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Abstract. Partially ordered sets (X,≼) and the corresponding incidence al-

gebra I(X,F) are important algebraic structures also playing a crucial role for

the enumeration, construction and the classification of many discrete struc-

tures. In this paper we consider partially ordered sets X on which some group

G acts via the mapping X×G → X, (x, g) 7→ xg and investigate such incidence

functions ϕ : X ×X → F of the incidence algebra I(X,F) which are invariant

under the group action, i. e. which satisfy the condition ϕ(x, y) = ϕ(xg , yg) for

all x, y ∈ X and g ∈ G. Within these considerations we define for such inci-

dence functions ϕ the matrices ϕ∧ respectively ϕ∨ by summation of entries of

ϕ and we investigate the structure of these matrices and generalize the results

known from group actions on posets.
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1. Introduction

A partially ordered set, for short poset, (X,≼) is a setX together with a reflexive,

antisymmetric and transitive binary relation ≼. Instead of x ≼ y and x ̸= y the

notation x ≺ y is also used. The poset is said to be locally finite if and only if all

its intervals [x, y] := {z ∈ X | x ≼ z ≼ y} are finite. In the following we consider

locally finite posets. Let F be a field. The set I(X,F) consisting of all mappings

ϕ : X ×X → F with the property that ϕ(x, y) = 0 unless x ≼ y yields an F-algebra
with respect to the addition

(ϕ+ ψ)(x, y) := ϕ(x, y) + ψ(x, y),

the scalar multiplication

(f · ϕ)(x, y) := f · ϕ(x, y), f ∈ F,

and the convolution product

(ϕ ∗ ψ)(x, y) :=
∑
z∈X

ϕ(x, z) · ψ(z, y) =
∑

z∈[x,y]

ϕ(x, z) · ψ(z, y),
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the so-called incidence algebra over F on X. The identity element with respect to

the convolution product is defined by the Kronecker function:

δ(x, y) :=

1 if x = y

0 otherwise.

An important element of the incidence algebra is the well-known Zeta-function

which characterizes the poset completely:

ζ(x, y) :=

1 if x ≼ y

0 otherwise.

An incidence function ϕ is invertible with respect to the convolution product if and

only if the values ϕ(x, x) are non-zero. In that case we can construct the inverse

incidence function ϕ−1 recursively:

ϕ−1(x, x) = ϕ(x, x)−1

for all x ∈ X, and

ϕ−1(x, y) = −ϕ(x, x)−1
∑

z:x≺z≼y

ϕ(x, z) · ϕ−1(z, y)

= −ϕ(y, y)−1
∑

z:x≼z≺y

ϕ−1(x, z) · ϕ(z, y)

for all different x, y ∈ X.

Since ζ(x, x) = 1 for all x ∈ X, the Zeta-function is invertible over F and its

inverse is called Moebius-function and is denoted by µ.

2. Group invariant incidence functions

From now one we assume a (multiplicatively written) group G with neutral

element 1G acting on a poset X via the mapping X × G → X, (x, g) 7→ xg from

the right, i. e. this mapping satisfies (xg)h = xgh and x1G = x for all x ∈ X and

g, h ∈ G. In the following we consider such ϕ ∈ I(X,F) satisfying the equation

ϕ(x, y) = ϕ(xg, yg)

for all x, y ∈ X and g ∈ G. We call such incidence functions G-invariant and we

use the symbol I(X,F)G for the set of all these functions.

A well-known situation occurs if ζ ∈ (X,F)G. This is equivalent to

x ≺ y ⇐⇒ xg ≺ yg

for all x, y ∈ X and g ∈ G. In this case we say that G acts as a group of automor-

phisms on the poset X [3].
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Important properties of I(X,F)G are described in the following lemma:

Lemma 1. Let G be a group acting on a locally finite poset X and F be a field. Then

I(X,F)G is a subalgebra of I(X,F). In addition I(X,F)G is a monoid with respect

to the convolution product, i. e. δ ∈ I(X,F)G. Furthermore, if ϕ ∈ I(X,F)G is an

invertible incidence function in I(X,F) and ζ ∈ I(X,F)G, then ϕ−1 ∈ I(X,F)G.

Proof. (i) Let ϕ, ψ ∈ I(X,F)G, f ∈ F and g ∈ G. We now show that the functions

ϕ+ψ, f ·ϕ and ϕ∗ψ are also G-invariant. This implies that I(X,F)G is a subalgebra

of I(X,F):

(ϕ+ ψ)(x, y) = ϕ(x, y) + ψ(x, y)

= ϕ(xg, yg) + ψ(xg, yg)

= (ϕ+ ψ)(xg, yg),

(f · ϕ)(x, y) = f · ϕ(x, y)

= f · ϕ(xg, yg)

= (f · ϕ)(xg, yg),

(ϕ ∗ ψ)(x, y) =
∑
z∈X

ϕ(x, z) · ψ(z, y)

=
∑
z∈X

ϕ(xg, zg) · ψ(zg, yg)

=
∑
z∈X

ϕ(xg, zg) · ψ(zg, yg)

=
∑
z′∈X

ϕ(xg, z′) · ψ(z′, yg)

= (ϕ ∗ ψ)(xg, yg).

(ii) Furthermore, the equivalence xg = yg ⇔ x = y for all x, y ∈ X and g ∈ G

implies δ(x, y) = δ(xg, yg), i. e. I(X,F)G is a monoid.

(iii) Now, let ϕ ∈ I(X,F)G be an invertible incidence function and let ζ ∈
I(X,F)G. We show that ϕ−1(x, y) = ϕ−1(xg, yg) for all x, y ∈ X and g ∈ G. First

we consider the case that x ̸≼ y. Then we also get xg ̸≼ yg since ζ ∈ I(X,F)G
and hence we have ϕ−1(x, y) = 0 = ϕ−1(xg, yg). Now we consider the second case

x ≼ y. There exist chains between x and y. Let ℓ(x, y) denote the length of a

maximal chain between x and y. We prove ϕ−1(x, y) = ϕ−1(xg, yg) by induction

on n = ℓ(x, y):
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I. n = 0. First ℓ(x, y) = 0, i. e. x = y. Then

ϕ−1(x, x) = ϕ(x, x)−1 = ϕ(xg, xg)−1 = ϕ−1(xg, xg).

II. n− 1 → n. Then

ϕ−1(x, y) = −ϕ(y, y)−1
∑

z:x≼z≺y

ϕ−1(x, z) · ϕ(z, y)

= −ϕ(yg, yg)−1
∑

z:x≼z≺y

ϕ−1(xg, zg)︸ ︷︷ ︸
ℓ(x,z)<n

·ϕ(zg, yg)

= −ϕ(yg, yg)−1
∑

z:xg≼zg≺yg

ϕ−1(xg, zg) · ϕ(zg, yg)

= −ϕ(yg, yg)−1
∑

z′:xg≼z′≺yg

ϕ−1(xg, z′) · ϕ(z′, yg)

= ϕ−1(xg, yg).

�

From now on let X be a finite poset and let yG := {yg | g ∈ G} denote the orbit

of y ∈ X. Then we define for a G-invariant incidence function ϕ ∈ I(X,F)G the

values

ϕ(x, yG) :=
∑
z∈yG

ϕ(x, z)

and

ϕ(yG, x) :=
∑
z∈yG

ϕ(z, x)

for x, y ∈ X.

Lemma 2. Let G be a group acting on the finite poset X and F be a field. Let

ϕ ∈ I(X,F)G. Then the equations

ϕ(x, yG) = ϕ(xg, yG)

and

ϕ(yG, x) = ϕ(yG, xg)

hold for all x, y ∈ X and g ∈ G.

Proof. We prove the first equation, the proof of the second one is analogous. Let

x, y ∈ X, g ∈ G and ϕ ∈ I(X,F)G. Then we have

ϕ(x, yG) =
∑

z∈yG ϕ(x, z) =
∑

z∈yG ϕ(xg, zg) =
∑

z′∈yG ϕ(xg, z′) = ϕ(xg, yG).

�
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Let O1, . . . ,On denote the orbits of G on the poset X and let xi ∈ Oi denote a

representative of the ith orbit. Now we can define two n × n matrices ϕ∧ = (ϕ∧ij)

and ϕ∨ = (ϕ∨ij) with entries

ϕ∧ij := ϕ(xi,Oj)

and

ϕ∨ij := ϕ(Oi, xj).

The following lemma shows the connection between ϕ∧ and ϕ∨.

Lemma 3. Let G be a group acting on the finite poset X with corresponding orbits

O1, . . . ,On and let F be a field. Let ϕ ∈ I(X,F)G and let

∆ :=


|O1| 0

. . .

0 |On|

 .

Then the following equation holds

ϕ∨ ·∆ = ∆ · ϕ∧.

Furthermore, if the characterstic of the field F does not divide the orbit sizes

|O1|, . . . , |On|, then

ϕ∨ = ∆ · ϕ∧ ·∆−1.

Proof. Let M = (mij) = ϕ∨ ·∆ and let N = (nij) = ∆ · ϕ∧. In the following we

show the equality of these two matrices M = N :

mij = ϕ∨ij · |Oj | = ϕ(Oi, xj) · |Oj |

=
∑
y∈Oj

ϕ(Oi, xj) =
∑
y∈Oj

ϕ(Oi, y)

=
∑
y∈Oj

∑
x∈Oi

ϕ(x, y) =
∑
x∈Oi

∑
y∈Oj

ϕ(x, y)

=
∑
x∈Oi

ϕ(x,Oj) =
∑
x∈Oi

ϕ(xi,Oj)

= |Oi| · ϕ(xi,Oj) = |Oi| · ϕ∧ij
= nij .

Multiplying the inverse of ∆ from the right yields the second equation. �

From now on we restrict our investigation to the matrix ϕ∧ since the results for

ϕ∨ are analogous.
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Lemma 4. Let G be a group acting on the finite poset X and F be a field. Then

δ∧ is the n×n unit matrix, where the dimension n is the number of orbits of G on

the poset X.

Proof. For all i, j ∈ {1, . . . , n} with i ̸= j we obtain

δ∧ij =
∑
y∈Oj

δ(xi, y) = 0

and

δ∧ii = δ(xi, xi) +
∑

y∈Oi:y ̸=xi

δ(xi, y) = 1 + 0 = 1.

�

Theorem 5. Let G be a group acting on the finite poset X and F be a field. Then

the equations

(f · ϕ)∧ = f · ϕ∧, (ϕ+ ψ)∧ = ϕ∧ + ψ∧, (ϕ ∗ ψ)∧ = ϕ∧ · ψ∧

hold for all ϕ, ψ ∈ I(X,F)G and f ∈ F.

Proof. (i)

(f · ϕ)∧ij = (f · ϕ)(xi,Oj) =
∑
y∈Oj

(f · ϕ)(xi, y)

=
∑
y∈Oj

f · ϕ(xi, y) = f ·
∑
y∈Oj

ϕ(xi, y)

= f · ϕ(xi,Oj)

= f · ϕ∧ij

(ii)

(ϕ+ ψ)∧ij = (ϕ+ ψ)(xi,Oj) =
∑
y∈Oj

(ϕ+ ψ)(xi, y)

=
∑
y∈Oj

[ϕ(xi, y) + ψ(xi, y)] =
∑
y∈Oj

ϕ(xi, y) +
∑
y∈Oj

ψ(xi, y)

= ϕ(xi,Oj) + ψ(xi,Oj)

= ϕ∧ij + ψ∧
ij
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(iii)

(ϕ ∗ ψ)∧ij = (ϕ ∗ ψ)(xi,Oj) =
∑
y∈Oj

(ϕ ∗ ψ)(xi, y)

=
∑
y∈Oj

∑
z∈X

ϕ(xi, z) · ψ(z, y) =
∑
z∈X

∑
y∈Oj

ϕ(xi, z) · ψ(z, y)

=
∑
z∈X

ϕ(xi, z)
∑
y∈Oj

ψ(z, y) =
∑
z∈X

ϕ(xi, z) · ψ(z,Oj)

=
∑
k

∑
z∈Ok

ϕ(xi, z) · ψ(z,Oj) =
∑
k

∑
z∈Ok

ϕ(xi, z) · ψ(xk,Oj)

=
∑
k

ψ(xk,Oj)
∑
z∈Ok

ϕ(xi, z) =
∑
k

ψ(xk,Oj) · ϕ(xi,Ok)

=
∑
k

ϕ(xi,Ok) · ψ(xk,Oj)

=
∑
k

ϕ∧ik · ψ∧
kj

�

Corollary 6. Let G be a group acting on the finite poset X and F be a field. Let

ζ ∈ I(X,F)G and let ϕ ∈ I(X,F)G be an invertible incidence function. Then ϕ∧ is

invertible and for its inverse holds the following equation

(ϕ∧)−1 = (ϕ−1)∧.

Proof. Let ϕ ∈ I(X,F)G be invertible. Since ζ is G-invariant we obtain from

Lemma 1 that ϕ−1 ∈ I(X,F)G. Hence we can apply Theorem 5 and get

ϕ∧ · (ϕ−1)∧ = (ϕ ∗ ϕ−1)∧ = δ∧

which means that (ϕ∧)−1 = (ϕ−1)∧ since δ∧ is the unit matrix. �

3. Examples

3.1. Binomial coefficients. We consider for a natural number n the matrix B =

(bij), 0 ≤ i, j ≤ n, where bij =
(
j
i

)
is the number of i-subsets which are contained

in a set with j elements. The aim is to compute the inverse matrix B−1. We

take a set X with n elements and consider the action of the symmetric group

SX := {π : X → X | π bijectively } on the power set P (X) := {S | S ⊆ X} via the

mapping

P (X)× SX → P (X), (S, π) 7→ Sπ := {xπ | x ∈ S}.
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It is obvious that SX acts as a group of automorphisms on P (X). If
(
X
k

)
denotes the

set of k-subsets of X, the orbits of this action are exactly the sets O0 =
(
X
0

)
,O1 =(

X
1

)
, . . . ,On =

(
X
n

)
. As SX -invariant incidence function we take the Zeta-function

ζ(T,K) :=

1 if T ⊆ K

0 otherwise

together with its inverse µ(T,K) = (−1)|K|−|T |ζ(T,K). Then we consider the

matrix ζ∨ whose entries are

ζ∨ij = ζ(Oi, Sj) =
∑

S∈(Xi )

ζ(S, Sj) =

(
j

i

)
, where Sj ∈ Oj =

(
X

j

)

i. e. we have B = ζ∨. Because of the equation (ζ∨)−1 = µ∨ we obtain for the

inverse of B the matrix µ∨ that is given by the following entries:

µ∨
ij = µ(Oi, Sj) =

∑
S∈Oi

µ(S, Sj) =
∑

S∈(Xi )

(−1)j−iζ(S, Sj)

= (−1)j−i
∑

S∈(Xi )

ζ(S, Sj) = (−1)j−i

(
j

i

)

Finally we have that the matrix B−1 = (b−1
ij ), b−1

ij = (−1)j−i
(
j
i

)
is the inverse of

B = (bij), bij =
(
j
i

)
.

3.2. Table of Marks and Burnside matrix. The table of marks of a group,

introduced by Burnside (see [1]), plays an important role for the enumeration,

construction and classification of discrete structures as groups, graphs and t-designs

(see [3,4,5]). Especially the combinatorial chemistry (see [2]) uses the table of marks

as a tool for the enumeration of chemical compounds. Now we show here that the

table of marks is a matrix ϕ∧ with a certain group invariant incidence function ϕ.

Let G be a finite group, and let L(G) := {S | S ≤ G} denote the set of all

subgroups of G. This set together with the inclusion relation forms a finite poset,

the so-called subgroup lattice of G. The group G acts on L(G) by conjugation

L(G)×G→ L(G), (g, S) 7→ g−1Sg := {g−1sg | s ∈ S}

such that G acts on L(G) as a group of automorphisms, i. e. the equivalence

S < T ⇐⇒ g−1Sg < g−1Tg

holds for all S, T ∈ L(G) and g ∈ G. The orbits of this action are the conjugacy

classes of subgroups

S̃ := {g−1Sg | g ∈ G}.
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Now if G acts on a set X and if NG(x) := {g ∈ G | xg = x} denotes the stabilizer

of an element x ∈ X, the conjugacy class of NG(x) is

ÑG(x) = {g−1NG(x)g | g ∈ G} = {NG(y) | y ∈ xG}

where xG := {xg | g ∈ G} is the orbit of x, i. e. the elements of an orbit have as

their stabilizers a complete conjugacy class of subgroups of G. We say ÑG(x) is

the type of the orbit xG. For a given subgroup S ∈ L(G) we define

Ω(G,X)S̃ := {xG | NG(x) ∈ S̃}

to be the set of orbits of G on X of type S̃. The task is now to determine the

cardinality of this set. In order to determine this number we consider the set of

S-invariants:

XS := {x ∈ X | ∀g ∈ S : xg = x}.

The cardinality of XS is called the mark of S on X and we get the following

well-known connection (see [3]):

|XS | =
∑

T∈L(G)

ζ(S, T )
|T\G|
|T̃ |

|Ω(G,X)T̃ |

If we substitute

ϕ(S, T ) := ζ(S, T )
|T\G|
|T̃ |

we obtain a mapping ϕ which is obviously an element of I(L(G),Q)G. Moreover, ϕ

is an invertible function. Therefore, if S̃1, . . . , S̃n denote the orbits of G on L(G),

we obtain the equation
|XS1 |

...

|XSn |

 = ϕ∧ ·


|Ω(G,X)

S̃1
|

...

|Ω(G,X)
S̃n

|

 ,

respectively after multiplication with (ϕ−1)∧ from the left
|Ω(G,X)

S̃1
|

...

|Ω(G,X)
S̃n

|

 = (ϕ−1)∧ ·


|XS1 |

...

|XSn |

 .

The matrix

M(G) := ϕ∧

is known as the table of marks of G and its inverse

B(G) := (ϕ−1)∧

is called the Burnside matrix of G.
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3.3. Plesken matrices. The Plesken matrices [6] provide another application of

group invariant incidence functions. If a group G acts on a finite poset X as a group

of automorphisms, i. e. x ≺ y ⇔ xg ≺ yg and if O1, . . . ,On are the corresponding

orbits with representative xi ∈ Oi, then Plesken defined the matrices A∧ = (a∧ij)

and A∨ = (a∨ij) by

a∧ij := |{y ∈ Oj | xi ≼ y}|

and

a∨ij := |{y ∈ Oi | y ≼ xj}|.

These matrices play an important role for the determination of the number of

solutions of equations of the form x ∧ y = z, respectively x ∨ y = z. There is the

following correspondence to the group invariant incidence functions:

Corollary 7. Let G be a group acting on a finite poset X as a group of automor-

phisms. Then A∧ = ζ∧ and A∨ = ζ∨.
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