MODULES SATISFYING THE ASCENDING CHAIN CONDITION ON SUBMODULES WITH A BOUNDED NUMBER OF GENERATORS

Patrick F. Smith
Received: 18 November 2006; Revised: 26 February 2007
Communicated by Nguyen Viet Dung

Abstract

It is proved that if R is a right and left Noetherian ring then the right R-module R^{I} satisfies the ascending chain condition on n-generated submodules, for every positive integer n.

Mathematics Subject Classification (2000): 16P70
Keywords: Chain conditions; Bimodule; Noetherian module; Direct product.

All rings have identity elements and all modules are unital right modules, unless stated otherwise. Let R be a ring and let M be an R-module. Given a positive integer n, the module M satisfies n-acc provided every ascending chain of n-generated submodules terminates. Moreover, the module M satisfies pan-acc in case M satisfies n-acc for every positive integer n. Modules with n-acc have been considered by many authors (see, for example, [1]-[7], [10], [12] and [13]). In particular, Renault [13, Corollaire 3.3] proved that if R is a right and left Noetherian ring then every free right (or left) R-module satisfies pan-acc. He also gave an example of a right Noetherian ring R such that every free right R-module of infinite rank does not satisfy 1-acc (see [13, p. 274]). Renault's paper was the inspiration for this present work. More recently, Frohn [7, Theorem 3.3] proved that if R is a commutative Noetherian ring then every direct product R^{I} of copies of the R-module R indexed by a set I is an R-module satisfying pan-acc, for every such index set I.

The purpose of this note is to show that if R is a right and left Noetherian ring then the right (or left) R-module R^{I} satisfies pan-acc, thus generalizing the theorems of both Renault and Frohn. In fact, we shall prove rather more, namely that if S and R are rings and M a left S-, right R-bimodule such that M is Noetherian both as a left S-module and as a right R-module then the right R module M^{I} satisfies pan-acc and the left S-module M^{I} satisfies pan-acc, for every index set I. Note that in [1, Corollary 1.6] Antunes Simões and Smith proved that if R is a ring with finite right uniform dimension then any direct product
of nonsingular Noetherian right R-modules satisfies pan-acc. In particular, if R is a right nonsingular right Noetherian ring then the right R-module R^{I} satisfies pan-acc, for every index set I.

It might be worth reminding ourselves of what happens for Abelian groups. Let \mathbf{Z} denote the ring of integers. Pontrjagin proved that a countably generated torsionfree Z-module A satisfies pan-ac if and only if A is free (see [8, Vol I Theorem 19.1]). More generally, Baumslag and Baumslag [4, Theorem 3] proved that a Z-module A satisfies pan-acc if and only if A satisfies the following conditions:
(i) A is reduced,
(ii) there exists only a finite number of primes p in \mathbf{Z} such that $p a=0$ for some non-zero element a in A, and
(iii) every countably generated torsion-free submodule of A is free.

In particular, if A is a torsion Z-module then A satisfies pan-acc if and only if A satisfies 1-acc. The situation for torsion-free \mathbf{Z}-modules is quite different. For each positive integer n, Fuchs [8, Vol II p. 125] gave an example of a torsion-free Z-module A_{n} which satisfies n-acc but not ($n+1$)-acc (see also [10, p. 272]).

Let A be a \mathbf{Z}-module. Given a prime p in \mathbf{Z}, we shall say that A is a p-module if for each $a \in A$ there exists a positive integer n such that $p^{n} a=0$. Note the following simple fact which may be well known but which we include for convenience. Recall that a Z-module A is called reduced provided A does not contain a non-zero divisible submodule.

Lemma 1. Let p be any prime in \mathbf{Z} and let a \mathbf{Z}-module A be a p-module. Then every homomorphic image of A satisfies pan-acc if and only if there exists a positive integer k such that $p^{k} A=0$.

Proof. The sufficiency follows by [4, Theorem 3] because every homomorphic image of A is clearly reduced if $p^{k} A=0$ for some k. Conversely, suppose that every homomorphic image of A satisfies pan-acc. Suppose that there does not exist a positive integer k such that $p^{k} A=0$. By [8, Vol I Theorem 32.3] there exists a submodule B of A such that B is a direct sum of cyclic submodules and A / B is divisible. Thus $A=B$ and A is a direct sum of cyclic submodules. There exists a submodule C of A such that $C=\bigoplus_{i \geq 1} \mathbf{Z} c_{i}$, where c_{i} is an element of A of order p^{i} for every positive integer i. Let $D=\mathbf{Z}\left(c_{1}-p c_{2}\right) \bigoplus \mathbf{Z}\left(c_{2}-p c_{3}\right) \bigoplus \ldots$ Then $C \neq D$ and C / D is a non-zero divisible submodule of A / D so that A has a nonzero divisible homomorphic image, a contradiction. Thus $p^{k} A=0$ for some positive integer k.

Our first theorem is a consequence of the above theorem of Baumslag and Baumslag.

Theorem 2. Let \mathbf{Z} denote the ring of integers and let A be a \mathbf{Z}-module. Then every homomorphic image of A is a \mathbf{Z}-module satisfying pan-acc if and only if $A=F \bigoplus T$ for some finitely generated free submodule F of A and some submodule T of A such that $n T=0$ for some positive integer n.

Proof. (\Rightarrow) Note first that [4, Theorem 3] gives that A / B is reduced for every submodule B of A. Let T denote the torsion submodule of A. Then A / T is a torsion free Z-module satisfying pan-acc. Suppose that A / T is not finitely generated. Then there exists a submodule C of A, containing T, such that C / T is countably, but not finitely, generated. By [4, Theorem 3] (or see [8, Vol I Theorem 19.1]), C / T is free and hence the \mathbf{Z}-module \mathbf{Q} is a homomorphic image of C / T. This implies that \mathbf{Q} is a homomorphic image of A, a contradiction. Thus A / T is finitely generated and hence $A=T \bigoplus F$ for some finitely generated free submodule F of A. Now suppose that T is non-zero. Again using [4, Theorem 3] there exist finitely many distinct primes $p_{i}(1 \leq i \leq t)$ in \mathbf{Z}, for some positive integer t, such that $T=T\left(p_{1}\right) \bigoplus \cdots \bigoplus T\left(p_{t}\right)$, where $T\left(p_{i}\right)$ is the p_{i}-primary component of T, for each $1 \leq i \leq t$. By Lemma 1 , for each $1 \leq i \leq t$ there exists a positive integer k_{i} such that $p_{i}^{k_{i}} T\left(p_{i}\right)=0$. Let $n=p_{1}^{k_{1}} \ldots p_{t}^{k_{t}}$. Then $n T=0$.
(\Leftarrow) Now suppose that $A=F \bigoplus T$ where F is a finitely generated free submodule and T is a torsion submodule such that $n T=0$ for some non-zero n in \mathbf{Z}. Let D be any proper submodule of A. Let E be the submodule of A containing D such that E / D is the torsion submodule of A / D. Note that $D+T \subseteq E$. In particular, $T \subseteq E$ so that A / E is finitely generated torsion-free and hence free. Moreover $E /(D+T)$ is also finitely generated, so that $m E \subseteq D+T$ for some positive integer m. Thus $m n E \subseteq D$. By $[4$, Theorem 3] it follows that A / D satisfies pan-acc.

We chose to prove Theorem 2 to point out that if A is a \mathbf{Z}-module such that every homomorphic image of A satisfies pan-acc then A is a direct sum of cyclic submodules (see [8, Vol I Theorem 17.2]). In view of this fact and Pontrjagin's Theorem above it would appear that there is some relationship between direct sum decompositions and the property pan-acc. Now in order to prove the above results of Renault and Frohn we shall look at modules satisfying a particular property which can be stated in terms of direct sum decompositions.

Let R be a ring. An R-module M will be said to satisfy the direct sum condition provided every countably generated submodule is contained in a direct sum of
finitely generated submodules of M. Clearly every free module and every semisimple module satisfies the direct sum condition. More generally, every direct sum of finitely generated R-modules satisfies the direct sum condition. Note also that if M_{i} is an R-module satisfying the direct sum condition, for all i in some index set I, then the R-module $\bigoplus_{i \in I} M_{i}$ also satisfies the direct sum condition. For, let N be any countably generated submodule of the module $M=\bigoplus_{i \in I} M_{i}$. For each $i \in I$, let $\pi_{i}: M \rightarrow M_{i}$ denote the canonical projection. Because, for each $i \in I$, $\pi_{i}(N)$ is a countably generated submodule of M_{i}, there exists a submodule K_{i} of M_{i} such that K_{i} is a direct sum of finitely generated submodules and $\pi_{i}(N) \subseteq K_{i}$. Let $K=\bigoplus_{i \in I} K_{i}$. Then N is contained in the submodule K of M and K is a direct sum of finitely generated submodules.

We want to show that certain direct products satisfy the direct sum condition, in particular modules of the form M^{I}, the direct product of copies of a module M indexed by a set I. If J is a non-empty subset of I then M^{J} will be considered a submodule of M^{I} in the natural way. If R and S are rings and M a left S-, right R-bimodule then M^{I} is a left S-, right R-bimodule in the natural way.

We first note the following simple fact.

Lemma 3. Let R be a ring and let L be a countably generated submodule of an R-module M. Then the following statements are equivalent.
(i) L is contained in a direct sum of finitely generated submodules of M.
(ii) There exists a submodule K of M containing L such that every finitely generated submodule of L is contained in a finitely generated direct summand of K.

Proof. (i) \Rightarrow (ii). Let $M_{i}(i \in I)$ be a collection of finitely generated submodules of M such that $L \subseteq \bigoplus_{i \in I} M_{i}$. Then $K=\bigoplus_{i \in I} M_{i}$ satisfies (ii).
(ii) \Rightarrow (i). Let $L=x_{1} R+x_{2} R+\ldots$. By hypothesis there exist submodules E_{1} and F_{1} of K such that $K=E_{1} \bigoplus F_{1}, E_{1}$ is finitely generated and $x_{1} R \subseteq E_{1}$. Again, by hypothesis, there exist submodules E_{2} and F_{2} of K such that $K=E_{2} \bigoplus F_{2}$, E_{2} is finitely generated and $E_{1}+x_{2} R \subseteq E_{2}$. Note that $x_{1} R+x_{2} R \subseteq E_{2}=$ $E_{1} \bigoplus\left(E_{2} \bigcap F_{1}\right)$. Repeat this argument. For each positive integer $n \geq 2$, there exist submodules E_{n} and F_{n} of K such that $K=E_{n} \bigoplus F_{n}, E_{n}$ is finitely generated and contains $x_{1} R+\cdots+x_{n} R$. Note that $E_{n}=E_{1} \bigoplus\left(E_{2} \bigcap F_{1}\right) \bigoplus \ldots\left(E_{n} \bigcap F_{n-1}\right)$. It follows that L is contained in the direct sum $E_{1} \bigoplus\left(E_{2} \bigcap F_{1}\right) \bigoplus\left(E_{3} \bigcap F_{2}\right) \ldots$, which is a direct sum of finitely generated submodules because E_{n} is a finitely generated submodule for each positive integer n.

The proof of the next result is adapted from the proof of [14, Splitting Lemma $6]$.

Lemma 4. Let R and S be rings and let M be a left S-, right R-bimodule such that the left S-module M is Noetherian. Let I denote an index set and X the left S-, right R-bimodule M^{I}. Then, for each finitely generated submodule F of the right R-module X, there exist a finite subset J of I and an R-isomorphism $\varphi: X \rightarrow X$ such that $\varphi(F) \subseteq M^{J}$.

Proof. Let F be any finitely generated submodule of the right R-module X. Then there exist a positive integer k and elements $x_{i} \in F(1 \leq i \leq k)$ such that $F=$ $x_{1} R+\cdots+x_{k} R$. Let $x=x_{1}$. There exist elements $m_{i} \in M(i \in I)$ such that $x=\left(m_{i}\right)$. The S-submodule $\sum_{i \in I} S m_{i}$ is finitely generated and hence there exists a finite subset J_{1} of I such that $\sum_{i \in I} S m_{i}=\sum_{j \in J_{1}} S m_{j}$. For each i in I there exist elements $s_{i j} \in S\left(j \in J_{1}\right)$ such that $m_{i}=\sum_{j \in J_{1}} s_{i j} m_{j}$. Define a mapping $\varphi_{1}: X \rightarrow X$ as follows: for each element $\left(u_{i}\right)$ in $X, \varphi_{1}\left(u_{i}\right)=\left(v_{i}\right)$ where $v_{i}=u_{i}$ if $i \in J_{1}$ and $v_{i}=u_{i}-\sum_{j \in J_{1}} s_{i j} u_{j}$ if $i \in I \backslash J_{1}$. It is not difficult to check that φ_{1} is an R-isomorphism from X to X and that $\varphi_{1}(x) \in M^{J_{1}}$.

Let $I_{1}=I \backslash J_{1}$, let $X_{1}=M^{J_{1}}$ and let $X_{2}=M^{I_{1}}$ so that $X=X_{1} \bigoplus X_{2}$. For each $2 \leq i \leq k$ there exist elements $y_{i} \in X_{1}$ and $z_{i} \in X_{2}$ such that $\varphi_{1}\left(x_{i}\right)=y_{i}+z_{i}$. By induction on k there exists a finite subset J_{2} of I_{1} and an R-isomorphism $\varphi_{2}: X_{2} \rightarrow X_{2}$ such that $\varphi_{2}\left(z_{2} R+\cdots+z_{k} R\right) \subseteq M^{J_{2}}$. Now $\varphi_{3}=\iota+\varphi_{2}$ is an R-isomorphism from X to X where ι is the identity mapping on X_{1}. Finally note that $\varphi=\varphi_{3} \varphi_{1}$ is an R-isomorphism from X to X such that $\varphi(F) \subseteq M^{J}$ where J is the finite subset $J_{1} \bigcup J_{2}$ of I.

Theorem 5. Let R and S be rings and let M be a left S-, right R-bimodule such that the left S-module M is Noetherian and the right R-module M is finitely generated. Then the right R-module M^{I} satisfies the direct sum condition for every index set I.

Proof. Let F be any finitely generated submodule of the right R-module $X=M^{I}$. By Lemma 4 there exist a finite subset J of I and an R-isomorphism $\varphi: X \rightarrow X$ such that $\varphi(F) \subseteq M^{J}$. Let $J^{\prime}=I \backslash J$, let $X_{1}=\varphi^{-1}\left(M^{J}\right)$ and let $X_{2}=\varphi^{-1}\left(M^{J^{\prime}}\right)$. Then the right R-module $X=X_{1} \bigoplus X_{2}$ is a direct sum of the submodules X_{1} and X_{2}, X_{1} is a finitely generated right R-module and $F \subseteq X_{1}$. By Lemma $3 X$ satisfies the direct sum condition.

Next we give an example of a module M which satisfies the direct sum condition but which is not itself a direct sum of finitely generated submodules.

Example 6. Let \mathbf{Z} denote the ring of integers and let M denote the direct product \mathbf{Z}^{I} for any infinite index set I. Then the \mathbf{Z}-module M satisfies the direct sum condition but M is not a direct sum of finitely generated submodules.

Proof. By Theorem 5 the \mathbf{Z}-module M satisfies the direct sum condition. However M is not a direct sum of finitely generated submodules because M is not projective (see [8, Vol I Theorem 19.2]).

Let R be a ring and let M be a non-zero module. Then M has finite uniform dimension provided M does not contain an infinite direct sum of non-zero submodules. In this case there exists a positive integer n such that n is the maximum number of submodules of M which form a direct sum. The integer n is called the uniform dimension of M and is denoted by $u(M)$. In case $M=0$ we say that M is zero dimensional and write $u(M)=0$. The ring R has finite right uniform dimension in case the right R-module R has finite uniform dimension Note that every Noetherian module has finite uniform dimension. The next two results concern rings with finite right uniform dimension.

Lemma 7. Let R be a ring with finite right uniform dimension, let n be a positive integer and let M be a nonsingular n-generated R-module. Then M has finite uniform dimension and $u(M) \leq n u(R)$.

Proof. There exists an epimorphism from $F=R^{(n)}$ to M with kernel K. Because M is nonsingular, K is an essentially closed submodule of F and hence $u(M)=$ $u(F / K) \leq u(F)=n u(R)$ by [9, Exercise 4 N$].$

Let R be a ring and let M be any R-module. Then the singular submodule $Z(M)$ of M is defined to be the set of elements m in M such that $m E=0$ for some essential right ideal E of R. The second singular submodule of M is the submodule $Z_{2}(M)$ of M containing $Z(M)$ such that $Z_{2}(M) / Z(M)$ is the singular submodule of the module $M / Z(M)$. In the Goldie torsion theory, a module M is torsion if $M=Z_{2}(M)$ and is torsion-free if it is nonsingular, i.e. $Z(M)=0$ (see [15] for more details).

Let R be a ring and let M be an R-module such that $M A=0$ for some ideal A of R. Then M is both an R-module and an (R / A)-module. The singular submodule of the R-module M need not coincide with the singular submodule of the (R / A)-module M and we shall denote these submodules by $Z\left(M_{R}\right)$ and $Z\left(M_{R / A}\right)$, respectively. Similarly we denote by $Z_{2}\left(M_{R}\right)$ and $Z_{2}\left(M_{R / A}\right)$ the second singular
submodules of M considered as an R-module and as an (R / A)-module, respectively. When there is no ambiguity we shall use $Z(M)$ and $Z_{2}(M)$, as indicated above. We want to make one further observation at this point, namely if R is a prime (or even semiprime) right Noetherian ring then $Z_{2}(M)=Z(M)$ for every R-module M by [9, Proposition 6.10].

Given a ring R and an R-module M, if N is a submodule of M then Zorn's Lemma gives a submodule K of M maximal among the submodules H of M such that $N \bigcap H=0$. In this case, K is called a complement of N (in M). Note that K is essentially closed in M in the sense of [9]. The next result is crucial for the remainder of this paper.

Theorem 8. Let R be a right Noetherian ring, let M be a right R-module which satisfies the direct sum condition and let n be a positive integer. Then M satisfies n-acc if and only if $Z_{2}(M)$ satisfies n-acc.

Proof. The necessity is clear. Conversely, suppose that $Z_{2}(M)$ satisfies n-acc. Let $L_{1} \subseteq L_{2} \subseteq L_{3} \subseteq \ldots$ be any ascending chain of n-generated submodules of M. Let $L=\bigcup_{i \geq 1} L_{i}$. Let K be a complement of $Z_{2}(L)$ in L. Note that for all $i \geq 1$, $L_{i} / Z_{2}\left(L_{i}\right)$ is an n-generated nonsingular module and hence $u\left(L_{i} / Z_{2}\left(L_{i}\right)\right) \leq n u(R)$ by Lemma 7. Moreover note that for all $i \geq 1, L_{i} \bigcap K$ embeds in $L_{i} / Z_{2}\left(L_{i}\right)$ so that $u\left(L_{i} \bigcap K\right) \leq n u(R)$. Now the ascending chain $L_{1} \bigcap K \subseteq L_{2} \bigcap K \subseteq \ldots$ gives that $L_{i} \bigcap K$ is essential in $L_{i+1} \bigcap K$ for all $i \geq k$, for some positive integer k, and hence $L_{k} \bigcap K$ is essential in K. By hypothesis, there exists a submodule H of M such that $L \subseteq H, H=H_{1} \bigoplus H_{2}$ for some submodules H_{1} and H_{2}, H_{1} is finitely generated and $L_{k} \subseteq H_{1}$. Let $\pi: H \rightarrow H_{2}$ denote the canonical projection. Let $x \in L$. Because $Z_{2}(L) \bigoplus K$ is essential in L, we have $(x R+K) / K$ is Goldie torsion and hence so too is $\left[x R+\left(L_{k} \bigcap K\right)\right] /\left(L_{k} \bigcap K\right)$. It follows that $\pi(x R)$ is Goldie torsion. Thus $\pi\left(L_{1}\right) \subseteq \pi\left(L_{2}\right) \subseteq \ldots$ is an ascending chain of n-generated submodules of $Z_{2}(M)$. There exists a positive integer t such that $\pi\left(L_{t}\right)=\pi\left(L_{t+1}\right)=\ldots$. But H_{1} is Noetherian and hence, without loss of generality, $L_{t} \bigcap H_{1}=L_{t+1} \bigcap H_{1}=\ldots$. It follows that $L_{t}=L_{t+1}=\ldots$, as required.

Corollary 9. Let R be a right Noetherian ring and let M be a nonsingular right R-module which satisfies the direct sum condition. Then M satisfies pan-acc.

Proof. By the theorem.

The next result is adapted from [13].

Lemma 10. Let R be a right Noetherian ring and let M be a right R-module which satisfies the direct sum condition but does not satisfy pan-acc. Let P be an ideal of R which is maximal in the collection of ideals A of R such that there exist a positive integer k and a properly ascending chain $H_{1} \subseteq H_{2} \subseteq H_{3} \ldots$ of k-generated submodules $H_{i}(i \geq 1)$ of M with $H_{i} A=0$ for all $i \geq 1$. Then P is a prime ideal of R.

Proof. There exist a positive integer n and a properly ascending chain $L_{1} \subseteq L_{2} \subseteq$ $L_{3} \subseteq \ldots$ of n-generated submodules $L_{i}(i \geq 1)$ such that $L_{i} P=0$ for all $i \geq 1$. Suppose that P is not a prime ideal of R. Then there exist ideals A and B of R, each properly containing P, such that $A B \subseteq P$. Note that A is a q-generated right ideal of R, for some positive integer q, and hence $L_{i} A$ is an $n q$-generated submodule of M for each $i \geq 1$. By the choice of P, the ascending chain $L_{1} A \subseteq L_{2} A \subseteq \ldots$ must terminate and hence there exists a positive integer s such that $L_{s} A=L_{s+1} A=$ $L_{s+2} A=\ldots$ Let L denote the countably generated submodule $\bigcup_{i \geq 1} L_{i}$. By hypothesis there exists a submodule K of M such that $L \subseteq K, K=K_{1} \bigoplus K_{2}$ for some submodules K_{1} and K_{2}, K_{1} is finitely generated and $L_{s} \subseteq K_{1}$. Let $\pi: K \rightarrow K_{2}$ denote the canonical projection. Note that ker $\pi=K_{1}$ which is a Noetherian module. Moreover, for each $i \geq s, \pi\left(L_{i}\right)$ is an n-generated submodule of M such that $\pi\left(L_{i}\right) A \subseteq \pi\left(L_{s}\right)=0$. By the choice of P, there exists an integer $t \geq s$ such that $\pi\left(L_{t}\right)=\pi\left(L_{t+1}\right)=\ldots$. But K_{1} is Noetherian so that without loss of generality we can suppose that $L_{t} \bigcap K_{1}=L_{t+1} \bigcap K_{1}=\ldots$. It follows that $L_{t}=L_{t+1}=\ldots$, a contradiction. Thus P is a prime ideal of R.

There is a stronger version of Lemma 10 in the case of commutative Noetherian rings, namely:

Lemma 11. Let R be a commutative Noetherian ring and let M be an R-module which satisfies the direct sum condition but does not satisfy n-acc for some positive integer n. Let P be an ideal of R which is maximal in the collection of ideals A of R such that there exists a properly ascending chain $H_{1} \subseteq H_{2} \subseteq H_{3} \subseteq \ldots$ of n-generated submodules $H_{i}(i \geq 1)$ of M with $H_{i} A=0$ for all $i \geq 1$. Then P is a prime ideal of R.

Proof. We adapt the proof of Lemma 10. In this case we can replace the ideals A and B by elements a and b. Note that $L_{i} a$ is an n-generated submodule of M for each $i \geq 1$ and the proof proceeds as before.

Let R be a ring and let M be an R-module. Given a non-empty set W in M, the annihilator of W in R will be denoted by $\operatorname{ann}(W)$, i.e. $\operatorname{ann}(W)$ is the set of
elements r in R such that $w r=0$ for all $w \in W$. Note that $\operatorname{ann}(W)$ is a right ideal of R and in case W is a submodule of M then $\operatorname{ann}(W)$ is an ideal of R.

We now derive some consequences of Theorem 8 using Lemmas 10 and 11. The first consequence is the following result.

Theorem 12. Let R be a commutative Noetherian ring, let M be an R-module which satisfies the direct sum condition and let n be a positive integer. Then M satisfies n-acc if and only if for each ascending chain $L_{1} \subseteq L_{2} \subseteq L_{3} \subseteq \ldots$ of n-generated submodules $L_{i}(i \geq 1)$ of M there exists a positive integer k such that $\operatorname{ann}\left(L_{k}\right)=\operatorname{ann}\left(L_{k+1}\right)=\ldots$.

Proof. The necessity is clear. Conversely, suppose that M satisfies the stated condition but that M does not satisfy n-acc. By Lemma 11 there exists a prime ideal P of R such that P is maximal with the property that $L_{i} P=0$ for all submodules $L_{i}(i \geq 1)$ such that $L_{1} \subseteq L_{2} \subseteq \ldots$ is a proper ascending chain of n-generated submodules of M. Let N denote the set of elements $m \in M$ such that $m P=0$. Then the right (R / P)-module N does not satisfy n-acc. By Theorem 8 , $Z\left(N_{R / P}\right)$ does not satisfy n-acc. Therefore there exist a properly ascending chain $H_{1} \subseteq H_{2} \subseteq \ldots$ of n-generated submodules of $Z\left(N_{R / P}\right)$. By hypothesis, there exists a positive integer k such that $\operatorname{ann}\left(H_{k}\right)=\operatorname{ann}\left(H_{k+1}\right)=\ldots$. Because H_{k} is finitely generated there exists an ideal A of R, properly containing P, such that $H_{k} A=0$. But then $H_{i} A=0$ for all $i \geq k$, which contradicts the choice of P. The result follows.

A prime ring is called right bounded if every essential right ideal contains a nonzero two-sided ideal. Also a ring R is called fully right bounded if every prime homomorphic image of R is right bounded. A ring R is called a right FBN ring if R is a right Noetherian right fully bounded ring. Clearly commutative Noetherian rings are FBN rings and so too are right Noetherian rings which satisfy a polynomial identity (see, for example [11, Corollary 13.6.6]). We have the following result for right FBN rings.

Theorem 13. Let R be a right $F B N$ ring and let M be a right R-module which satisfies the direct sum condition. Then M satisfies pan-acc if and only if for each positive integer n and each ascending chain $L_{1} \subseteq L_{2} \subseteq \ldots$ of n-generated submodules $L_{i}(i \geq 1)$ of M there exists a positive integer k such that ann $\left(L_{k}\right)=$ $\operatorname{ann}\left(L_{k+1}\right)=\ldots$.

Proof. The necessity is clear. Conversely, to prove the sufficiency we can adapt the proof of Theorem 12. In this case we use Lemma 10 instead of Lemma 11. Also
at the end of the proof when we consider $\operatorname{ann}\left(H_{k}\right)$ we need to apply [9, Lemma 8.2] to obtain the ideal A strictly containing P.

Another consequence of Theorem 8 is given in the next lemma.
Lemma 14. Let R be a right Noetherian ring and let M be a right R-module which satisfies the direct sum condition such that for each prime ideal P of R for which $L_{i} P=0$ for all submodules $L_{i}(i \geq 1)$ of M such that $L_{1} \subseteq L_{2} \subseteq \ldots$ is an ascending chain of n-generated submodules of M there exists a finite subset F of $\bigcup_{i \geq 1} L_{i}$ with $P=\operatorname{ann}(F)$. Then M satisfies pan-acc.

Proof. Again we adapt the proof of Theorem 12. Suppose that M does not satisfy pan-acc. With the notation of that proof we obtain an ascending chain $H_{1} \subseteq H_{2} \subseteq$ \ldots of n-generated submodules of $Z\left(N_{R / P}\right)$, where N is the set of $m \in M$ such that $m P=0$. By hypothesis, there exists a finite subset F of N such that $P=\operatorname{ann}(F)$. But for each f in F there exists a right ideal E of R, containing P, such that E / P is an essential right ideal of R / P and $f E=0$. Thus there exists a right ideal E^{\prime} of R, containing P, such that E^{\prime} / P is an essential right ideal of R / P and $g E^{\prime}=0$ for all $g \in F$. Thus $E^{\prime} \subseteq P$, a contradiction. It follows that M satisfies pan-acc.

Before proving our promised generalization of the theorems of Renault and Frohn we first establish a simple lemma.

Lemma 15. Let S and R be rings and let M be a left S-, right R-bimodule such that M is a finitely generated left S-module. Let X denote the direct product M^{I} and let A be an ideal of R such that $A=$ ann (Y) for some submodule Y of the right R-module X. Then $A=\operatorname{ann}(F)$ for some finite subset F of Y.

Proof. Let L denote the set of elements m in M such that m is a component of some element of Y. Clearly $u A=0$ for all $u \in L$. Now $S L$ is a submodule of the left S-module M so that $S L=S x_{1}+\cdots+S x_{n}$ for some positive integer n and elements $x_{i} \in L(1 \leq i \leq n)$. There exists a finite subset F of elements of Y such that for each $1 \leq i \leq n, x_{i}$ is a component of an element of F. It is now clear that if an element r in R satisfies $f r=0$ for all $f \in F$ then $x_{i} r=0$ for all $1 \leq i \leq n$ so that $S L r=0$ and hence $Y r=0$. It follows that $A=\operatorname{ann}(F)$.

Theorem 16. Let S and R be rings and let M be a left S-, right R-bimodule such that the left S-module M is Noetherian and the right R-module M is Noetherian. The the right R-module M^{I} satisfies pan-acc, for every index set I.

Proof. Let $A=\operatorname{ann}\left(M_{R}\right)$. Note that $M=S m_{1}+\cdots+S m_{k}$ for some positive integer k and elements $m_{i} \in M(1 \leq i \leq k)$. Define a mapping $\varphi: R \rightarrow M^{(k)}$ by $\varphi(r)=\left(m_{1} r, \ldots, m_{k} r\right)$ for all $r \in R$. Then φ is an R-homomorphism with kernel A so that the ring R / A is right Noetherian. Without loss of generality we can suppose that $A=0$. The result now follows by Theorem 5 and Lemmas 14 and 15.

Corollary 17. Let S and R be rings and let M be a left S-, right R-bimodule such that the left S-module M is Noetherian and the right R-module M is Noetherian. Let $N_{i}(i \in I)$ be any non-empty collection of submodules of the right R-module M. Then the right R-module $\prod_{i \in I} N_{i}$ satisfies pan-acc.

Proof. By the theorem.

References

[1] M. E. Antunes Simões and P. F. Smith, Direct products satisfying the ascending chain condition for submodules with a bounded number of generators, Comm. Algebra 23 (1995), 3525-3540.
[2] M. E. Antunes Simões and P. F. Smith, On the ascending chain condition for submodules with a bounded number of generators, Comm. Algebra 24 (1996), 1713-1721.
[3] M. E. Antunes Simões and P. F. Smith, Rings whose free modules satisfy the ascending chain condition on submodules with a bounded number of generators, J. Pure Appl. Algebra 123 (1998), 51-66.
[4] B. Baumslag and G. Baumslag, On ascending chain conditions, Proc. London Math. Soc. (3) 22 (1971), 681-704.
[5] P. M. Cohn, Free Rings and their Relations, Academic Press, London, 1971.
[6] D. Frohn, A counterexample concerning ACCP in power series rings, Comm. Algebra 30 (2002), 2961-2966.
[7] D. Frohn, Modules with n-acc and acc on certain types of annihilators, J. Algebra 256 (2002), 467-483.
[8] L. Fuchs, Infinite Abelian Groups Vols I, II, Academic Press, New York, 1970.
[9] K.R Goodearl and R. B. Warfield, Jr., An Introduction to Noncommutative Noetherian Rings, London Math. Soc. Student Texts 16, Cambridge Univ. Press, Cambridge, 1989.
[10] W. Heinzer and D. Lantz, Commutative rings with ACC on n-generated ideals, J. Algebra 80 (1983), 261-278.
[11] J. C. McConnell and J. C. Robson, Noncommutative Noetherian Rings, WileyInterscience, Chichester, 1987.
[12] A.M. Nicolas, Sur les modules tels que toute suite croissante de sous-modules engendrés par n générateurs soit stationnaire, J. Algebra 60 (1979), 249-260.
[13] G. Renault, Sur des conditions de chaines ascendantes dans des modules libres, J. Algebra 47 (1977), 268-275.
[14] G. Sabbach and P. Eklof, Definability problems for modules and rings, J. Symbolic Logic 36 (1971), 623-649.
[15] B. Stenström, Rings of Quotients, Springer-Verlag, Berlin, 1975.

Patrick F. Smith

Department of Mathematics, University of Glasgow,
Glasgow G12 8QW, Scotland UK
E-mail: pfs@maths.gla.ac.uk

