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All rings have identity elements and all modules are unital right modules, unless

stated otherwise. Let R be a ring and let M be an R-module. Given a positive inte-

ger n, the module M satisfies n-acc provided every ascending chain of n-generated

submodules terminates. Moreover, the module M satisfies pan-acc in case M satis-

fies n-acc for every positive integer n. Modules with n-acc have been considered by

many authors (see, for example, [1]-[7], [10], [12] and [13]). In particular, Renault

[13, Corollaire 3.3] proved that if R is a right and left Noetherian ring then every

free right (or left) R-module satisfies pan-acc. He also gave an example of a right

Noetherian ring R such that every free right R-module of infinite rank does not

satisfy 1-acc (see [13, p. 274]). Renault’s paper was the inspiration for this present

work. More recently, Frohn [7, Theorem 3.3] proved that if R is a commutative

Noetherian ring then every direct product RI of copies of the R-module R indexed

by a set I is an R-module satisfying pan-acc, for every such index set I.

The purpose of this note is to show that if R is a right and left Noetherian

ring then the right (or left) R-module RI satisfies pan-acc, thus generalizing the

theorems of both Renault and Frohn. In fact, we shall prove rather more, namely

that if S and R are rings and M a left S-, right R-bimodule such that M is

Noetherian both as a left S-module and as a right R-module then the right R-

module M I satisfies pan-acc and the left S-module M I satisfies pan-acc, for every

index set I. Note that in [1, Corollary 1.6] Antunes Simões and Smith proved

that if R is a ring with finite right uniform dimension then any direct product
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of nonsingular Noetherian right R-modules satisfies pan-acc. In particular, if R

is a right nonsingular right Noetherian ring then the right R-module RI satisfies

pan-acc, for every index set I.

It might be worth reminding ourselves of what happens for Abelian groups. Let

Z denote the ring of integers. Pontrjagin proved that a countably generated torsion-

free Z-module A satisfies pan-ac if and only if A is free (see [8, Vol I Theorem 19.1]).

More generally, Baumslag and Baumslag [4, Theorem 3] proved that a Z-module

A satisfies pan-acc if and only if A satisfies the following conditions:

(i) A is reduced,

(ii) there exists only a finite number of primes p in Z such that pa = 0 for some

non-zero element a in A, and

(iii) every countably generated torsion-free submodule of A is free.

In particular, if A is a torsion Z-module then A satisfies pan-acc if and only if

A satisfies 1-acc. The situation for torsion-free Z-modules is quite different. For

each positive integer n, Fuchs [8, Vol II p. 125] gave an example of a torsion-free

Z-module An which satisfies n-acc but not (n+1)-acc (see also [10, p. 272]).

Let A be a Z-module. Given a prime p in Z, we shall say that A is a p-module if

for each a ∈ A there exists a positive integer n such that pna = 0. Note the following

simple fact which may be well known but which we include for convenience. Recall

that a Z-module A is called reduced provided A does not contain a non-zero divisible

submodule.

Lemma 1. Let p be any prime in Z and let a Z-module A be a p-module. Then

every homomorphic image of A satisfies pan-acc if and only if there exists a positive

integer k such that pkA = 0.

Proof. The sufficiency follows by [4, Theorem 3] because every homomorphic image

of A is clearly reduced if pkA = 0 for some k. Conversely, suppose that every

homomorphic image of A satisfies pan-acc. Suppose that there does not exist a

positive integer k such that pkA = 0. By [8, Vol I Theorem 32.3] there exists a

submodule B of A such that B is a direct sum of cyclic submodules and A/B is

divisible. Thus A = B and A is a direct sum of cyclic submodules. There exists a

submodule C of A such that C =
⊕

i≥1 Zci, where ci is an element of A of order

pi for every positive integer i. Let D = Z(c1 − pc2)
⊕

Z(c2 − pc3)
⊕

. . . . Then

C ̸= D and C/D is a non-zero divisible submodule of A/D so that A has a non-

zero divisible homomorphic image, a contradiction. Thus pkA = 0 for some positive

integer k. �
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Our first theorem is a consequence of the above theorem of Baumslag and Baum-

slag.

Theorem 2. Let Z denote the ring of integers and let A be a Z-module. Then every

homomorphic image of A is a Z-module satisfying pan-acc if and only if A = F
⊕

T

for some finitely generated free submodule F of A and some submodule T of A such

that nT = 0 for some positive integer n.

Proof. (⇒) Note first that [4, Theorem 3] gives that A/B is reduced for every

submodule B of A. Let T denote the torsion submodule of A. Then A/T is a torsion

free Z-module satisfying pan-acc. Suppose that A/T is not finitely generated. Then

there exists a submodule C of A, containing T , such that C/T is countably, but not

finitely, generated. By [4, Theorem 3] (or see [8, Vol I Theorem 19.1]), C/T is free

and hence the Z-moduleQ is a homomorphic image of C/T . This implies thatQ is a

homomorphic image of A, a contradiction. Thus A/T is finitely generated and hence

A = T
⊕

F for some finitely generated free submodule F of A. Now suppose that

T is non-zero. Again using [4, Theorem 3] there exist finitely many distinct primes

pi (1 ≤ i ≤ t) in Z, for some positive integer t, such that T = T (p1)
⊕

· · ·
⊕

T (pt),

where T (pi) is the pi-primary component of T , for each 1 ≤ i ≤ t. By Lemma 1,

for each 1 ≤ i ≤ t there exists a positive integer ki such that pki
i T (pi) = 0. Let

n = pk1
1 . . . pkt

t . Then nT = 0.

(⇐) Now suppose that A = F
⊕

T where F is a finitely generated free submodule

and T is a torsion submodule such that nT = 0 for some non-zero n in Z. Let D be

any proper submodule of A. Let E be the submodule of A containing D such that

E/D is the torsion submodule of A/D. Note that D+T ⊆ E. In particular, T ⊆ E

so that A/E is finitely generated torsion-free and hence free. Moreover E/(D+ T )

is also finitely generated, so that mE ⊆ D + T for some positive integer m. Thus

mnE ⊆ D. By [4, Theorem 3] it follows that A/D satisfies pan-acc. �

We chose to prove Theorem 2 to point out that if A is a Z-module such that

every homomorphic image of A satisfies pan-acc then A is a direct sum of cyclic

submodules (see [8, Vol I Theorem 17.2]). In view of this fact and Pontrjagin’s

Theorem above it would appear that there is some relationship between direct sum

decompositions and the property pan-acc. Now in order to prove the above results

of Renault and Frohn we shall look at modules satisfying a particular property

which can be stated in terms of direct sum decompositions.

Let R be a ring. An R-module M will be said to satisfy the direct sum condi-

tion provided every countably generated submodule is contained in a direct sum of
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finitely generated submodules of M . Clearly every free module and every semisim-

ple module satisfies the direct sum condition. More generally, every direct sum of

finitely generated R-modules satisfies the direct sum condition. Note also that if

Mi is an R-module satisfying the direct sum condition, for all i in some index set

I, then the R-module
⊕

i∈I Mi also satisfies the direct sum condition. For, let N

be any countably generated submodule of the module M =
⊕

i∈I Mi. For each

i ∈ I, let πi : M → Mi denote the canonical projection. Because, for each i ∈ I,

πi(N) is a countably generated submodule of Mi, there exists a submodule Ki of

Mi such that Ki is a direct sum of finitely generated submodules and πi(N) ⊆ Ki.

Let K =
⊕

i∈I Ki. Then N is contained in the submodule K of M and K is a

direct sum of finitely generated submodules.

We want to show that certain direct products satisfy the direct sum condition,

in particular modules of the form M I , the direct product of copies of a module M

indexed by a set I. If J is a non-empty subset of I then MJ will be considered a

submodule of M I in the natural way. If R and S are rings and M a left S-, right

R-bimodule then M I is a left S-, right R-bimodule in the natural way.

We first note the following simple fact.

Lemma 3. Let R be a ring and let L be a countably generated submodule of an

R-module M . Then the following statements are equivalent.

(i) L is contained in a direct sum of finitely generated submodules of M .

(ii) There exists a submodule K of M containing L such that every finitely

generated submodule of L is contained in a finitely generated direct summand of K.

Proof. (i) ⇒ (ii). Let Mi (i ∈ I) be a collection of finitely generated submodules

of M such that L ⊆
⊕

i∈I Mi. Then K =
⊕

i∈I Mi satisfies (ii).

(ii) ⇒ (i). Let L = x1R + x2R + . . . . By hypothesis there exist submodules E1

and F1 ofK such thatK = E1

⊕
F1, E1 is finitely generated and x1R ⊆ E1. Again,

by hypothesis, there exist submodules E2 and F2 of K such that K = E2

⊕
F2,

E2 is finitely generated and E1 + x2R ⊆ E2. Note that x1R + x2R ⊆ E2 =

E1

⊕
(E2

∩
F1). Repeat this argument. For each positive integer n ≥ 2, there exist

submodules En and Fn of K such that K = En

⊕
Fn, En is finitely generated and

contains x1R + · · · + xnR. Note that En = E1

⊕
(E2

∩
F1)

⊕
. . . (En

∩
Fn−1). It

follows that L is contained in the direct sum E1

⊕
(E2

∩
F1)

⊕
(E3

∩
F2) . . . , which

is a direct sum of finitely generated submodules because En is a finitely generated

submodule for each positive integer n. �



MODULES SATISFYING THE ASCENDING CHAIN CONDITION 75

The proof of the next result is adapted from the proof of [14, Splitting Lemma

6].

Lemma 4. Let R and S be rings and let M be a left S-, right R-bimodule such that

the left S-module M is Noetherian. Let I denote an index set and X the left S-,

right R-bimodule M I . Then, for each finitely generated submodule F of the right

R-module X, there exist a finite subset J of I and an R-isomorphism φ : X → X

such that φ(F ) ⊆ MJ .

Proof. Let F be any finitely generated submodule of the right R-module X. Then

there exist a positive integer k and elements xi ∈ F (1 ≤ i ≤ k) such that F =

x1R + · · · + xkR. Let x = x1. There exist elements mi ∈ M (i ∈ I) such that

x = (mi). The S-submodule
∑

i∈I Smi is finitely generated and hence there exists

a finite subset J1 of I such that
∑

i∈I Smi =
∑

j∈J1
Smj . For each i in I there

exist elements sij ∈ S (j ∈ J1) such that mi =
∑

j∈J1
sijmj . Define a mapping

φ1 : X → X as follows: for each element (ui) in X, φ1(ui) = (vi) where vi = ui if

i ∈ J1 and vi = ui −
∑

j∈J1
sijuj if i ∈ I\J1. It is not difficult to check that φ1 is

an R-isomorphism from X to X and that φ1(x) ∈ MJ1 .

Let I1 = I\J1, let X1 = MJ1 and let X2 = M I1 so that X = X1

⊕
X2. For

each 2 ≤ i ≤ k there exist elements yi ∈ X1 and zi ∈ X2 such that φ1(xi) = yi+ zi.

By induction on k there exists a finite subset J2 of I1 and an R-isomorphism

φ2 : X2 → X2 such that φ2(z2R + · · · + zkR) ⊆ MJ2 . Now φ3 = ι + φ2 is an

R-isomorphism from X to X where ι is the identity mapping on X1. Finally note

that φ = φ3φ1 is an R-isomorphism from X to X such that φ(F ) ⊆ MJ where J

is the finite subset J1
∪
J2 of I. �

Theorem 5. Let R and S be rings and let M be a left S-, right R-bimodule such that

the left S-module M is Noetherian and the right R-module M is finitely generated.

Then the right R-module M I satisfies the direct sum condition for every index set

I.

Proof. Let F be any finitely generated submodule of the right R-module X = M I .

By Lemma 4 there exist a finite subset J of I and an R-isomorphism φ : X → X

such that φ(F ) ⊆ MJ . Let J ′ = I\J , let X1 = φ−1(MJ) and let X2 = φ−1(MJ ′
).

Then the right R-module X = X1

⊕
X2 is a direct sum of the submodules X1 and

X2, X1 is a finitely generated right R-module and F ⊆ X1. By Lemma 3 X satisfies

the direct sum condition. �

Next we give an example of a module M which satisfies the direct sum condition

but which is not itself a direct sum of finitely generated submodules.
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Example 6. Let Z denote the ring of integers and let M denote the direct product

ZI for any infinite index set I. Then the Z-module M satisfies the direct sum

condition but M is not a direct sum of finitely generated submodules.

Proof. By Theorem 5 the Z-module M satisfies the direct sum condition. However

M is not a direct sum of finitely generated submodules because M is not projective

(see [8, Vol I Theorem 19.2]). �

Let R be a ring and let M be a non-zero module. Then M has finite uniform

dimension provided M does not contain an infinite direct sum of non-zero submod-

ules. In this case there exists a positive integer n such that n is the maximum

number of submodules of M which form a direct sum. The integer n is called the

uniform dimension of M and is denoted by u(M). In case M = 0 we say that

M is zero dimensional and write u(M) = 0. The ring R has finite right uniform

dimension in case the right R-module R has finite uniform dimension Note that ev-

ery Noetherian module has finite uniform dimension. The next two results concern

rings with finite right uniform dimension.

Lemma 7. Let R be a ring with finite right uniform dimension, let n be a posi-

tive integer and let M be a nonsingular n-generated R-module. Then M has finite

uniform dimension and u(M) ≤ nu(R).

Proof. There exists an epimorphism from F = R(n) to M with kernel K. Because

M is nonsingular, K is an essentially closed submodule of F and hence u(M) =

u(F/K) ≤ u(F ) = nu(R) by [9, Exercise 4N]. �

Let R be a ring and let M be any R-module. Then the singular submodule

Z(M) of M is defined to be the set of elements m in M such that mE = 0 for some

essential right ideal E of R. The second singular submodule of M is the submodule

Z2(M) of M containing Z(M) such that Z2(M)/Z(M) is the singular submodule

of the module M/Z(M). In the Goldie torsion theory, a module M is torsion if

M = Z2(M) and is torsion-free if it is nonsingular, i.e. Z(M) = 0 (see [15] for more

details).

Let R be a ring and let M be an R-module such that MA = 0 for some ideal

A of R. Then M is both an R-module and an (R/A)-module. The singular sub-

module of the R-module M need not coincide with the singular submodule of the

(R/A)-module M and we shall denote these submodules by Z(MR) and Z(MR/A),

respectively. Similarly we denote by Z2(MR) and Z2(MR/A) the second singular
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submodules of M considered as an R-module and as an (R/A)-module, respectively.

When there is no ambiguity we shall use Z(M) and Z2(M), as indicated above. We

want to make one further observation at this point, namely if R is a prime (or even

semiprime) right Noetherian ring then Z2(M) = Z(M) for every R-module M by

[9, Proposition 6.10].

Given a ring R and an R-module M , if N is a submodule of M then Zorn’s

Lemma gives a submodule K of M maximal among the submodules H of M such

that N
∩
H = 0. In this case, K is called a complement of N (in M). Note that

K is essentially closed in M in the sense of [9]. The next result is crucial for the

remainder of this paper.

Theorem 8. Let R be a right Noetherian ring, let M be a right R-module which

satisfies the direct sum condition and let n be a positive integer. Then M satisfies

n-acc if and only if Z2(M) satisfies n-acc.

Proof. The necessity is clear. Conversely, suppose that Z2(M) satisfies n-acc. Let

L1 ⊆ L2 ⊆ L3 ⊆ . . . be any ascending chain of n-generated submodules of M . Let

L =
∪

i≥1 Li. Let K be a complement of Z2(L) in L. Note that for all i ≥ 1,

Li/Z2(Li) is an n-generated nonsingular module and hence u(Li/Z2(Li)) ≤ nu(R)

by Lemma 7. Moreover note that for all i ≥ 1, Li

∩
K embeds in Li/Z2(Li) so that

u(Li

∩
K) ≤ nu(R). Now the ascending chain L1

∩
K ⊆ L2

∩
K ⊆ . . . gives that

Li

∩
K is essential in Li+1

∩
K for all i ≥ k, for some positive integer k, and hence

Lk

∩
K is essential inK. By hypothesis, there exists a submoduleH ofM such that

L ⊆ H, H = H1

⊕
H2 for some submodules H1 and H2, H1 is finitely generated

and Lk ⊆ H1. Let π : H → H2 denote the canonical projection. Let x ∈ L.

Because Z2(L)
⊕

K is essential in L, we have (xR +K)/K is Goldie torsion and

hence so too is [xR+ (Lk

∩
K)]/(Lk

∩
K). It follows that π(xR) is Goldie torsion.

Thus π(L1) ⊆ π(L2) ⊆ . . . is an ascending chain of n-generated submodules of

Z2(M). There exists a positive integer t such that π(Lt) = π(Lt+1) = . . . . But H1

is Noetherian and hence, without loss of generality, Lt

∩
H1 = Lt+1

∩
H1 = . . . . It

follows that Lt = Lt+1 = . . . , as required. �

Corollary 9. Let R be a right Noetherian ring and let M be a nonsingular right

R-module which satisfies the direct sum condition. Then M satisfies pan-acc.

Proof. By the theorem. �

The next result is adapted from [13].
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Lemma 10. Let R be a right Noetherian ring and let M be a right R-module which

satisfies the direct sum condition but does not satisfy pan-acc. Let P be an ideal

of R which is maximal in the collection of ideals A of R such that there exist a

positive integer k and a properly ascending chain H1 ⊆ H2 ⊆ H3 . . . of k-generated

submodules Hi (i ≥ 1) of M with HiA = 0 for all i ≥ 1. Then P is a prime ideal

of R.

Proof. There exist a positive integer n and a properly ascending chain L1 ⊆ L2 ⊆
L3 ⊆ . . . of n-generated submodules Li (i ≥ 1) such that LiP = 0 for all i ≥ 1.

Suppose that P is not a prime ideal of R. Then there exist ideals A and B of R, each

properly containing P , such that AB ⊆ P . Note that A is a q-generated right ideal

of R, for some positive integer q, and hence LiA is an nq-generated submodule of

M for each i ≥ 1. By the choice of P , the ascending chain L1A ⊆ L2A ⊆ . . . must

terminate and hence there exists a positive integer s such that LsA = Ls+1A =

Ls+2A = . . . . Let L denote the countably generated submodule
∪

i≥1 Li. By

hypothesis there exists a submodule K of M such that L ⊆ K, K = K1

⊕
K2

for some submodules K1 and K2, K1 is finitely generated and Ls ⊆ K1. Let

π : K → K2 denote the canonical projection. Note that ker π = K1 which is a

Noetherian module. Moreover, for each i ≥ s, π(Li) is an n-generated submodule

of M such that π(Li)A ⊆ π(Ls) = 0. By the choice of P , there exists an integer

t ≥ s such that π(Lt) = π(Lt+1) = . . . . But K1 is Noetherian so that without

loss of generality we can suppose that Lt

∩
K1 = Lt+1

∩
K1 = . . . . It follows that

Lt = Lt+1 = . . . , a contradiction. Thus P is a prime ideal of R. �

There is a stronger version of Lemma 10 in the case of commutative Noetherian

rings, namely:

Lemma 11. Let R be a commutative Noetherian ring and let M be an R-module

which satisfies the direct sum condition but does not satisfy n-acc for some positive

integer n. Let P be an ideal of R which is maximal in the collection of ideals A

of R such that there exists a properly ascending chain H1 ⊆ H2 ⊆ H3 ⊆ . . . of

n-generated submodules Hi (i ≥ 1) of M with HiA = 0 for all i ≥ 1. Then P is a

prime ideal of R.

Proof. We adapt the proof of Lemma 10. In this case we can replace the ideals A

and B by elements a and b. Note that Lia is an n-generated submodule of M for

each i ≥ 1 and the proof proceeds as before. �

Let R be a ring and let M be an R-module. Given a non-empty set W in M ,

the annihilator of W in R will be denoted by ann(W ), i.e. ann(W ) is the set of
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elements r in R such that wr = 0 for all w ∈ W . Note that ann(W ) is a right ideal

of R and in case W is a submodule of M then ann(W ) is an ideal of R.

We now derive some consequences of Theorem 8 using Lemmas 10 and 11. The

first consequence is the following result.

Theorem 12. Let R be a commutative Noetherian ring, let M be an R-module

which satisfies the direct sum condition and let n be a positive integer. Then M

satisfies n-acc if and only if for each ascending chain L1 ⊆ L2 ⊆ L3 ⊆ . . . of

n-generated submodules Li (i ≥ 1) of M there exists a positive integer k such that

ann(Lk) = ann(Lk+1) = . . . .

Proof. The necessity is clear. Conversely, suppose that M satisfies the stated

condition but that M does not satisfy n-acc. By Lemma 11 there exists a prime

ideal P of R such that P is maximal with the property that LiP = 0 for all

submodules Li (i ≥ 1) such that L1 ⊆ L2 ⊆ . . . is a proper ascending chain of

n-generated submodules of M . Let N denote the set of elements m ∈ M such that

mP = 0. Then the right (R/P )-module N does not satisfy n-acc. By Theorem 8,

Z(NR/P ) does not satisfy n-acc. Therefore there exist a properly ascending chain

H1 ⊆ H2 ⊆ . . . of n-generated submodules of Z(NR/P ). By hypothesis, there exists

a positive integer k such that ann(Hk) = ann(Hk+1) = . . . . Because Hk is finitely

generated there exists an ideal A of R, properly containing P , such that HkA = 0.

But then HiA = 0 for all i ≥ k, which contradicts the choice of P . The result

follows. �

A prime ring is called right bounded if every essential right ideal contains a non-

zero two-sided ideal. Also a ring R is called fully right bounded if every prime

homomorphic image of R is right bounded. A ring R is called a right FBN ring if

R is a right Noetherian right fully bounded ring. Clearly commutative Noetherian

rings are FBN rings and so too are right Noetherian rings which satisfy a polynomial

identity (see, for example [11, Corollary 13.6.6]). We have the following result for

right FBN rings.

Theorem 13. Let R be a right FBN ring and let M be a right R-module which

satisfies the direct sum condition. Then M satisfies pan-acc if and only if for

each positive integer n and each ascending chain L1 ⊆ L2 ⊆ . . . of n-generated

submodules Li (i ≥ 1) of M there exists a positive integer k such that ann(Lk) =

ann (Lk+1) = . . . .

Proof. The necessity is clear. Conversely, to prove the sufficiency we can adapt

the proof of Theorem 12. In this case we use Lemma 10 instead of Lemma 11. Also
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at the end of the proof when we consider ann(Hk) we need to apply [9, Lemma 8.2]

to obtain the ideal A strictly containing P . �

Another consequence of Theorem 8 is given in the next lemma.

Lemma 14. Let R be a right Noetherian ring and let M be a right R-module which

satisfies the direct sum condition such that for each prime ideal P of R for which

LiP = 0 for all submodules Li (i ≥ 1) of M such that L1 ⊆ L2 ⊆ . . . is an

ascending chain of n-generated submodules of M there exists a finite subset F of∪
i≥1 Li with P = ann(F ). Then M satisfies pan-acc.

Proof. Again we adapt the proof of Theorem 12. Suppose that M does not satisfy

pan-acc. With the notation of that proof we obtain an ascending chain H1 ⊆ H2 ⊆
. . . of n-generated submodules of Z(NR/P ), where N is the set of m ∈ M such that

mP = 0. By hypothesis, there exists a finite subset F of N such that P = ann(F ).

But for each f in F there exists a right ideal E of R, containing P , such that E/P

is an essential right ideal of R/P and fE = 0. Thus there exists a right ideal E′ of

R, containing P , such that E′/P is an essential right ideal of R/P and gE′ = 0 for

all g ∈ F . Thus E′ ⊆ P , a contradiction. It follows that M satisfies pan-acc. �

Before proving our promised generalization of the theorems of Renault and Frohn

we first establish a simple lemma.

Lemma 15. Let S and R be rings and let M be a left S-, right R-bimodule such

that M is a finitely generated left S-module. Let X denote the direct product M I

and let A be an ideal of R such that A = ann(Y ) for some submodule Y of the right

R-module X. Then A = ann(F ) for some finite subset F of Y .

Proof. Let L denote the set of elements m in M such that m is a component of

some element of Y . Clearly uA = 0 for all u ∈ L. Now SL is a submodule of the

left S-module M so that SL = Sx1 + · · · + Sxn for some positive integer n and

elements xi ∈ L (1 ≤ i ≤ n). There exists a finite subset F of elements of Y such

that for each 1 ≤ i ≤ n, xi is a component of an element of F . It is now clear that

if an element r in R satisfies fr = 0 for all f ∈ F then xir = 0 for all 1 ≤ i ≤ n so

that SLr = 0 and hence Y r = 0. It follows that A = ann(F ). �

Theorem 16. Let S and R be rings and let M be a left S-, right R-bimodule such

that the left S-module M is Noetherian and the right R-module M is Noetherian.

The the right R-module M I satisfies pan-acc, for every index set I.
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Proof. Let A = ann(MR). Note that M = Sm1 + · · · + Smk for some positive

integer k and elements mi ∈ M (1 ≤ i ≤ k). Define a mapping φ : R → M (k) by

φ(r) = (m1r, . . . ,mkr) for all r ∈ R. Then φ is an R-homomorphism with kernel A

so that the ring R/A is right Noetherian. Without loss of generality we can suppose

that A = 0. The result now follows by Theorem 5 and Lemmas 14 and 15. �

Corollary 17. Let S and R be rings and let M be a left S-, right R-bimodule such

that the left S-module M is Noetherian and the right R-module M is Noetherian.

Let Ni (i ∈ I) be any non-empty collection of submodules of the right R-module M .

Then the right R-module
∏

i∈I Ni satisfies pan-acc.

Proof. By the theorem. �
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