (a).

(c) Similar to (b).

(3) Similar to (1), we have J(R) ⊆ Zr(R). So J(R) = 0 because Zr(R) = 0 by

Theorem 3.1. �

It is well known that if every simple left R−module is injective, then R is

semiprime. Since every simple singular left R−module is injective, R must not

be semiprime.
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According to [3], a ring R is idempotent reflexive if aRe = 0 implies eRa = 0 for

all e2 = e, a ∈ R. Clearly, every idempotent reflexive ring is left MC2.

Proposition 3.4. (1) If every simple left R−module is Wnil−injective, then R is

semiprime.

(2) If every simple singular left R−module is Wnil−injective, then R is semiprime

if it satisfies any one of the following conditions.

(a) R is a left MC2.

(b)R is an idempotent reflexive.

(c) R is a left NC2.

Proof. (1) Assume that a ∈ R such that aRa = 0. Then RaR ⊆ l(a). If a 6= 0,

then there exists a maximal left ideal M containing l(a). By hypothesis, R/M is

Wnil−injective. So there exists a c ∈ R such that 1 − ac ∈ M . Hence 1 ∈ M ,

which is a contradiction. So a = 0 and then R is a semiprime ring.

(2) (a) Since R is left MC2, as proved in Theorem 3.1(3), we know that M as

in (1) are essential in RR. The rest proof containing (b), (c) are similar to (1). �

Corollary 3.5. Suppose that every simple singular left R−module is Wnil−injective.

Then the following conditions are equivalent.

(1) R is a reduced ring.

(2) R is a ZC ring.

(3) R is a ZI ring.

(4) R is an Abelian 2−prime ring.

(5) R is an idempotent reflexive 2−prime ring.

(6) R is a left MC2 2−prime ring.

Proof. (1)⇒ (2)⇒ (3) and (4)⇒ (5)⇒ (6) are obvious.

(3) ⇒ (1) If R is a ZI ring, then R is an Abelian ring, and so R is a left MC2

ring. By Proposition 3.4, R is semiprime. Now, let a ∈ R with a2 = 0. then

aRa = 0 because R is a ZI ring. Hence a = 0. Therefore R is a reduced ring.

(6)⇒ (1) By (6) and Proposition 3.4, R is a semiprime ring. So N(R) = P (R) =

0 because R is a 2−prime ring. �

Call an element k ∈ R left (right, resp) minimal if Rk (kR, resp) is a minimal

left (right, resp) ideal of R. Call an element e ∈ R is called left minimal idempotent

if e2 = e is a left minimal element.

According to [14], if R is a left minsymmetric ring, then Sl(R) ⊆ Sr(R).
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Call a ring R reflexive [3] if aRb = 0 implies bRa = 0 for all a, b ∈ R. Clearly,

every semiprime ring is reflexive and every reflexive ring is idempotent reflexive.

Hence we have the following corollary.

Corollary 3.6. Suppose that every simple singular left R−module is Wnil−injective.

Then the following conditions are equivalent.

(1) R is a semiprime ring.

(2) R is a reflexive ring.

(3) R is an idempotent reflexive ring.

(4) R is a left MC2 ring.

(5) Sl(R) ⊆ Sr(R).

(6) R is a left minsymmetric ring.

(7) R is a left mininjective ring.

(8) R is a left universally mininjective ring.

(9) Every left minimal idempotent of R is right minimal.

Proof. (1) ⇒ (2) ⇒ (3) ⇒ (4) and (1) ⇒ (8) ⇒ (7) ⇒ (6) ⇒ (5) are obvious. By

Proposition 3.4, we have (4)⇒ (1).

(5)⇒ (4) First, we assume that Rk,Re are minimal left ideals of R with RRk ∼=
RRe where e2 = e, k ∈ R. It is easy to show that there exists an idempotent g ∈ R
such that k = gk and l(k) = l(g). Hence, by hypothesis, gR ⊇ mR where mR is

a minimal right ideal of R, so l(g) = l(m). It suffices to show that (Rm)2 6= 0.

For, if (Rm)2 6= 0, then (mR)2 6= 0. So mR = hR, h2 = h ∈ R. Consequently,

gR = rl(g) = rl(m) = rl(h) = hR = mR is a minimal right ideal of R and so

kR = gkR = gR. Write g = kc, c ∈ R and u = ck. Then k = gk = kck = ku,

u2 = ckck = ck = u and Rk = Ru, we are done; Assume to the contrary (Rm)2 = 0.

Then there exists a right ideal I of R such that RmR ⊕ I is essential in RR. So

Sl(R) ⊆ Sr(R) ⊆ RmR ⊕ I. Since RmR ⊕ I ⊆ l(m), g ∈ Sl(R) ⊆ l(m) = l(g),

which is a contradiction. Next, let a, e2 = e ∈ R with aRe = 0, where e is a left

minimal element of R. If eRa 6= 0, then there exists a b ∈ R such that eba 6= 0.

Since RRe ∼= RReba, Reba = Rh, h2 = h ∈ R by the proof above. Therefore

Rh = RhRh = RebaReba = 0, which is a contradiction. This shows that eRa = 0

and so R is a left MC2 ring.

(4) ⇒ (9) Assume that e ∈ R is a left minimal idempotent. Let a ∈ R be

such that ea 6= 0. Since Rea is a minimal left ideal and l(e) ⊆ l(ea), l(e) = l(ea).

If (Rea)2 = 0, then eaR ⊆ l(ea) = l(e), so eaRe = 0. Since (Rea)2 6= 0 and

so Rea = Rg, g2 = g ∈ R. Therefore eaR = hR for some h2 = h ∈ R. Since
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l(h) = l(ea) = l(e), eR = rl(e) = rl(ea) = rl(h) = hR = eaR, which implies that

eR is a minimal right ideal of R, e.g. e is a right minimal element.

(9) ⇒ (4) Assume that Rk,Re, e2 = e, k ∈ R are minimal left ideals of R

with RRk ∼= RRe. Then there exists an idempotent g ∈ R such that k = gk and

l(k) = l(g). Hence, by hypothesis, gR is a minimal right ideal of R. Therefore

kR = gkR = gR and so Rk = Rh for some h2 = h ∈ R. �

Now we give some characteristic properties of reduced rings in terms of the

Wnil−injectivity.

Theorem 3.7. The following conditions are equivalent for a ring R.

(1) R is a reduced ring.

(2) R is an Abelian ring whose every left R−module is Wnil−injective.

(3) R is an Abelian ring whose every cyclic left R−module is Wnil−injective.

(4) N(R) forms a right ideal of R and every left R−module is Wnil−injective.

(5) N(R) forms a right ideal of R and every cyclic left R−module is Wnil−injective.

(6) N(R) forms a right ideal of R and every simple left R−module is Wnil−injective.

Proof. (1)⇒ (2)⇒ (3) and (1)⇒ (4)⇒ (5)⇒ (6) are clear.

(6) ⇒ (1) Assume that a ∈ R such that a2 = 0. If a 6= 0, then let M be a

maximal left R−submodule of Ra . Then Ra/M is a simple left R−module. By

(6), Ra/M is a Wnil−injective. So the canonical homomorphism π : Ra −→ Ra/M

can be expressed as π = ·ca + M, c ∈ R. Hence a − aca ∈ M . By (6), ac ∈ N(R)

so 1 − ac is invertible. Thus a = (1 − ac)−1(1 − ac)a = (1 − ac)−1(a − aca) ∈ M ,

which is a contradiction. So a = 0 and then R is a reduced ring. �

A ring R is called MELT [5] if every maximal essential left ideal of R is an ideal.

The following theorem is a generalization of [10, Proposition 9].

Theorem 3.8. Let R be ring whose every simple singular left R−module is Wnil–

injective. If R satisfies one of the following conditions, then Zl(R) = 0.

(1) R is an MELT ring.

(2) R is a ZI ring.

(3) N(R) ⊆ J(R).

Proof. Suppose that Zl(R) 6= 0. Then Zl(R) contains a nonzero element z such

that z2 = 0. Therefore l(z) 6= R. Let M be a maximal left ideal of R containing

l(z). Then M is an essential left ideal of R which implies that R/M is a left

Wnil−injective. Define a leftR−homomorphism f : Rz −→ R/M by f(rz) = r+M

for all r ∈ R. Since R/M is Wnil−injective and z2 = 0, there exists a c ∈ R such
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that 1 − zc ∈ M . If R is MELT , then M is an ideal of R. Since z ∈ l(z) ⊆ M ,

zc ∈ M . If R is ZI, then zRz = 0 because z2 = 0, so zc ∈ l(z) ⊆ M . If

N(R) ⊆ J(R), then zc ∈ J(R) ⊆ M . Hence we always have 1 ∈ M , contradicting

that M 6= R. This proves that Zl(R) = 0. �

Corollary 3.9. Let R be an MELT ring whose every simple singular left R−module

is Wnil−injective. Then:

(1) If R is a left GQ−injective ring, then R is Von Neumann regular.

(2) If R is a left weakly continuous ring, then R is Von Neumann regular.

A left R−module M is said to be Wjcp−injective if for each a /∈ Zl(R), there

exists a positive integer n such that an 6= 0 and every left R−homomorphism

from Ran to M can be extended to one of R to M . If RR is Wjcp−injective,

we call R is a left Wjcp−injective ring. Evidently, every left Y J−injective ring is

Wjcp−injective.

It is easy to show that R is left Wjcp−injective if and only if for any 0 6= a /∈
Zl(R), there exists a positive integer n such that an 6= 0 and rl(an) = anR.

The ring in Example 2.5 is a left Wjcp−injective which is not left Y J−injective.

Theorem 3.10. (1) Let R be a left Wjcp−injective ring. Then:

(a) Zl(R) ⊆ J(R).

(b) R is a left C2 ring.

(c) If R is also a left WPSI ring, then Zl(R) = J(R).

(d) If every simple singular left R−module is Wnil−injective, then Zl(R) = 0.

Hence R is a semiprime left Y J−injective ring.

(2) R is a left Y J−injective ring if and only if R is a left WPSI left Wjcp–

injective ring.

Proof. (1) (a) Assume that a ∈ Zl(R). Then 1− a /∈ Zl(R) because l(1− a) = 0.

Therefore rl((1 − a)n) = (1 − a)nR, so R = (1 − a)nR. This shows that a is a

right quasi-regular element of R. Since Zl(R) is an ideal of R, a ∈ J(R). Hence

Zl(R) ⊆ J(R).

(b) Let e2 = e, a ∈ R be such that RRa ∼=R Re. Then there exists a g2 = g ∈ R
such that a = ga and l(a) = l(g). Therefore a /∈ Zl(R) and so aR = rl(a) = rl(g) =

gR. Then there exists h2 = h ∈ R such that Ra = Rh. This shows that R is a left

C2 ring.

(c) Since R is left WPSI ring, J(R) ⊆ Zl(R) by Corollary 3.3. By (a), Zl(R) =

J(R).
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(d) By Theorem 3.1, Zl(R)∩J(R) = 0. By (a), Zl(R) = 0. By (b) and Corollary

3.6, R is semiprime.

(2) Follows from (1). �

[10, Proposition 3] shows that if R is a reduced ring whose every simple left

module is either Y J−injective or flat, then R is a biregular ring. We can generalize

the result as follows.

Theorem 3.11. Let R be a reduced ring whose every simple singular left module

is either Wjcp−injective or flat. Then R is a biregular ring.

Proof. For any 0 6= a ∈ R, l(RaR) = r(RaR) = r(a) = l(a). If RaR ⊕ l(a) 6= R,

then there exists a maximal left ideal M of R containing RaR ⊕ l(a). If M is not

essential in RR, then M = l(e), e2 = e ∈ R. Therefore ae = 0. Since R is Abelian,

ea = 0. Hence e ∈ l(a) ⊆ l(e), which is a contradiction. So M is essential in RR.

By hypothesis, R/M is either Wjcp−injective or flat. First we assume that R/M

is Wjcp−injective. Since R is reduced, Zl(R) = 0. Hence there exists a positive

integer n such that an 6= 0 and any left R−homomorphism Ran −→ R/M can be

extended to R −→ R/M . Set f : Ran −→ R/M defined by f(ran) = r+M, r ∈ R.

Then f is a well defined left R−homomorphism. Hence there exists a g :R R −→R

R/M such that 1 +M = f(an) = g(an) = ang(1) = anc+M where g(1) = c+M ,

so 1 − anc ∈ M . Since anc ∈ RaR ⊆ M , 1 ∈ M , which is a contradiction.

So we assume that R/M is flat. Since a ∈ M , a = ac for some c ∈ M . Now

1 − c ∈ r(a) = l(a) ⊆ M which implies that 1 ∈ M , again a contradiction. Hence

RaR ⊕ l(a) = R and so RaR = Re, e2 = e ∈ R. Since R is an Abelian ring, R is a

biregular ring. �

In [6, Proposition 2.3] , semiprimitive rings are characterized in terms of Small

injective modules. In the next theorem, we obtain a similar result.

Theorem 3.12. The following conditions are equivalent for a ring R.

(1) J(R) = 0.

(2) Every left R−module is WPSI.

(3) Every cyclic left R−module is WPSI.

(4) Every simple left R−module is Small injective.

Proof. (1)⇒ (2)⇒ (3) and (1)⇒ (4) are clear.

(4) ⇒ (1) If J(R) 6= 0, then there exists 0 6= a ∈ J(R). By (4), Ra/M is a left

Small injective R−module where M is a maximal R−submodule of Ra. Hence any

left R−homomorphism Ra −→ Ra/M extends to R −→ Ra/M . Therefore the left
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R−homomorphism f : Ra ↪→ Ra/M defined by f(ra) = ra+M can be extended to

R −→ Ra/M . So there exists a c ∈ R such that a−aca ∈M . Hence (1−ac)a ∈M
and so a ∈ M because 1 − ac is invertible, which is a contradiction. Therefore

J(R) = 0.

(3) ⇒ (1) If J(R) 6= 0, then there exists 0 6= a ∈ J(R). By (3), Ra is a left

WPSI R−module. Hence there exists a positive integer n such that an 6= 0 and

any left R−homomorphism Ran −→ Ra extends to R −→ Ra. Therefore the

left R−homomorphism f : Ran −→ Ra defined by f(ran) = ran, r ∈ R can be

extended to R −→ Ra. So there exists c ∈ R such that an = anca = 0. Hence

an(1− ca) = 0 and so an = 0 because 1− ca is invertible, which is a contradiction.

Therefore J(R) = 0. �

Theorem 3.13. The following conditions are equivalent for a ring R.

(1) R is a left universally mininjective.

(2) Every minimal left ideal of R is left WPSI.

(3) Every small minimal left ideal of R is left WPSI.

Proof. (1) ⇒ (2) Assume that Rk is a minimal left ideal of R and 0 6= a ∈
J(R). For any positive integer n with an 6= 0, if f : Ran −→ Rk is any left

R−homomorphism, we claim that f = 0. Otherwise f is an epic. Since R is a left

universally mininjective ring, Rk = Re, e2 = e ∈ R is a projective left R−module.

Therefore Ran = kerf ⊕ I, where I is a minimal left ideal of R which is isomorphic

to Rk as a left R−module. Therefore I = Rg, g2 = g ∈ R because R is left

universally mininjective. But I ⊆ Ran ⊆ J(R) which is a contradiction. Hence

f = 0. Certainly, f can be extended to R −→ Rk.

(2)⇒ (3) is clear.

(3) ⇒ (1) Let Rk be a minimal left ideal of R. If (Rk)2 6= 0, we are done; If

(Rk)2 = 0, then Rk ⊆ J(R). Hence Rk is left WPSI module. Thus the identity

map I : Rk −→ Rk can be extended to R −→ Rk, which implies that there exists a

c ∈ R such that k = kck ∈ RkRk. Therefore k = 0 which is a contradiction. Hence

R is a left mininjective ring. �

The next theorem can be proved with an argument similar to [10, Theorem 4].

Theorem 3.14. The following conditions are equivalent for a ring R.

(1) R is a division ring.

(2) R is a prime left Wjcp−injective ring containing a non-zero reduced right

ideal which is a right annihilator.
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(3) R is a prime left Wjcp−injective ring containing a non-zero reduced right

ideal which is a left annihilator.

Theorem 3.15. R is a Von Neumann regular ring if and only if R is a left PP

left Wjcp−injective ring.

Proof. One direction is obvious. Suppose that R is a left PP left Wjcp−injective

ring. Let 0 6= a ∈ R. Then a /∈ Zl(R) because Zl(R) = 0. Then there exists n > 0

such that an 6= 0 and rl(an) = anR because R is left Wjcp−injective. Since R is

a left PP ring, l(an) = l(e), e2 = e ∈ R. Thus eR = rl(e) = rl(an) = anR. This

implies that an is a regular element of R. If a2 = 0, the argument above shows

that a is a regular element. so by [2, Theorem 2.2], R is a Von Neumann regular

ring. �
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