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Abstract. We define on an arbitrary ring A a family of mappings (σx,y) sub-

scripted with elements of a multiplicative monoid G. The assigned properties

allow to call these mappings as derivations of the ring A. Beside the general

situation it is given their description for the case of a partially ordered monoid.

A monoid algebra of G over A is constructed explicitly, and the universality

property of it is shown. The notion of a monoid algebra in our context extends

those of a group ring, a skew polynomial ring, Weyl algebra and other related

ones. The connection with crossed products is also shown.
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1. Introduction

In his paper [15] Smits proposes an extension of the theory of skew polynomial

rings elaborated and studied for the first by Ore [10]. In [15] skew polynomial rings

are considered with a commutation rule defined by

x · a = a1x+ ...+ arx
r,

where K is a field (in general, non-commutative), ai (i = 1, ..., r) are elements of

K depending on a. The corresponding mappings δi : a −→ ai (i = 1, ..., r) must be

endomorphisms of the additive group of the field K, and, due to their properties,

they can be called as higher α-derivations. The special case of a commutation rule

of the form

x · a = σ(a)x+ δ(a) (a ∈ K)

leads to an Ore polynomial ring, σ being a field-endomorphism of K and δ a (1, σ)-

derivation of K.

In the present paper we consider the following construction. First, we introduce

axiomatically a family of mappings σ = (σx,y) defined on a ring A and subscripted

with elements of a multiplicative monoid G. These mappings are defined in such a
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way that they can be called derivations of A. Thus the operations of differentiation

defined traditionally on a ring [8], [4], [5] are particular examples in our case. We

connect the structure of differentiation defined by means of the family σ with a

monoid algebra A⟨G⟩. The elements of A⟨G⟩ are mappings α from G into A such

that α(x) = 0 for almost all x ∈ G. We make A⟨G⟩ into an A - module by defining

the (left) module operations in the natural way. But the law of multiplication is

defined specifically, by involving the mappings of the family σ. Namely, we write

the elements α of A⟨G⟩ as sums α =
∑

x∈G ax ·x, where ax ·x denotes the function

from G into A whose value is ax at x and 0 at y different of x. For two elements

α =
∑

x∈G ax · x and β =
∑

x∈G bx · x we define the law of multiplication by the

following formulas

αβ =
∑

x,y∈G

(ax · x)(by · y),

and

(a · x)(b · y) =
∑
z∈G

aσx,z(b) · zy (a, b ∈ A;x, y ∈ G).

In respect with this law of composition A⟨G⟩ becomes to be a ring. This ring

A⟨G⟩ is also called a G-algebra over A (or simply a monoid algebra over A). It

turns out that A⟨G⟩ represents a free G-algebra over A. In order to prove this

fact we construct a suitable category C in which the ring A⟨G⟩ together with the

canonical maps φ0 : G −→ A⟨G⟩, φ0(x) = 1 · x (x ∈ G) and f0 : A −→ A⟨G⟩,
f0(a) = a · e (a ∈ A) is a universal object (see Section 5).

We note that free algebras over commutative rings (see, for instance, [8, Ch. V,

p. 106]), group algebras (when G is a group) [2] (see also [11], [6] and [17]), Weyl

algebras are concrete realizations of monoid algebras A⟨G⟩ mentioned above. Cer-

tain special cases of crossed products (as, for example, twisted semigroup rings or

skew group rings) [12] (see also [7] and [1]) can be considered as concrete situations

of our approach as well. For instance, let σ be a monoid-homomorphism of G into

End(A), that is, σ(xy) = σ(x) ◦ σ(y) (x, y ∈ G), and σ(e) = 1 (e designates the

unit element of G). Thus for each x ∈ G we have an endomorphism σ(x) of A, and

we can define σx,y : A −→ A such that σx,x = σ(x) for x ∈ G and σx,y = 0 for

x ̸= y. Then, the law of multiplication in A⟨G⟩ is given as follows(∑
x∈G

ax · x
)(∑

x∈G

bx · x
)
=
∑
x∈G

∑
y∈G

axσx,x(by) · xy.

Namely in this particular case the monoid algebra A⟨G⟩ represents a crossed prod-

uct [3], [12] of the multiplicative monoid G over the ring A with respect to the

factors ρx,y = 1 (x, y ∈ G). If G is a group, and σ : G −→ End(A) is such that
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σ(x) = 1A for all x ∈ G, then we evidently obtain an ordinary group ring [2] (the

commutative case see also [6]).

The paper is organized as follows: the derivation mappings are defined in Section

2. In Section 3 is considered the case of a partially ordered monoid. In Sections

4 and 5 we define and study the monoid algebra A⟨G⟩. In Section 4 we give some

examples by which we show that the Weyl algebras (see Example 2.1) and group

algebras (see Example 2.3) are special cases of our monoid algebras. The con-

nection with crossed products is shown as well (see Example 2.2). Applications

to skew polynomial rings are considered in Section 6. Concomitantly, we extend

substantially results of T. H. M. Smits [14], [15], [16].

Algebraic structure of monoid algebras and some results related to [13] will be

given in a subsequent publication.

2. Derivation mappings

Let A be a ring (in general non-commutative) and G a multiplicative monoid.

Throughout the paper we consider 1 ̸= 0 (where 0 is the null element of A, and 1

is the unit element for multiplication), the unit element of G is denoted by e. In

the following, it will be considered a family of mappings of A into itself which, due

to their assigned properties, could be regarded as derivations of the ring A. This

family is introduced by the following assumption.

(A) For each x ∈ G there exists a unique family σx = (σx,y)y∈G of mappings

σx,y : A −→ A which σx,y = 0 for almost all y ∈ G (here and thereafter, almost all

will mean all but a finite number, that is, σx,y ̸= 0 only for a finite set of y ∈ G)

and for which the following properties are fulfilled:

(i) σx,y(a+ b) = σx,y(a) + σx,y(b) (a, b ∈ A;x, y ∈ G);

(ii) σx,y(ab) =
∑

z∈G σx,z(a)σz,y(b) (a, b ∈ A;x, y ∈ G);

(iii) σxy,z =
∑

uv=z σx,u ◦ σy,v (x, y, z ∈ G);

(iv1) σx,y(1) = 0 (x ̸= y;x, y ∈ G); (iv2) σx,x(1) = 1 (x ∈ G);

(iv3) σe,x(a) = 0 (x ̸= e;x ∈ G); (iv4) σe,e(a) = a (a ∈ A).

In (ii) the elements are multiplied as in the ring A, but in (iii) the symbol ◦
means the composition of maps. We have seen that the condition (iii) implies (for

y = x) that

σx2,z =
∑
uv=z

σx,u ◦ σx,v (x, z ∈ G). (2.1)

Also, on the basis of the property (i), for three maps σ
′
, σ

′′
, σ

′′′
from the family

(σx,y)x,y∈G there holds the distributive law with respect to operation of the sum
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and the composition of maps, namely σ
′ ◦ (σ′′

+ σ
′′′
) = σ

′ ◦ σ′′
+ σ

′ ◦ σ′′′
. Taking

into account this fact from the condition (iii) and (2.1), we obtain

σx3,z =
∑
uv=z

σx,u ◦ σx2,v =
∑
uv=z

σx,u ◦
(∑
st=v

σx,s ◦ σx,t

)

=
∑

ust=z

σx,u ◦ σx,s ◦ σx,t,

and, in general, by induction on n

σxn,z =
∑

u1·...·un=z

σx,u1 ◦ ... ◦ σx,un (x, z ∈ G; n = 1, 2, ...). (2.2)

Next, if we form the matrix

σ(a) = [σx,y(a)]x,y∈G (a ∈ A), (2.3)

we see that the formula from (ii) of (A) can be written formally as follows

σ(ab) = σ(a)σ(b) (a, b ∈ A).

In addition, we note also (via of the property (i) of (A)) that

σ(a+ b) = σ(a) + σ(b) (a, b ∈ A).

Thus, by means of the mapping σ we have a representation of the ring A. We

formulate this important fact in the following

Proposition 2.1. The mapping σ : a −→ σ(a) determines a matrix representation

of A (in general of infinite degree).

Examples: 1. Let A be a ring and let G be a multiplicative monoid. Let us

consider a monoid-homomorphism σ of G into End(A), that is σ(xy) = σ(x) ◦
σ(y) (x, y ∈ G) and σ(e) = 1A. Thus for each x ∈ G we have an endomorphism

σ(x) of A, and we can define σx,y : A −→ A such that σx,x = σ(x) for x ∈ G and

σx,y = 0 for y ̸= x. The properties (i)-(iv4) of (A) are verified at once. We only

note that the property (iii) becomes to be as follows

σxy,xy = σx,x ◦ σy,y (x, y ∈ G)

that is true via the fact that σ is a monoid-homomorphism.

2. Let A be a ring, and let α be an endomorphism of A and δ be an α-

differentiation of A, i.e.

δ(a+ b) = δ(a) + δ(b), δ(ab) = δ(a)b+ α(a)δ(b)
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for every a, b ∈ A. Denote by G the monoid of elements xn (n = 0, 1, ...) endowed

with the law of composition defined by

xnxm = xn+m (n,m = 0, 1, ...; x0 := e).

We write σnm instead of σxn,xm by defining σnm : A −→ A as the following map-

pings σ00 = 1A, σ10 = δ, σ11 = α, σnm = 0 for m > n and

σnm =
∑

j1+...+jn=m

σ1j1 ◦ ... ◦ σ1jn (m = 0, 1, ..., n; n = 1, 2, ...),

where jk = 0, 1 (k = 1, ..., n). The family σ = (σnm) satisfies the axioms (i)− (iv4)

of (A). In particular, if α = 1A, then the derivation mappings σnm for n > m are

given by

σnm =

(
n

m

)
δn−m (m = 0, 1, ..., n− 1;n = 1, 2, ...),

and also if δ is a trivial derivation of A, i.e. δ(a) = 0 for all a ∈ A, then σnm = 0

for m < n too, and

σnn = αn (n = 0, 1, ...).

In Section 4 it will be presented other examples of derivations of the ring A.

Note that the derivation mappings defined as in Example 1 determine a crossed

product of A by G (cf. Example 2.2 of Section 4).

3. The case of a partially ordered monoid

In this section we continue our discussion by supposing that the monoid G is

partially ordered, i.e. we assume

(O) G is a partially ordered monoid.

This means that G is partially ordered in such a manner that the partial ordering

” ≤ ” is compatible with the algebraic structure of G, i.e.

(O1) x ≤ x holds for all x ∈ G;

(O2) If x ≤ y and y ≤ z, then x ≤ z (x, y, z ∈ G);

(O3) x ≤ y implies xz ≤ yz and zx ≤ zy for every z ∈ G (x, y ∈ G);

In addition, we postulate

(O4) e ≤ x for every x ∈ G.

If for any elements x and y of G we have x ≤ y and x ̸= y, then we write x < y,

and we agree to use x ≥ y and x > y as alternative for y ≤ x and y < x. For two

comparable elements x, y ∈ G we denote by [x, y] (in the case of x ≤ y) the set of

all elements z ∈ G such that x ≤ z ≤ y, i.e.

[x, y] := {z ∈ G | x ≤ z ≤ y}.
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The set [x, y] is called the segment that connects the element x with y.

Let A be a ring for which the following assumption is fulfilled.

(A
′
) The mappings σx,y : A −→ A (x, y ∈ G) defining by the assumption (A)

are such that σx,y = 0 for either incomparable x, y ∈ G or x < y.

The condition (ii) of (A) can be written then

(ii
′
) σx,y(ab) =

∑
z∈[y,x]

σx,z(a)σz,y(b) (a, b ∈ A; y ≤ x, x, y ∈ G).

It turns out that in the imposed conditions the mapping σx,x for each x ∈ G is

a ring-homomorphism, i.e.

σx,x(a+ b) = σx,x(a) + σx,x(b) (a, b ∈ A), (3.1)

σx,x(ab) = σx,x(a)σx,x(b) (a, b ∈ A), (3.2)

σx,x(1) = 1. (3.3)

That σx,x is a monoid-homomorphism for the additive structure of A it is pos-

tulated by the condition (i) of (A). Also, the property (3.3) is postulated by (iv2)

of (A). The property (3.2) follows from (ii
′
) for x = y

Namely,

σx,x(ab) =
∑

z∈[x,x]

σx,z(a)σz,x(b) = σx,x(a)σx,x(b)

for all a, b ∈ A.

In accordance with the law given by the condition (ii
′
) the mappings σx,y (x, y ∈

G) can be called as generalized derivations of the ring A. In the particular case for

which the segment [e, x] consists only from two elements, that is, [e, x] = {e, x}, we
have

σx,e(ab) = σx,e(a)σe,e(b) + σx,x(a)σx,e(b),

and since, due to the condition (iv4) of (A), σe,e(b) = b, it follows

σx,e(ab) = σx,x(a)σx,e(b) + σx,e(a)b (a, b ∈ A). (3.4)

Therefore, in this case the mapping σx,e is a (σx,x, 1) - derivation of A. For the

notion of (α, β) - derivation, where α, β are homomorphisms, see for instance [4,

pag. 24] (see also [9, Chapter 1, §2]).
Thus, we can formulate

Proposition 3.1. Under the assumptions (A
′
) and (O) for each x ∈ G the mapping

σx,x is a ring-homomorphism, and the mappings σx,y (x, y ∈ G) satisfy the law of

multiplication (ii
′
). In particular, if the segment [e, x] is reduced to two elements,

i.e. [e, x] = {e, x} the mapping σx,e is a (σx,x, 1) - derivation of A.
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An another situation is given by the following assumption.

(A
′′
) The mappings σx,y (x, y ∈ G) defined as in the assumption (A) are such

that σx,y = 0 for either incomparable x, y ∈ G or x > y.

In this case the condition (ii) of (A) is written as follows

(ii
′′
) σx,y(ab) =

∑
z∈[x,y]

σx,z(a)σz,y(b) (a, b ∈ A; x ≤ y, x, y ∈ G).

Similar as in the previous case, we have that the mapping σx,x for each x ∈ G is

a ring-homomorphism, as well.

In the particular case in which G =< x > is cyclic, we have e ≤ x and hence

x ≤ x2 or, in general xm ≤ xn for m ≤ n (m,n = 0, 1, ...; x0 = e). It follows that

the monoid G is linearly ordered, i.e. every two elements of it are comparable. If

we denote

σnm := σxn,xm (n,m = 0, 1, ...), (3.5)

the multiplication formula from the condition (ii) of (A) can be written as follows

σnm(ab) =
∞∑
j=0

σnj(a)σjm(b) (a, b ∈ A; n,m = 0, 1, ...),

where as before the sum is taken for almost all j = 0, 1, .... Note that the matrix

representation of A is given by the mapping σ : a −→ σ(a), where

σ(a) = [σnm(a)]∞n,m=0 (a ∈ A). (3.6)

Subsequent properties of this special case together with applications to general skew

polynomial rings will be presented further in Section 6.

4. The monoid algebra A⟨G⟩

1. Let A be a ring and G a multiplicative monoid. We denote A⟨G⟩ for the

set of all mappings α : G −→ A such that α(x) = 0 for almost all x ∈ G. A⟨G⟩
can be treated as a left module over A. In this respect, we define the addition in

A⟨G⟩ to be the ordinary addition of mappings into the additive group of A and

define the operation of A on A⟨G⟩ by the map (a, α) −→ aα (a ∈ A⟨G⟩), where
(aα)(x) = aα(x) (x ∈ G). Following notations made in [8] we write an element

α ∈ A⟨G⟩ as a sum

α =
∑
x∈G

ax · x, (4.1)

where by a · x (a ∈ A, x ∈ G) it is denoted the mapping whose value at x is a

and 0 at elements different of x. Certainly, in (4.1) the sum is taken over almost
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all x ∈ G. With this notation, if a ∈ A and α, β ∈ A⟨G⟩ are written as sums

α =
∑

x∈G ax · x, β =
∑

x∈G bx · x, the sum α+ β and aα can be written∑
x∈G

ax · x+
∑
x∈G

bx · x =
∑
x∈G

(ax + bx) · x, (4.2)

a
∑
x∈G

ax · x =
∑
x∈G

(aax) · x (a ∈ A). (4.3)

Note that the family of elements (1 · x)x∈G forms a basis of A⟨G⟩ over A.

Let now the ring A satisfies the conditions of the assumption (A). Then A⟨G⟩
becomes a ring if for elements of the form a · x (a ∈ A;x ∈ G) we define their

product by the rule

(a · x)(b · y) =
∑
z∈G

aσx,z(b) · zy (a, b ∈ A;x, y ∈ G) (4.4)

and then extending for α, β ∈ A⟨G⟩ by(∑
x∈G

ax · x
)(∑

x∈G

bx · x
)
=
∑
x∈G

∑
y∈G

(ax · x)(by · y). (4.5)

The verification that A⟨G⟩ is a ring under the laws (4.4) and (4.5) is direct. Let us

check the property of associativity, for instance. Clearly that it is enough to verify

this property for the elements of the form a · x (a ∈ A, x ∈ G). So, in virtue of the

condition (iii) of (A), we can write

((a · x)(b · y))(c · z) =
(∑
u∈G

aσx,u(b) · uy
)
(c · z)

=
∑
u∈G

(aσx,u(b) · uy)(c · z) =
∑
u∈G

(∑
v∈G

aσx,u(b)σuy,v(c) · vz
)

=
∑
u∈G

∑
v∈G

∑
ts=v

aσx,u(b)σu,t(σy,s(c)) · vz.

On the other hand, by the condition (iii) of (A), we have

(a · x)((b · y)(c · z)) = (a · x)
∑
s∈G

bσy,s(c) · sz =
∑
s∈G

(a · x)(bσy,s(c) · sz)

=
∑
s∈G

∑
t∈G

aσx,t(bσy,s(c)) · tsz =
∑
s∈G

∑
t∈G

a
(∑
u∈G

σx,u(b)σu,t(σy,s(c)
)
·tsz

=
∑
u∈G

aσx,u(b)
∑
s∈G

∑
t∈G

σu,t(σy,s(c)) · tsz =
∑
u∈G

aσx,u(b)
∑
v∈G

∑
ts=v

σu,t(σy,s(c)) · vz
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=
∑
u∈G

∑
v∈G

∑
ts=v

aσx,u(b)σu,t(σy,s(c)) · vz,

and the property of associativity is proved.

It is easy to verify the following useful properties:

(a · e)(b · e) = ab · e (a, b ∈ A), (4.6)

(1 · x)(1 · y) = 1 · xy (x, y ∈ G), (4.7)

(1 · e)(a · x) = (a · x)(1 · e) = a · x (a ∈ A; x ∈ G). (4.8)

We see that the unit element of A⟨G⟩ is 1 · e. Since by definition a(1 · e) = a · e
and since the element 1 · e is the unit element A⟨G⟩ it is naturally to identify the

element a with a · e, and by this the ring A can be embedded in the ring A⟨G⟩.
Taking into account the fact that

(∑
x∈G

ax · x
)
(a · e) =

∑
x∈G

(ax · x)(a · e) =
∑
x∈G

(∑
z∈G

axσx,z(a) · ze
)

=
∑
z∈G

(∑
x∈G

axσx,z(a)
)
·z =

∑
x∈G

(∑
y∈G

ayσy,x(a)
)
·x,

we can define

αa =
∑
x∈G

(∑
y∈G

ayσy,x(a)
)
·x, (4.9)

for a ∈ A and α ∈ A⟨G⟩.
Consequently, we obtain an operation of A on A⟨G⟩ and in such a way we make

A⟨G⟩ into a right A-module (the axioms of a right module are immediately verified).

Thus, we may view A⟨G⟩ as an algebra over A.

In the particular case in which G is a partially ordered monoid and the ring A

satisfies the assumption (A
′
) the formula of multiplication (4.4) can be written as

(a · x)(b · y) =
∑

z∈[e,x]

aσx,z(b) · zy (a, b ∈ A;x, y ∈ G) (4.10)

and, respectively, the formula (4.9) becomes

αa =
∑
x∈G

(∑
y≥x

ayσy,x(a)
)
·x. (4.11)

Similarly, in the case of (A
′′
) the law of multiplication are determined by

(a · x)(b · y) =
∑
x≤z

aσx,z(b) · zy (a, b ∈ A;x, y ∈ G), (4.12)
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and

αa =
∑
x∈G

(∑
y≤x

ayσy,x(a)
)
·x. (4.13)

for a ∈ A and α =
∑

x∈G ax · x ∈ A⟨G⟩.

2. Examples of monoid algebras.

2.1. Weyl Algebras. Let K[t1, ..., tn] be the polynomial ring in the commuting

indeterminates t1, ..., tn over a field K (for the sake of tradition K is assumed to be

a field, but, in general, K could be any nonzero associative noncommutative ring

with identity 1). We denote by

∂j :=
∂

∂tj
(j = 1, ..., n)

the usual partial derivative with respect to the indeterminate tj (j = 1, ..., n).

Let G be the free commutative monoid (multiplicative) generated by {x1, ..., xn},
and with its identity element called e. We use vector notation and write K[t]

instead of K[t1, ..., tn]. For α = (α1, ..., αn), whose components are integers, we set

α! = α1!...αn! and for β = (β1, ..., βn) such that αj ≥ βj (in this case we write

α ≥ β), denote(
α

β

)
=

α!

β!(α− β)!
=

α1!...αn!

β1!...βn!(α1 − β1)!...(αn − βn)!
.

For any α = (α1, ..., αn) we write tα = tα1
1 ...tαn

n and also xα = xα1
1 ...xαn

n (in

particular, we consider t0 = 1 and x0 = e whenever αj = 0 (j = 1, ..., n)), and

define

∂α = ∂α1
1 ...∂αn

n =
∂α1

∂tα1
1

...
∂αn

∂tαn
n

.

Next, we let

σxα,xβ :=

(
α

β

)
∂α−β

if α ≥ β and σxα,xβ = 0 otherwise. So that in particular for any α = (α1, ..., αn)

we take otherwise σxα,xα = 1K[t] including σe,e = 1K[t] and σxα,e = ∂α. The family

(σxα,xβ ) satisfies the conditions of the assumption (A). Indeed, due to the fact that

the partial derivatives ∂j are linear mappings of K[t] into itself, the condition (i) is

clear. The condition (ii) can be proved by using Leibniz’s formula for derivations.

For any a, b ∈ K[t] we have

σxα,xβ (ab) =

(
α

β

)
∂α−β(ab) =

(
α

β

) ∑
κ≤α−β

(
α− β

κ

)
∂γ(a)∂α−β−γ(b).

(4.14)
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On the other hand∑
β≤γ≤α

σxα,xγ (a)σxγ ,xβ (b) =
∑

β≤γ≤α

(
α

γ

)(
γ

β

)
∂α−γ(a)∂γ−β . (4.15)

If we put κ = α − γ we get 0 ≤ κ ≤ α − β, and the right hand side of (4.15) then

becomes ∑
κ≤α−β

(
α

α− κ

)(
α− κ

β

)
∂κ(a)∂α−β−κ(b) (4.16)

Since (
α

α− κ

)(
α− κ

β

)
=

α!

(α− κ)!κ!
· (α− κ)!

β!(α− κ− β)!

=
α!

β!(α− β)!
· (α− β)!

κ!(α− β − κ)!
=

(
α

β

)(
α− β

κ

)
,

we see that (4.16) is equal to the right hand side of (4.14), and thus (ii) is estab-

lished.

In order to prove (iii) we take α = (α1, ..., αn), β = (β1, ..., βn) arbitrary, and

consider γ = (γ1, ..., γn) such that γ ≤ α and γ ≤ β. We have

∑
κ≤γ

σxα,xκ ◦ σxβ ,xγ−κ =
∑
κ≤γ

(
α

κ

)(
β

γ − κ

)
∂α−κ ◦ ∂β−γ+κ

=
∑
κ≤γ

(
α

κ

)(
β

γ − κ

)
∂α+β−γ .

But ∑
κ≤γ

(
α

κ

)(
β

γ − κ

)
=

(
α+ β

γ

)
,

and thus we get

∑
κ≤γ

σxα,xκ ◦ σxβ ,xγ−κ =

(
α+ β

γ

)
∂α+β−γ = σxα+β ,xγ

that is (iii).

The conditions (iv1)− (iv4) are trivially fulfilled.

Now we consider the monoid algebra K[t]⟨G⟩. We identify x ∈ G with 1 · x ∈
K[t]⟨G⟩, and in this way we do, in fact, have G ⊂ K[t]⟨G⟩ (the identity element

of K[t] is denoted by 1 as in K). Note that then the elements of G form a basis

in K[t]⟨G⟩. Furthemore, with this identification the formal sums and products
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become ordinary sums and products. In particular, for any element a ∈ K[t] and

any multi-index α we have

xαa =
∑
κ≤α

σxα,xκ(a)xκ =
∑
κ≤α

(
α

κ

)
σα−κ(a)xκ. (4.17)

It follows easily that

xitj =
∂tj
∂ti

+ tjxi,

that is

xitj − tjxi = δij (i, j = 1, ..., n).

δij denotes the Kronecker symbol (δij = 1 if i = j and δij = 0 if i ̸= j). Due to the

commutativity of the indeterminates tj (j = 1, ..., n) and of G, we also have the

following relations

titj − tjti = xixj − xjxi = 0 (i, j = 1, ..., n).

Therefore, the monoid algebra K[t]⟨G⟩ can be regarded as the nth Weyl algebra

over K (for the concept see [9], for instance).

2.2. A crossed product. Given a ringR with identity, a multiplicative monoid

G and a monoid-homomorphism of G into End(A) (cf. Example 1 of Section 2),

it is possible to construct a monoid algebra A⟨G⟩ as follows. As in Example 1 of

Section 2 we define the mappings σx,y : A −→ A by assuming σx,x = σ(x) for x ∈ G

and σx,y = 0 for x ̸= y, x, y ∈ G. It is easily verified that the family (σx,y)x,y∈G

satisfies all conditions of (A). In the considered case the law of multiplication in

A⟨G⟩ is given by(∑
x∈G

ax · x
)(∑

x∈G

bx · x
)
=
∑
x∈G

∑
y∈G

axσx,x(by) · xy.

Therefore, A⟨G⟩ represents a crossed product of A by G with respect to the factors

ρx,y = 1 (x, y ∈ G). We cite [3] and [11] for the notion of crossed product.

2.3. Group rings. If in Example 2.2 G is a group and σ : G −→ Aut(A) is

such that σ(x) = 1A for all x ∈ G, then the multiplication in A⟨G⟩ is defined by(∑
x∈G

ax · x
)(∑

x∈G

bx · x
)
=
∑
x∈G

∑
y∈G

axby · xy =
∑
z∈G

cz · z,

where

cz =
∑
xy=z

axby =
∑
x∈G

axbx−1z =
∑
y∈G

azy−1by.

As above, in A⟨G⟩ the addition and scalar multiplication are defined by (4.2) and

(4.3), respectively.
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Thus, in the considered case, A⟨G⟩ represents an ordinary group ring (see, for

instance, [2], [17] and also for the commutative case see [6]).

It can be continued with examples in order to describe other concrete monoid

algebras as for instance skew group rings, skew polynomial rings and others or their

generalizations. Particular cases of monoid algebras and applications to the theory

of skew polynomial rings are given in Section 6.

5. A⟨G⟩ as a free G - algebra over A

Let A be a ring (in general, non-commutative) and G a multiplicative monoid,

and assume that on the ring A is defined a family of mappings (σx,y)x,y∈G satisfying

the conditions of assumption (A). We will say that on A is defined a differential

structure σ. Given a ring-homomorphism f : A −→ B it can be defined on the ring

B a structure of A- module, defining the operation of A on B by the map (a, b) −→
f(a)b for all a ∈ A and b ∈ B. We denote this operation by a ∗ b. The axioms for

a module are trivially verified. Let now φ : G −→ B be a multiplicative monoid-

homomorphism. Denote by ⟨B; f, φ⟩ the module formed by all linear combinations

of elements φ(x) (x ∈ G) over A (i.e. with coefficients in A) in respect with the

operation ∗, that is,

⟨B; f, φ⟩ :=
{∑

a,x

a ∗ φ(x) | a ∈ A, x ∈ G
}
,

where the sum is taken over at the most a finite set of pairs (a, x) with a ∈ A and

x ∈ G. The axioms for a left A-module are trivially verified.

In what follows we assume that the homomorphisms f and φ satisfy the following

assumption.

(E) φ(G)f(A) ⊂ ⟨B; f, φ⟩.
Here we denote XY for any sets X,Y of the ring B to be the set of products of

the form xy with x ∈ X and y ∈ Y, i.e. XY = {xy | x ∈ X, y ∈ Y }.
Thus, it is postulated that an element φ(x)f(a) (a ∈ A, x ∈ G) can be written

as a linear combination of the form
∑

b∈B,y∈G bφ(y). The coefficients b depend on

φ(x), φ(y) and f(a). To designate this fact we denote the corresponding coefficients

by σφ(x),φ(y)(f(a)). Therefore, it can be considered that there are defined a family

of mappings σφ(x),φ(y) : B −→ B such that

φ(x)f(a) =
∑
y∈G

σφ(x),φ(y)(f(a))φ(y) (a ∈ A, x ∈ G). (5.1)
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Obviously, by these considerations, we may view ⟨B; f, φ⟩ as a right A-module.

In order to make the module ⟨B; f, φ⟩ to be a ring in respect with the law of

composition given by (5.1), we require the following additional assumption.

(F) The homomorphisms f and φ are such that the following diagram

A
f−→ B

σx,y ↑ ↑ σφ(x),φ(y)

A
f−→ B

is commutative for every x, y ∈ G, that is,

σφ(x),φ(y) ◦ f = f ◦ σx,y (x, y ∈ G). (5.2)

We define multiplication in ⟨B; f, φ⟩ by the rules(∑
x∈G

ax ∗ φ(x)
)(∑

x∈G

bx ∗ φ(x)
)
=
∑
x∈G

∑
y∈G

(ax ∗ φ(x))(by ∗ φ(y)), (5.3)

(ax ∗ φ(x))(by ∗ φ(y)) = f(ax)
∑
z∈G

σφ(x),φ(z)(f(by))φ(zy). (5.4)

The verification that ⟨B; f, φ⟩ is a ring under the above laws of composition is

direct. We only give the proof for the property of associativity. It is clear that it is

enough to be verified for expressions of the form a ∗ φ(x).
We have

[(a ∗ φ(x))(b ∗ φ(y))](c ∗ φ(z)) = [f(a)
∑
u∈G

σφ(x),φ(u)(f(b))φ(uy)](c ∗ φ(z))

= [f(a)
∑
u∈G

f(σx,u(b))φ(uy)](c ∗ φ(z)) =
[∑
u∈G

aσx,u(b) ∗ φ(uy)
]
(c ∗ φ(z))

=
∑
u∈G

(∑
u∈G

f(aσx,u(b))σφ(uy),φ(v)(f(c))φ(vz)
)
=
∑
u∈G

(∑
v∈G

f(aσx,u(b))f(σuy,v(c))φ(vz)
)

=
∑
u∈G

∑
v∈G

f(aσx,u(b)σuy,v(c))φ(vz) =
∑
u∈G

∑
v∈G

aσx,u(b)(σuy,v(c)) ∗ φ(vz)

=
∑
u∈G

∑
v∈G

∑
ts=v

(aσx,u(b))σu,t(σy,s(c)) ∗ φ(vz).

and, similarly,

(a ∗ φ(x))[(b ∗ φ(y))(c ∗ φ(z))] = (a ∗ φ(x))
∑
s∈G

f(b)σφ(y),φ(s)(f(c))φ(sz)
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=
∑
s∈G

(a ∗ φ(x))[f(bσy,s(c))φ(sz)] =
∑
s∈G

(a ∗ φ(x))(bσy,s(c) ∗ φ(sz))

=
∑
s∈G

f(a)
∑
t∈G

σφ(x),φ(t)(f(bσy,s(c))φ(tsz)) =
∑
s∈G

f(a)
∑
t∈G

f(σx,t(bσy,s(c))φ(tsz))

=
∑
s∈G

∑
t∈G

aσx,t(bσy,s(c)) ∗ φ(tsz) =
∑
s∈G

∑
t∈G

a
(∑
u∈G

σx,u(b)σu,t(σy,s(c))
)
∗φ(tsz)

=
∑
u∈G

∑
v∈G

∑
ts=v

aσx,u(b)σu,t(σy,s(c)) ∗ φ(vz).

Thus, we have made ⟨B; f, φ⟩ into an algebra overA (in general, non-commutative).

Next, we define a category C whose objects are algebras ⟨B; f, φ⟩ constructed

as above, and whose morphisms between two objects ⟨B; f, φ⟩ and ⟨B′
; f

′
, φ

′⟩ are
ring-homomorphisms h : B −→ B

′
making the diagrams commutative:

G === G
φ ↓ ↓ φ′

B
h−→ B′

f ↑ ↑ f ′

A === A

The axioms for a category are trivially satisfied. We call a universal object in

the category C a free G-algebra over A, or a free (A,G)-algebra. It turns out that

the monoid algebra A⟨G⟩ represents a free (A,G)-algebra. To this end, we observe

that the mapping φ0 : G −→ A⟨G⟩ given by φ0(x) = 1 · x (x ∈ G) is a monoid-

homomorphism. The mapping φ0 is injective, and so it can be considered as an

embedding of G into A⟨G⟩. In addition, we have a ring-homomorphism f0 : A −→
A⟨G⟩ given by f0(a) = a · e (a ∈ A). Obviously, f0 is also an embedding. We

identify A⟨G⟩ with the triple ⟨A⟨G⟩; f0, φ0⟩ and in this sense we treat A⟨G⟩ as an
object of the category C. The property of the universality of A⟨G⟩ is formulated by

the following assertion.

Theorem 5.1. Let A be a ring, and G a multiplicative monoid for which the

assumptions (A), (E) and (F ) are satisfied. Then for every object ⟨B; f, φ⟩ of the

category C there exists a unique ring-homomorphism h : A⟨G⟩ −→ B making the
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following diagram commutative

G === G
φ0 ↓ ↓ φ

A⟨G⟩ h−→ B
f0 ↑ ↑ f

A === A

Proof. From the fact that the monoid

1 ·G = {1 · x | x ∈ G}

is a basis of the A-module A⟨G⟩ it follows that there exists a unique module-

homomorphism h : A⟨G⟩ −→ B such that h◦φ0 = φ (cf., for instance, [8], Theorem

1, III §4, pag. 84). The homomorphism h is defined by

h(α) =
∑
x∈G

f(ax)φ(x),

where α =
∑

x∈G ax · x ∈ A⟨G⟩. It only remains to prove that h is a ring-

homomorphism. Let β =
∑

x∈G bx · x another element of A⟨G⟩. Since

αβ =
∑
x∈G

∑
y∈G

(ax · x)(by · y) =
∑
x∈G

∑
y∈G

∑
z∈G

axσx,z(by) · zy,

it follows

h(αβ) =
∑
x∈G

∑
y∈G

∑
z∈G

f(axσx,z(by))φ(zy) =
∑
x∈G

∑
y∈G

∑
z∈G

f(ax)f(σx,z(by))φ(zy).

Taking into account the property of the commutativity (5.2), we obtain

h(αβ) =
∑
x∈G

∑
y∈G

∑
z∈G

f(ax)σφ(x),φ(z)(f(by))φ(zy).

We obtain the same result in the calculation of h(α)h(β) :

h(α)h(β) =
∑
x∈G

∑
y∈G

f(ax)φ(x)f(by)φ(y) =
∑
x∈G

∑
y∈G

∑
z∈G

f(ax)σφ(x),φ(z)(f(by))φ(z)φ(y).

Hence h is a ring-homomorphism, and Theorem 5.1 is proved. �

6. Applications. Skew polynomials rings

In this section we study a particular case especially useful in the study of the

rings of skew polynomials in one variable. This particular case refers to the situation

in which the monoid G = ⟨x⟩ is cyclic. In what follows we postulate that e ̸= x. As

in Section 3 we denote

σnm := σxn,xm (n,m = 0, 1, ...). (6.1)
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Recall that in this notation the formula from the condition (ii) of (A) is written as

σnm(ab) =

∞∑
j=0

σnj(a)σjm(b) (a, b ∈ A; n,m = 0, 1, ...), (6.2)

where the sum is taken for almost all j = 0, 1, .... Also, the formula (2.2) is written

as follows

σnm =
∑

j1+...+jn=m

σ1j1 ◦ ... ◦ σ1jn (n,m = 0, 1, ...) (6.3)

in which jk = 1, 2, ... for k = 1, ..., n.

1. (The case (A
′
)). In this subsection we discuss the situation in supposing that

the mappings σnm defined by (6.1) are such that σnm = 0 for n < m. In this case

the matrix representation σ given by (2.3) has a lower triangular form, and the

formula (6.2) is written as

σnm(ab) =
n∑

j=m

σnj(a)σjm(b) (a, b ∈ A; n ≥ m, n,m = 0, 1, 2, ...). (6.4)

In particular,

σn0(ab) =

n∑
j=0

σnj(a)σj0(b) (a, b ∈ A; n = 0, 1, ...). (6.5)

For n = 1 the formula (6.5) becomes

σ10(ab) = σ10(a)σ00(b) + σ11(a)σ10(b),

and since, by the condition (iv4) of (A), σ00(b) = b we have

σ10(ab) = σ11(a)σ10(b) + σ10(a)b (a, b ∈ A). (6.6)

Taking into account that σ11 is a ring-homomorphism (cf. Proposition 3.1), we

can formulate the following assertion.

Proposition 6.1. Under the above assumptions the mapping σ10 is a (σ11, 1) -

derivation of A.

It is clear that, due to the assumption (A
′
), the formula (6.3) can be written as

follows

σnm =
∑

j1+...+jn=m

σ1j1 ◦ ... ◦ σ1jn (m = 1, ..., n; n = 0, 1, 2, ...), (6.7)

where jk = 0, 1 (k = 1, ..., n).

In particular,

σn0 = σn
10 (n = 0, 1, 2, ...), (6.8)



MONOID ALGEBRAS OVER NON-COMMUTATIVE RINGS 45

and

σnn = σn
11 (n = 0, 1, 2, ...). (6.9)

Further properties of the mappings σnm will obtained by supposing the following

assumption.

(B) The mapping σ11 is an automorphism of the ring A.

Then, by formula (6.9), it follows immediately the following assertion.

Proposition 6.2. The mappings σnn (n = 0, 1, 2, ...) are automorphisms of the

ring A.

Next, we define

δ0 := σ21 ◦ σ−1
11 , (6.10)

where by σ−1
11 is denoted the inverse of σ11. We observe that (by using the law of

multiplication (6.6) and the relations (6.10))

δ0(ab) = (σ21 ◦ σ−1
11 )(ab) = σ21(σ

−1
11 (ab)) = σ21(σ

−1
11 (a)σ

−1
11 (a))

= σ21(σ
−1
11 (a))σ11(σ

−1
11 (b)) + σ22(σ

−1
11 (a))σ21(σ

−1
11 (b))

= (σ21 ◦ σ−1
11 )(a)b+ (σ22 ◦ σ−1

11 )(a)(σ21 ◦ σ−1
11 )(b)

= δ0(a)b+ σ11(a)δ0(b) = σ11(a)δ0(b) + δ0(a)b,

i.e.

δ0(ab) = σ11(a)δ0(b) + δ0(a)b (a, b ∈ A). (6.11)

Thus, we have

Proposition 6.3. Under the assumptions (A
′
), (B) and (O) the mapping δ0 defined

by (6.10) represents a (σ11, 1) - derivation of the ring A.

Let us now consider the following mappings

δn := σ21 ◦ σn−1 n−1 (n = 1, 2, ...) (6.12)

which in accordance with (6.9) can be represented as follows

δn = σ21 ◦ σn−1
11 (n = 1, 2, ...). (6.13)

We observe that

δn = σ21 ◦ (σ−1
11 ◦ σnn) = (σ21 ◦ σ−1

11 ) ◦ σnn = δ0 ◦ σnn,
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so that

δn = δ0 ◦ σnn (n = 0, 1, 2, ...). (6.14)

Proposition 6.4. Under the hypothesis of Proposition 6.3 the mapping δn for each

n = 0, 1, 2, ... is a (σn+1 n+1, σnn) - derivation of the ring A.

Proof. By Propositions 6.2 and 6.3 we emphasize the fact that σnn is an automor-

phism of the ring A and that the mapping δ0 is a (σ11, 1) - derivation of A.

We have

δn(ab) = (δ0 ◦ σnn)(ab) = δ0(σnn(ab)) = δ0(σnn(a)σnn(b))

= σ11(σnn(a))δ0(σnn(b)) + δ0(σnn(a))σnn(b)

= σn+1 n+1(a)δn(b) + δn(a)σnn(b),

that is

δn(ab) = σn+1 n+1(a)δn(b) + δn(a)σnn(b) (a, b ∈ A; n = 0, 1, 2, ...), (6.15)

and the assertion follows. �

Finally, we remark the following consequence of the formula (6.7).

Proposition 6.5. Every mapping σnm (m = 0, 1, ..., n; n = 0, 1, 2, ...) is expressed

by the derivation σ10 and the homomorphism σ11.

Also from the formula (6.7), as it is easy to see, it can be concluded that the

mapping σnm (m = 0, 1, ..., n) represents the coefficient at tm of the formal exten-

sion of the binomial (σ10 + σ11t)
n. Thus, taking into account the relations (6.8) for

the derivation of higher order σn
10 we can write

σn
10(ab) =

n∑
m=0

σnm(a)σm
10(b) (a, b ∈ A; n = 0, 1, ...). (6.16)

For the particular case σ11 = 1 from (6.16) it follows the classical formula of

Leibnitz

σn
10(ab) =

n∑
m=0

(
n

m

)
σn−m
10 (a)σm

10(b) (a, b ∈ A; n = 0, 1, ...). (6.17)

2. (The case (A
′′
)). In this subsection we make remarks on the situation in

which the assumptions (A
′′
), (B) and (O) are supposed (G being cyclic). Some

formulae and statements are similar to those from the previous case of (A
′
). We
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will restrict ourselves only their enumeration and, concomitantly, we will give other

special properties for considered case.

Thus, in the case of (A
′′
), we have the following properties.

1) σnm = 0 for n > m (n,m = 0, 1, 2, ...);

2) The matrix representation σ of A has a upper triangular form at each element

a ∈ A;

The formula of multiplication (6.2) becomes to be the form

σnm(ab) =

m∑
j=n

σnj(a)σjm(b) (a, b ∈ A; n ≤ m, n,m = 0, 1, ...). (6.18)

4) σnn for each n = 0, 1, 2, ... is a ring-homomorphism;

5) The formula (6.7) implies that

σnn =
∑

j1+...+jn=n

σ1j1 ◦ ... ◦ σ1jn = σ11 ◦ ... ◦ σ11 = σn
11,

i.e.

σnn = σn
11 (n = 1, 2, ..). (6.19)

If, in addition, it supposed the assumption (B), i.e. the mapping σ11 is an

automorphism of the ring A, then

6) The mapping σnn (n = 1, 2, ...) are also automorphisms of A;

7) The mapping

γ0 := σ12 ◦ σ−1
11 (6.20)

is a (1, σ11) - derivation of the ring A;

In general

8) For each n = 1, 2, ... the mapping defined by

γn := σ12 ◦ σn−1
11 (6.21)

is a (σnn, σn+1n+1) - derivation of the ring A, that is, the following formula

γn(ab) = σnn(a)γn(b) + γn(a)σn+1n+1(b) (a, b ∈ A) (6.22)

holds for each n = 0, 1, 2, ....

Note that, by virtue of the relations (6.19), the mapping γn can be also expressed

as

γn = σ12 ◦ σn−1 n−1 (n = 1, 2, ...),

and that the formula (6.22) can be deduced via (6.2) by using the fact that σnn for

each n = 0, 1, 2, ... is a ring-homomorphism. Namely, we have

γn(ab) = σ12(σn−1 n−1(ab)) = σ12(σn−1n−1(a)σn−1n−1(b)) =
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= σ11(σn−1n−1(a))σ12(σn−1n−1(b)) + σ12(σn−1 n−1(a))σ22(σn−1n−1(b)),

and since σ22 = σ2
11, so that σ22 ◦ σn−1n−1 = σn+1n+1, (6.22) follows at once.

In what follows we require additional conditions on the mappings σnm (n,m =

0, 1, ...).

(L) The mappings σ1j (j = 1, 2, ...) are A - independent from the left, that means

that if
∞∑
j=1

cjσ1j(a) = 0 (6.23)

for all a ∈ A, then cj = 0 (j = 1, 2, ...).

Note that, due to σ1j(1) = 0 (j = 2, 3, ...) and σ11(1) = 1 (cf. (iv1) and (iv2)

of (A)), from (6.23) for a = 1 it follows that c1 = 0. Therefore, without loss

of generality, it can be considered that j is changed beginning from 2 and so on

going almost everywhere over the set of integer numbers. Thus, the mappings

σ1j (j = 1, 2, ...) are A-independent from the left if and only if the condition

∞∑
j=2

cjσ1j(a) = 0 (∀a ∈ A)

implies cj = 0 (j = 2, 3, ...).

Similarly, it can be introduced the notion of A - independent from the right for

the mappings σ1j (j = 1, 2, ...). Namely, we say that the mappings σ1j (j = 1, 2, ...)

are A-independent from the right if whenever from the condition

∞∑
j=2

σ1j(a)cj = 0 (∀a ∈ A)

it follows cj = 0 (j = 2, 3, ...).

An alternative of the assumption (L) is the following one.

(R) The mappings σ1j (j = 1, 2, ...) are A-independent from the right.

Remark 6.6. The assumption of the A-independence (L) (resp. (R)) is satisfied

for instance if for the mappings σ1j (j = 1, 2, ...) there exists a family of the elements

aj ∈ A (j = 1, 2, ...) such that the elements σ1j(aj) (j = 1, 2, ...) are not left (resp.

right) zero-divisors in A and σ1k(aj) = 0 for j ̸= k (j, k = 1, 2, ...). In the particular

case of an integral domain A it is sufficient to require that σ1j(aj) ̸= 0 (j = 1, 2, ...)

and σ1k(aj) = 0 for j ̸= k (j, k = 1, 2, ...).

The next assumption will be useful for our further discussion.

(C) There exists a positive integer r such that σ1j = 0 for j > r.

It turns that the assumption (C) together with the assumption of the indepen-

dence (R) implies the following property.



MONOID ALGEBRAS OVER NON-COMMUTATIVE RINGS 49

Proposition 6.7. σkj = 0 (k = 1, ..., r; j = r + 1, r + 2, ...).

Proof. For k = 1 the assertion is true via the assumption (C). For the other values

the assertion follows from the independence conditions given by the assumption

(R). This is can be shown as follows. First we observe that (cf. (6.18))

σ1j(ab) =

j∑
k=1

σ1k(a)σkj(b) (a, b ∈ A).

Then, since σ1j(ab) = 0 for j = r + 1, r + 2, ..., we can write

j∑
k=1

σ1k(a)σkj(b) = 0 (j = r + 1, r + 2, ...).

For j = r + 1, we obtain
r∑

k=1

σ1k(a)σkr+1(b) = 0

from which, by the assumption (R), we get

σ1r+1(b) = ... = σrr+1(b) = 0 (∀b ∈ A),

i.e. σkr+1 = 0 (k = 1, ..., r).

By similar arguments it can be concluded the same for the other values. �

Further, we note the relations (cf. (iii) of (A))

σn+ms =
∑

k+j=s

σnk ◦ σmj =
∑

k+j=s

σmj ◦ σnk (s = n+m,n+m+ 1, ...), (6.24)

where k = n, n+ 1, ... and j = m,m+ 1, ....

From Proposition 6.7 we have σrk = 0 for k = r+1, r+2, .... Hence, by applying

the relations (6.24) for n = r and m = j (j = 1, ..., r), one has

σrr ◦ σ1j = σ1j ◦ σrr (j = 1, ..., r), (6.25)

or, taking into account the relations (6.19),

σr
11 ◦ σ1j = σ1j ◦ σr

11 (j = 1, ..., r). (6.26)

Note that the relations (6.25) can be deduced also by observing that

σr+1r+j =
∑

k+l=r+j

σrk ◦ σ1l = σrr ◦ σ1j ,

σr+1r+j =
∑

k+l=r+j

σ1k ◦ σrl = σ1j ◦ σrr.

Now some special properties of the mappings σnm will be discussed further.
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Again, in virtue of the condition (iii) of (A), we see

σrr+j−1 =
∑

k+l=r+j−1

σr−1k◦σ1l = σr−1r−1◦σ1j+σr−1r◦σ1j−1+σr−1r+1◦σ1j−2+...

and since σrr+j−1 = 0 for j = 2, 3, ... and also σr−1r+1 = σr−1r+2 = ... = 0, it

follows the relations

0 = σr−1r−1 ◦ σ1j + σr−1r ◦ σ1j−1 (j = 2, 3, ...). (6.27)

Similarly

σrr+k =
∑

s+t=r+k

σ1s ◦ σr−1t = σ1k+1 ◦ σr−1r−1 + σ1k ◦ σr−1r,

and hence

σ1k+1 ◦ σr−1r−1 + σ1k ◦ σr−1r = 0 (k = 1, 2, ...) (6.28)

In virtue of the relations (6.27) and (6.28), we obtain

(σ1k ◦ σr−1r−1) ◦ σ1j = σ1k ◦ (σr−1r−1 ◦ σ1j) = −σ1k ◦ (σr−1r ◦ σ1j−1)

= −(σ1k ◦ σr−1r) ◦ σ1j−1 = (σ1k+1 ◦ σr−1r−1) ◦ σ1j−1,

i.e.

(σ1k ◦ σr−1r−1) ◦ σ1j = (σ1k+1 ◦ σr−1r−1) ◦ σ1j−1 (j = 2, 3, ...; k = 1, 2, ...). (6.29)

In particular, for k = 1, the formula (6.29) becomes to be as follows

σrr ◦ σ1j = (σ12 ◦ σr−1r−1) ◦ σ1j−1 (j = 2, 3, ...)

and thus, by the commutative relations (6.25), we have

σ1j ◦ σrr = (σ12 ◦ σr−1r−1) ◦ σ1j−1 (j = 2, 3, ...). (6.30)

Then, we can continue

σ1j ◦σ2
rr = (σ12 ◦σr−1r−1)◦ (σ1j−1 ◦σrr) = (σ12 ◦σr−1r−1)◦ [(σ12 ◦σr−1r−1)◦σ1j−2]

= (σ12 ◦ σr−1 r−1)
2 ◦ σ1j−2,

and, by further iteration, we obtain

σ1j ◦ σj−1
rr = (σ12 ◦ σr−1 r−1)

j−1 ◦ σ11 (j = 2, 3, ...). (6.31)

Substituting in (6.31) j = r + 1 and taking into account that σ1r+1 = 0, we

obtain

(σ12 ◦ σr−1r−1)
r ◦ σ11 = 0. (6.32)
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Since, by the assumption (B), σ11 is an automorphism, from (6.32) it follows

(σ12 ◦ σr−1r−1)
r = 0.

Therefore γr = σ12 ◦ σr−1r−1 is a nilpotent mapping of index r.

In virtue of (6.31), we see that the mappings σ1j (j = 2, 3, ...) can be expressed

by σ11 and σ12, namely

σ1j+1 = γj
r ◦ σ

−rj+1
11 (j = 1, 2, ...). (6.33)

In addition, we note that the mapping γ0 = σ12 ◦σ−1
11 commutates with σrr. In fact,

from (6.25), in particular, it follows

σrr ◦ σ12 = σ12 ◦ σrr,

from which, multiplying from the right by σ−1
11 , we have

σrr ◦ (σ12 ◦ σ−1
11 ) = (σ12 ◦ σ−1

11 ) ◦ (σr+1r+1 ◦ σ−1
11 )

or

σrr ◦ γ0 = γ0 ◦ σrr. (6.34)

Further, we change in the formula (6.31) the expression σ12◦σr−1 r−1 by γ0◦σrr,

and we get

σ1j ◦ σj−1
rr = (γ0 ◦ σrr)

j−1 ◦ σ11.

This relation together with the commutative property (6.34) implies

σ1j ◦ σj−1
rr = (γj−1

0 ◦ σ11) ◦ σj−1
rr .

Since σrr is an automorphism, we conclude

σ1j = γj−1
0 ◦ σ11 (j = 2, 3, ...). (6.35)

In particular, from (6.35) it follows that

γr
0 ◦ σ11 = σ1r+1 = 0,

that is γr
0 = 0. Moreover, if σ1r ̸= 0, then γr−1

0 ̸= 0.

The obtained results are assumed as follows.

Proposition 6.8. Under the assumptions (A
′′
), (B), (C), (O) and (R) the following

assertions hold.

1) The derivation γ0 is a nilpotent mapping of index r, that is, γr
0 = 0, and

γr−1
0 ̸= 0 whenever σ1r ̸= 0;

2) γr = σ12 ◦ σr−1r−1 is also a nilpotent mapping of index r;

3) The mappings σ1j (j = 2, 3, ...) are expressed by σ11 and σ12, and, moreover,

for them there hold the relations (6.35) and the commutation relations (6.25).



52 E. P. COJUHARI

3. Given a ring A, an element x, it is possible to construct a monoid algebra

A⟨G⟩ as described above, where G is the monoid of all elements formally written

in the form xn (n = 0, 1, ...; x0 := e) subject to the law of composition xn · xm =

xn+m (n,m = 0, 1, ...). We identify xn ∈ G with 1 · xn ∈ A⟨G⟩, and write axn

instead of a · xn (n = 0, 1, ...). Let σnm := σxn,xm (n,m = 0, 1, ...) are mappings

from A into itself satisfying the conditions of the assumption (A). Then the monoid

algebra A⟨G⟩ becomes to be a skew polynomial ring. The elements of it can be

written uniquely in the form

n∑
j=0

ajx
j (aj ∈ A, j = 0, 1, ..., n)

and the law of multiplication is defined by

(axn)(bxm) =
∑
j

aσnj(b)x
m+j (6.36)

for two monomials, and then extending distributively to arbitrary polynomials (cf.

(4.4) and (4.5)).

In the case when σnm = 0 for n < m (this is the case of (A
′
)) the index j in the

formula (6.36) ranges over integers from 0 up to n (cf. (4.10)). In particular, we

have

xa = σ10(a) + σ11(a)x (a ∈ A).

By virtue of Proposition 3.1 σ11 is a ring-homomorphism and the mappings σ10

is a (σ11, 1) - derivation of A. Therefore, this is the case of an Ore polynomial ring

[10]. As usually it is denoted by A[x;σ11, σ10]. If σ10 = 0 this is written as A[x;σ11],

and if σ11 = 1A, as A[x;σ10].

In case of (A
′′
), that is, if σnm = 0 for n > m the sum (6.36) is taken over

j ≥ n (cf. (4.12)). Thus, in this case, the monoid algebra A⟨G⟩ is considered with

a multiplication defined by

xa =
∑
j≥1

σ1j(a)x
j (a ∈ A)

in which only a finite number of the coefficients σ1j(a) are different of zero. If,

in addition, it is supposed that there exists an integer r such that σ1j = 0 for

j > r (cf. the assumption (C)) we obtain a skew polynomial ring with the law of

multiplication defined by xa =
∑r

j=1 σ1j(a)x
j (a ∈ A). Such rings were studied

for the first by T. H. M. Smits in [14], [15] and [16] (for related results see also [4]).
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