A NOTE ON GROUP INVARIANT INCIDENCE FUNCTIONS

Michael Braun
Received: 10 January 2007; Revised: 27 February 2007
Communicated by A. Çiğdem Özcan

Abstract

Partially ordered sets (X, \preceq) and the corresponding incidence algebra $I(X, \mathbb{F})$ are important algebraic structures also playing a crucial role for the enumeration, construction and the classification of many discrete structures. In this paper we consider partially ordered sets X on which some group G acts via the mapping $X \times G \rightarrow X,(x, g) \mapsto x^{g}$ and investigate such incidence functions $\phi: X \times X \rightarrow \mathbb{F}$ of the incidence algebra $I(X, \mathbb{F})$ which are invariant under the group action, i. e. which satisfy the condition $\phi(x, y)=\phi\left(x^{g}, y^{g}\right)$ for all $x, y \in X$ and $g \in G$. Within these considerations we define for such incidence functions ϕ the matrices ϕ^{\wedge} respectively ϕ^{\vee} by summation of entries of ϕ and we investigate the structure of these matrices and generalize the results known from group actions on posets.

Mathematics Subject Classification (2000): 06A07, 06A11, 05E30
Keywords: Incidence algebra; group action; Plesken matrices.

1. Introduction

A partially ordered set, for short poset, (X, \preceq) is a set X together with a reflexive, antisymmetric and transitive binary relation \preceq. Instead of $x \preceq y$ and $x \neq y$ the notation $x \prec y$ is also used. The poset is said to be locally finite if and only if all its intervals $[x, y]:=\{z \in X \mid x \preceq z \preceq y\}$ are finite. In the following we consider locally finite posets. Let \mathbb{F} be a field. The set $I(X, \mathbb{F})$ consisting of all mappings $\phi: X \times X \rightarrow \mathbb{F}$ with the property that $\phi(x, y)=0$ unless $x \preceq y$ yields an \mathbb{F}-algebra with respect to the addition

$$
(\phi+\psi)(x, y):=\phi(x, y)+\psi(x, y)
$$

the scalar multiplication

$$
(f \cdot \phi)(x, y):=f \cdot \phi(x, y), \quad f \in \mathbb{F}
$$

and the convolution product

$$
(\phi * \psi)(x, y):=\sum_{z \in X} \phi(x, z) \cdot \psi(z, y)=\sum_{z \in[x, y]} \phi(x, z) \cdot \psi(z, y),
$$

the so-called incidence algebra over \mathbb{F} on X. The identity element with respect to the convolution product is defined by the Kronecker function:

$$
\delta(x, y):= \begin{cases}1 & \text { if } x=y \\ 0 & \text { otherwise }\end{cases}
$$

An important element of the incidence algebra is the well-known Zeta-function which characterizes the poset completely:

$$
\zeta(x, y):= \begin{cases}1 & \text { if } x \preceq y \\ 0 & \text { otherwise }\end{cases}
$$

An incidence function ϕ is invertible with respect to the convolution product if and only if the values $\phi(x, x)$ are non-zero. In that case we can construct the inverse incidence function ϕ^{-1} recursively:

$$
\phi^{-1}(x, x)=\phi(x, x)^{-1}
$$

for all $x \in X$, and

$$
\begin{aligned}
\phi^{-1}(x, y) & =-\phi(x, x)^{-1} \sum_{z: x \prec z \preceq y} \phi(x, z) \cdot \phi^{-1}(z, y) \\
& =-\phi(y, y)^{-1} \sum_{z: x \preceq z \prec y} \phi^{-1}(x, z) \cdot \phi(z, y)
\end{aligned}
$$

for all different $x, y \in X$.
Since $\zeta(x, x)=1$ for all $x \in X$, the Zeta-function is invertible over \mathbb{F} and its inverse is called Moebius-function and is denoted by μ.

2. Group invariant incidence functions

From now one we assume a (multiplicatively written) group G with neutral element 1_{G} acting on a poset X via the mapping $X \times G \rightarrow X,(x, g) \mapsto x^{g}$ from the right, i. e. this mapping satisfies $\left(x^{g}\right)^{h}=x^{g h}$ and $x^{1_{G}}=x$ for all $x \in X$ and $g, h \in G$. In the following we consider such $\phi \in I(X, \mathbb{F})$ satisfying the equation

$$
\phi(x, y)=\phi\left(x^{g}, y^{g}\right)
$$

for all $x, y \in X$ and $g \in G$. We call such incidence functions G-invariant and we use the symbol $I(X, \mathbb{F})_{G}$ for the set of all these functions.

A well-known situation occurs if $\zeta \in(X, \mathbb{F})_{G}$. This is equivalent to

$$
x \prec y \Longleftrightarrow x^{g} \prec y^{g}
$$

for all $x, y \in X$ and $g \in G$. In this case we say that G acts as a group of automorphisms on the poset X [3].

Important properties of $I(X, \mathbb{F})_{G}$ are described in the following lemma:
Lemma 1. Let G be a group acting on a locally finite poset X and \mathbb{F} be a field. Then $I(X, \mathbb{F})_{G}$ is a subalgebra of $I(X, \mathbb{F})$. In addition $I(X, \mathbb{F})_{G}$ is a monoid with respect to the convolution product, i.e. $\delta \in I(X, \mathbb{F})_{G}$. Furthermore, if $\phi \in I(X, \mathbb{F})_{G}$ is an invertible incidence function in $I(X, \mathbb{F})$ and $\zeta \in I(X, \mathbb{F})_{G}$, then $\phi^{-1} \in I(X, \mathbb{F})_{G}$.

Proof. (i) Let $\phi, \psi \in I(X, \mathbb{F})_{G}, f \in \mathbb{F}$ and $g \in G$. We now show that the functions $\phi+\psi, f \cdot \phi$ and $\phi * \psi$ are also G-invariant. This implies that $I(X, \mathbb{F})_{G}$ is a subalgebra of $I(X, \mathbb{F})$:

$$
\begin{aligned}
&(\phi+\psi)(x, y)= \phi(x, y)+\psi(x, y) \\
&= \phi\left(x^{g}, y^{g}\right)+\psi\left(x^{g}, y^{g}\right) \\
&=(\phi+\psi)\left(x^{g}, y^{g}\right), \\
&(f \cdot \phi)(x, y)=f \cdot \phi(x, y) \\
&=f \cdot \phi\left(x^{g}, y^{g}\right) \\
&=(f \cdot \phi)\left(x^{g}, y^{g}\right), \\
&(\phi * \psi)(x, y)= \sum_{z \in X} \phi(x, z) \cdot \psi(z, y) \\
&= \sum_{z \in X} \phi\left(x^{g}, z^{g}\right) \cdot \psi\left(z^{g}, y^{g}\right) \\
&= \sum_{z \in X} \phi\left(x^{g}, z^{g}\right) \cdot \psi\left(z^{g}, y^{g}\right) \\
&= \sum_{z^{\prime} \in X} \phi\left(x^{g}, z^{\prime}\right) \cdot \psi\left(z^{\prime}, y^{g}\right) \\
&=(\phi * \psi)\left(x^{g}, y^{g}\right) .
\end{aligned}
$$

(ii) Furthermore, the equivalence $x^{g}=y^{g} \Leftrightarrow x=y$ for all $x, y \in X$ and $g \in G$ implies $\delta(x, y)=\delta\left(x^{g}, y^{g}\right)$, i. e. $I(X, \mathbb{F})_{G}$ is a monoid.
(iii) Now, let $\phi \in I(X, \mathbb{F})_{G}$ be an invertible incidence function and let $\zeta \in$ $I(X, \mathbb{F})_{G}$. We show that $\phi^{-1}(x, y)=\phi^{-1}\left(x^{g}, y^{g}\right)$ for all $x, y \in X$ and $g \in G$. First we consider the case that $x \npreceq y$. Then we also get $x^{g} \npreceq y^{g}$ since $\zeta \in I(X, \mathbb{F})_{G}$ and hence we have $\phi^{-1}(x, y)=0=\phi^{-1}\left(x^{g}, y^{g}\right)$. Now we consider the second case $x \preceq y$. There exist chains between x and y. Let $\ell(x, y)$ denote the length of a maximal chain between x and y. We prove $\phi^{-1}(x, y)=\phi^{-1}\left(x^{g}, y^{g}\right)$ by induction on $n=\ell(x, y)$:
I. $n=0$. First $\ell(x, y)=0$, i. e. $x=y$. Then

$$
\phi^{-1}(x, x)=\phi(x, x)^{-1}=\phi\left(x^{g}, x^{g}\right)^{-1}=\phi^{-1}\left(x^{g}, x^{g}\right) .
$$

II. $n-1 \rightarrow n$. Then

$$
\begin{aligned}
\phi^{-1}(x, y) & =-\phi(y, y)^{-1} \sum_{z: x \preceq z \prec y} \phi^{-1}(x, z) \cdot \phi(z, y) \\
& =-\phi\left(y^{g}, y^{g}\right)^{-1} \sum_{z: x \preceq z \prec y} \underbrace{\phi^{-1}\left(x^{g}, z^{g}\right)}_{\ell(x, z)<n} \cdot \phi\left(z^{g}, y^{g}\right) \\
& =-\phi\left(y^{g}, y^{g}\right)^{-1} \sum_{z: x^{g} \preceq z^{g} \prec y^{g}} \phi^{-1}\left(x^{g}, z^{g}\right) \cdot \phi\left(z^{g}, y^{g}\right) \\
& =-\phi\left(y^{g}, y^{g}\right)^{-1} \sum_{z^{\prime}: x^{g} \preceq z^{\prime} \prec y^{g}} \phi^{-1}\left(x^{g}, z^{\prime}\right) \cdot \phi\left(z^{\prime}, y^{g}\right) \\
& =\phi^{-1}\left(x^{g}, y^{g}\right) .
\end{aligned}
$$

From now on let X be a finite poset and let $y^{G}:=\left\{y^{g} \mid g \in G\right\}$ denote the orbit of $y \in X$. Then we define for a G-invariant incidence function $\phi \in I(X, \mathbb{F})_{G}$ the values

$$
\phi\left(x, y^{G}\right):=\sum_{z \in y^{G}} \phi(x, z)
$$

and

$$
\phi\left(y^{G}, x\right):=\sum_{z \in y^{G}} \phi(z, x)
$$

for $x, y \in X$.
Lemma 2. Let G be a group acting on the finite poset X and \mathbb{F} be a field. Let $\phi \in I(X, \mathbb{F})_{G}$. Then the equations

$$
\phi\left(x, y^{G}\right)=\phi\left(x^{g}, y^{G}\right)
$$

and

$$
\phi\left(y^{G}, x\right)=\phi\left(y^{G}, x^{g}\right)
$$

hold for all $x, y \in X$ and $g \in G$.

Proof. We prove the first equation, the proof of the second one is analogous. Let $x, y \in X, g \in G$ and $\phi \in I(X, \mathbb{F})_{G}$. Then we have

$$
\phi\left(x, y^{G}\right)=\sum_{z \in y^{G}} \phi(x, z)=\sum_{z \in y^{G}} \phi\left(x^{g}, z^{g}\right)=\sum_{z^{\prime} \in y^{G}} \phi\left(x^{g}, z^{\prime}\right)=\phi\left(x^{g}, y^{G}\right) .
$$

Let $\mathcal{O}_{1}, \ldots, \mathcal{O}_{n}$ denote the orbits of G on the poset X and let $x_{i} \in \mathcal{O}_{i}$ denote a representative of the i th orbit. Now we can define two $n \times n$ matrices $\phi^{\wedge}=\left(\phi_{i j}^{\wedge}\right)$ and $\phi^{\vee}=\left(\phi_{i j}^{\vee}\right)$ with entries

$$
\phi_{i j}^{\wedge}:=\phi\left(x_{i}, \mathcal{O}_{j}\right)
$$

and

$$
\phi_{i j}^{\vee}:=\phi\left(\mathcal{O}_{i}, x_{j}\right) .
$$

The following lemma shows the connection between ϕ^{\wedge} and ϕ^{\vee}.
Lemma 3. Let G be a group acting on the finite poset X with corresponding orbits $\mathcal{O}_{1}, \ldots, \mathcal{O}_{n}$ and let \mathbb{F} be a field. Let $\phi \in I(X, \mathbb{F})_{G}$ and let

$$
\Delta:=\left(\begin{array}{ccc}
\left|\mathcal{O}_{1}\right| & & 0 \\
& \ddots & \\
0 & & \left|\mathcal{O}_{n}\right|
\end{array}\right)
$$

Then the following equation holds

$$
\phi^{\vee} \cdot \Delta=\Delta \cdot \phi^{\wedge} .
$$

Furthermore, if the characterstic of the field \mathbb{F} does not divide the orbit sizes $\left|\mathcal{O}_{1}\right|, \ldots,\left|\mathcal{O}_{n}\right|$, then

$$
\phi^{\vee}=\Delta \cdot \phi^{\wedge} \cdot \Delta^{-1}
$$

Proof. Let $M=\left(m_{i j}\right)=\phi^{\vee} \cdot \Delta$ and let $N=\left(n_{i j}\right)=\Delta \cdot \phi^{\wedge}$. In the following we show the equality of these two matrices $M=N$:

$$
\begin{aligned}
m_{i j} & =\phi_{i j}^{\vee} \cdot\left|\mathcal{O}_{j}\right|=\phi\left(\mathcal{O}_{i}, x_{j}\right) \cdot\left|\mathcal{O}_{j}\right| \\
& =\sum_{y \in \mathcal{O}_{j}} \phi\left(\mathcal{O}_{i}, x_{j}\right)=\sum_{y \in \mathcal{O}_{j}} \phi\left(\mathcal{O}_{i}, y\right) \\
& =\sum_{y \in \mathcal{O}_{j}} \sum_{x \in \mathcal{O}_{i}} \phi(x, y)=\sum_{x \in \mathcal{O}_{i}} \sum_{y \in \mathcal{O}_{j}} \phi(x, y) \\
& =\sum_{x \in \mathcal{O}_{i}} \phi\left(x, \mathcal{O}_{j}\right)=\sum_{x \in \mathcal{O}_{i}} \phi\left(x_{i}, \mathcal{O}_{j}\right) \\
& =\left|\mathcal{O}_{i}\right| \cdot \phi\left(x_{i}, \mathcal{O}_{j}\right)=\left|\mathcal{O}_{i}\right| \cdot \phi_{i j}^{\wedge} \\
& =n_{i j} .
\end{aligned}
$$

Multiplying the inverse of Δ from the right yields the second equation.
From now on we restrict our investigation to the matrix ϕ^{\wedge} since the results for ϕ^{\vee} are analogous.

Lemma 4. Let G be a group acting on the finite poset X and \mathbb{F} be a field. Then δ^{\wedge} is the $n \times n$ unit matrix, where the dimension n is the number of orbits of G on the poset X.

Proof. For all $i, j \in\{1, \ldots, n\}$ with $i \neq j$ we obtain

$$
\delta_{i j}^{\wedge}=\sum_{y \in \mathcal{O}_{j}} \delta\left(x_{i}, y\right)=0
$$

and

$$
\delta_{i i}^{\wedge}=\delta\left(x_{i}, x_{i}\right)+\sum_{y \in \mathcal{O}_{i}: y \neq x_{i}} \delta\left(x_{i}, y\right)=1+0=1
$$

Theorem 5. Let G be a group acting on the finite poset X and \mathbb{F} be a field. Then the equations

$$
(f \cdot \phi)^{\wedge}=f \cdot \phi^{\wedge}, \quad(\phi+\psi)^{\wedge}=\phi^{\wedge}+\psi^{\wedge}, \quad(\phi * \psi)^{\wedge}=\phi^{\wedge} \cdot \psi^{\wedge}
$$

hold for all $\phi, \psi \in I(X, \mathbb{F})_{G}$ and $f \in \mathbb{F}$.

Proof. (i)

$$
\begin{aligned}
(f \cdot \phi)_{i j}^{\wedge} & =(f \cdot \phi)\left(x_{i}, \mathcal{O}_{j}\right)=\sum_{y \in \mathcal{O}_{j}}(f \cdot \phi)\left(x_{i}, y\right) \\
& =\sum_{y \in \mathcal{O}_{j}} f \cdot \phi\left(x_{i}, y\right)=f \cdot \sum_{y \in \mathcal{O}_{j}} \phi\left(x_{i}, y\right) \\
& =f \cdot \phi\left(x_{i}, \mathcal{O}_{j}\right) \\
& =f \cdot \phi_{i j}^{\wedge}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
(\phi+\psi)_{i j}^{\wedge} & =(\phi+\psi)\left(x_{i}, \mathcal{O}_{j}\right)=\sum_{y \in \mathcal{O}_{j}}(\phi+\psi)\left(x_{i}, y\right) \\
& =\sum_{y \in \mathcal{O}_{j}}\left[\phi\left(x_{i}, y\right)+\psi\left(x_{i}, y\right)\right]=\sum_{y \in \mathcal{O}_{j}} \phi\left(x_{i}, y\right)+\sum_{y \in \mathcal{O}_{j}} \psi\left(x_{i}, y\right) \\
& =\phi\left(x_{i}, \mathcal{O}_{j}\right)+\psi\left(x_{i}, \mathcal{O}_{j}\right) \\
& =\phi_{i j}^{\wedge}+\psi_{i j}^{\wedge}
\end{aligned}
$$

(iii)

$$
\begin{aligned}
(\phi * \psi)_{i j} & =(\phi * \psi)\left(x_{i}, \mathcal{O}_{j}\right)=\sum_{y \in \mathcal{O}_{j}}(\phi * \psi)\left(x_{i}, y\right) \\
& =\sum_{y \in \mathcal{O}_{j}} \sum_{z \in X} \phi\left(x_{i}, z\right) \cdot \psi(z, y)=\sum_{z \in X} \sum_{y \in \mathcal{O}_{j}} \phi\left(x_{i}, z\right) \cdot \psi(z, y) \\
& =\sum_{z \in X} \phi\left(x_{i}, z\right) \sum_{y \in \mathcal{O}_{j}} \psi(z, y)=\sum_{z \in X} \phi\left(x_{i}, z\right) \cdot \psi\left(z, \mathcal{O}_{j}\right) \\
& =\sum_{k} \sum_{z \in \mathcal{O}_{k}} \phi\left(x_{i}, z\right) \cdot \psi\left(z, \mathcal{O}_{j}\right)=\sum_{k} \sum_{z \in \mathcal{O}_{k}} \phi\left(x_{i}, z\right) \cdot \psi\left(x_{k}, \mathcal{O}_{j}\right) \\
& =\sum_{k} \psi\left(x_{k}, \mathcal{O}_{j}\right) \sum_{z \in \mathcal{O}_{k}} \phi\left(x_{i}, z\right)=\sum_{k} \psi\left(x_{k}, \mathcal{O}_{j}\right) \cdot \phi\left(x_{i}, \mathcal{O}_{k}\right) \\
& =\sum_{k} \phi\left(x_{i}, \mathcal{O}_{k}\right) \cdot \psi\left(x_{k}, \mathcal{O}_{j}\right) \\
& =\sum_{k} \phi_{\hat{k}}^{\hat{k}} \cdot \psi_{k j}^{\wedge}
\end{aligned}
$$

Corollary 6. Let G be a group acting on the finite poset X and \mathbb{F} be a field. Let $\zeta \in I(X, \mathbb{F})_{G}$ and let $\phi \in I(X, \mathbb{F})_{G}$ be an invertible incidence function. Then ϕ^{\wedge} is invertible and for its inverse holds the following equation

$$
\left(\phi^{\wedge}\right)^{-1}=\left(\phi^{-1}\right)^{\wedge} .
$$

Proof. Let $\phi \in I(X, \mathbb{F})_{G}$ be invertible. Since ζ is G-invariant we obtain from Lemma 1 that $\phi^{-1} \in I(X, \mathbb{F})_{G}$. Hence we can apply Theorem 5 and get

$$
\phi^{\wedge} \cdot\left(\phi^{-1}\right)^{\wedge}=\left(\phi * \phi^{-1}\right)^{\wedge}=\delta^{\wedge}
$$

which means that $\left(\phi^{\wedge}\right)^{-1}=\left(\phi^{-1}\right)^{\wedge}$ since δ^{\wedge} is the unit matrix.

3. Examples

3.1. Binomial coefficients. We consider for a natural number n the matrix $B=$ $\left(b_{i j}\right), 0 \leq i, j \leq n$, where $b_{i j}=\binom{j}{i}$ is the number of i-subsets which are contained in a set with j elements. The aim is to compute the inverse matrix B^{-1}. We take a set X with n elements and consider the action of the symmetric group $S_{X}:=\{\pi: X \rightarrow X \mid \pi$ bijectively $\}$ on the power set $P(X):=\{S \mid S \subseteq X\}$ via the mapping

$$
P(X) \times S_{X} \rightarrow P(X),(S, \pi) \mapsto S^{\pi}:=\left\{x^{\pi} \mid x \in S\right\}
$$

It is obvious that S_{X} acts as a group of automorphisms on $P(X)$. If $\binom{X}{k}$ denotes the set of k-subsets of X, the orbits of this action are exactly the sets $\mathcal{O}_{0}=\binom{X}{0}, \mathcal{O}_{1}=$ $\binom{X}{1}, \ldots, \mathcal{O}_{n}=\binom{X}{n}$. As S_{X}-invariant incidence function we take the Zeta-function

$$
\zeta(T, K):= \begin{cases}1 & \text { if } T \subseteq K \\ 0 & \text { otherwise }\end{cases}
$$

together with its inverse $\mu(T, K)=(-1)^{|K|-|T|} \zeta(T, K)$. Then we consider the matrix ζ^{\vee} whose entries are

$$
\zeta_{i j}^{\vee}=\zeta\left(\mathcal{O}_{i}, S_{j}\right)=\sum_{S \in\binom{X}{i}} \zeta\left(S, S_{j}\right)=\binom{j}{i}, \text { where } S_{j} \in \mathcal{O}_{j}=\binom{X}{j}
$$

i. e. we have $B=\zeta^{\vee}$. Because of the equation $\left(\zeta^{\vee}\right)^{-1}=\mu^{\vee}$ we obtain for the inverse of B the matrix μ^{\vee} that is given by the following entries:

$$
\begin{aligned}
\mu_{i j}^{\vee} & =\mu\left(\mathcal{O}_{i}, S_{j}\right)=\sum_{S \in \mathcal{O}_{i}} \mu\left(S, S_{j}\right)=\sum_{S \in\binom{X}{i}}(-1)^{j-i} \zeta\left(S, S_{j}\right) \\
& =(-1)^{j-i} \sum_{S \in\binom{X}{i}} \zeta\left(S, S_{j}\right)=(-1)^{j-i}\binom{j}{i}
\end{aligned}
$$

Finally we have that the matrix $B^{-1}=\left(b_{i j}^{-1}\right), b_{i j}^{-1}=(-1)^{j-i}\binom{j}{i}$ is the inverse of $B=\left(b_{i j}\right), b_{i j}=\binom{j}{i}$.
3.2. Table of Marks and Burnside matrix. The table of marks of a group, introduced by Burnside (see [1]), plays an important role for the enumeration, construction and classification of discrete structures as groups, graphs and t-designs (see [3,4,5]). Especially the combinatorial chemistry (see [2]) uses the table of marks as a tool for the enumeration of chemical compounds. Now we show here that the table of marks is a matrix ϕ^{\wedge} with a certain group invariant incidence function ϕ.

Let G be a finite group, and let $L(G):=\{S \mid S \leq G\}$ denote the set of all subgroups of G. This set together with the inclusion relation forms a finite poset, the so-called subgroup lattice of G. The group G acts on $L(G)$ by conjugation

$$
L(G) \times G \rightarrow L(G),(g, S) \mapsto g^{-1} S g:=\left\{g^{-1} s g \mid s \in S\right\}
$$

such that G acts on $L(G)$ as a group of automorphisms, i. e. the equivalence

$$
S<T \Longleftrightarrow g^{-1} S g<g^{-1} T g
$$

holds for all $S, T \in L(G)$ and $g \in G$. The orbits of this action are the conjugacy classes of subgroups

$$
\widetilde{S}:=\left\{g^{-1} S g \mid g \in G\right\} .
$$

Now if G acts on a set X and if $N_{G}(x):=\left\{g \in G \mid x^{g}=x\right\}$ denotes the stabilizer of an element $x \in X$, the conjugacy class of $N_{G}(x)$ is

$$
\widetilde{N_{G}(x)}=\left\{g^{-1} N_{G}(x) g \mid g \in G\right\}=\left\{N_{G}(y) \mid y \in x^{G}\right\}
$$

where $x^{G}:=\left\{x^{g} \mid g \in G\right\}$ is the orbit of x, i.e. the elements of an orbit have as their stabilizers a complete conjugacy class of subgroups of G. We say $\widetilde{N_{G}(x)}$ is the type of the orbit x^{G}. For a given subgroup $S \in L(G)$ we define

$$
\Omega(G, X)_{\widetilde{S}}:=\left\{x^{G} \mid N_{G}(x) \in \widetilde{S}\right\}
$$

to be the set of orbits of G on X of type \widetilde{S}. The task is now to determine the cardinality of this set. In order to determine this number we consider the set of S-invariants:

$$
X_{S}:=\left\{x \in X \mid \forall g \in S: x^{g}=x\right\} .
$$

The cardinality of X_{S} is called the mark of S on X and we get the following well-known connection (see [3]):

$$
\left|X_{S}\right|=\sum_{T \in L(G)} \zeta(S, T) \frac{|T \backslash G|}{|\widetilde{T}|}\left|\Omega(G, X)_{\widetilde{T}}\right|
$$

If we substitute

$$
\phi(S, T):=\zeta(S, T) \frac{|T \backslash G|}{|\widetilde{T}|}
$$

we obtain a mapping ϕ which is obviously an element of $I(L(G), \mathbb{Q})_{G}$. Moreover, ϕ is an invertible function. Therefore, if $\widetilde{S_{1}}, \ldots, \widetilde{S_{n}}$ denote the orbits of G on $L(G)$, we obtain the equation

$$
\left(\begin{array}{c}
\left|X_{S_{1}}\right| \\
\vdots \\
\left|X_{S_{n}}\right|
\end{array}\right)=\phi^{\wedge} \cdot\left(\begin{array}{c}
\left|\Omega(G, X)_{\widetilde{S_{1}}}\right| \\
\vdots \\
\left|\Omega(G, X)_{\widetilde{S_{n}}}\right|
\end{array}\right)
$$

respectively after multiplication with $\left(\phi^{-1}\right)^{\wedge}$ from the left

$$
\left(\begin{array}{c}
\left|\Omega(G, X)_{\widetilde{S_{1}}}\right| \\
\vdots \\
\left|\Omega(G, X)_{\widetilde{S_{n}}}\right|
\end{array}\right)=\left(\phi^{-1}\right)^{\wedge} \cdot\left(\begin{array}{c}
\left|X_{S_{1}}\right| \\
\vdots \\
\left|X_{S_{n}}\right|
\end{array}\right)
$$

The matrix

$$
M(G):=\phi^{\wedge}
$$

is known as the table of marks of G and its inverse

$$
B(G):=\left(\phi^{-1}\right)^{\wedge}
$$

is called the Burnside matrix of G.
3.3. Plesken matrices. The Plesken matrices [6] provide another application of group invariant incidence functions. If a group G acts on a finite poset X as a group of automorphisms, i. e. $x \prec y \Leftrightarrow x^{g} \prec y^{g}$ and if $\mathcal{O}_{1}, \ldots, \mathcal{O}_{n}$ are the corresponding orbits with representative $x_{i} \in \mathcal{O}_{i}$, then Plesken defined the matrices $A^{\wedge}=\left(a_{i j}^{\wedge}\right)$ and $A^{\vee}=\left(a_{i j}^{\vee}\right)$ by

$$
a_{i j}^{\wedge}:=\left|\left\{y \in \mathcal{O}_{j} \mid x_{i} \preceq y\right\}\right|
$$

and

$$
a_{i j}^{\vee}:=\left|\left\{y \in \mathcal{O}_{i} \mid y \preceq x_{j}\right\}\right| .
$$

These matrices play an important role for the determination of the number of solutions of equations of the form $x \wedge y=z$, respectively $x \vee y=z$. There is the following correspondence to the group invariant incidence functions:

Corollary 7. Let G be a group acting on a finite poset X as a group of automorphisms. Then $A^{\wedge}=\zeta^{\wedge}$ and $A^{\vee}=\zeta^{\vee}$.

References

[1] W. Burnside, The Theory of Groups of Finite Order, Cambridge 1911, reprinted by Dover Publications, 1955.
[2] S. El-Basil, A. Kerber and E. K. Lloyd, Special issue of MATCH on Tables of Marks in Chemistry, MATCH 46, 2002.
[3] A. Kerber, Applied Finite Group Actions, Springer-Verlag, 1998.
[4] R. Laue, Eine konstruktive Version des Lemmas von Burnside, Bayreuther Mathematische Schriften 28 (1989), 111-125.
[5] R. Laue, Construction of Combinatorial Objects - a Tutorial, Bayreuther Mathematische Schriften 43 (1993), 53-96.
[6] W. Plesken, Counting with Groups and Rings, J. Reine Angewandte Mathematik 334 (1982), 40-68.

Michael Braun

Kreuzerweg 23
D-81825 Munich Germany
E-mail: mic_bra@web.de

