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Abstract. We show, in two different ways, that every finite field extension

has a basis with the property that the Galois group of the extension acts

faithfully on it. We use this to prove a Galois correspondence theorem for

general finite field extensions. We also show that if the characteristic of the

base field is different from two and the field extension has a normal closure

of odd degree, then the extension has a self-dual basis upon which the Galois

group acts faithfully.
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1. Introduction

If K/k is a finite field extension and G is a subgroup of the group Autk(K)

of k-automorphisms of K, then the action of G on K induces a left k[G]-module

structure on K in a natural way. If the order of G equals the degree [K : k] of K as

a vector space over k, then K/k is a Galois extension and the well known normal

basis theorem (see e.g. Theorem 13.1 in [8]) implies that K is a free k[G]-module

with one generator. This result can of course be formulated more concretely by

saying that there is an element x in K such that the conjugates g(x), g ∈ G, form

a basis for K as a vector space over k. If the order of G is less than [K : k], then

K is still a free k[G]-module but not necessarily with one generator. In fact, if we

let KG denote the subfield of elements x in K with the property that g(x) = x for

all g ∈ G, then the following result holds.

Theorem 1. If K/k is a finite field extension and G is a subgroup of Autk(K),

then K is a free k[G]-module with [KG : k] generators.

This result follows directly from the normal basis theorem. In fact, since the

extension K/KG is Galois, the field K is a free KG[G]-module with one generator.

If we pick such a generator x and a basis A for KG as a vector space over k, then

it is easy to check that the set of products ax, a ∈ A, freely generates K as a left
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k[G]-module. In Section 2, we give two different direct proofs of Theorem 1, that

is, proofs that do not use the normal basis theorem. Both of these proofs are based

on descent, that is, the fact that a basis with the desired property exists for the

extension K ⊗k L where L is a normal closure of K. The first proof is a variant of

an idea of Noether and Deuring (see [10] and [6]) which involves the Krull-Schmidt

theorem. The second proof is a generalization of a folkloristic idea using Hilbert’s

theorem 90. As a by product of Theorem 1, we obtain a Galois correspondence

theorem for general finite field extensions (see Theorem 3). This correspondence is

more or less well known but rarely stated in the literature.

Now suppose that K/k is separable and let S denote the set of embeddings

of K into L. The trace map trK/k : K → k, defined by trK/k(x) =
∑

s∈S s(x),

x ∈ K, induces a symmetric bilinear form qK : K × K → k by the relation

qK(x, y) = trK/k(xy), x, y ∈ K. The bilinear form qK is also a G-form, that is,

it is invariant under the action of G. The G-form structure of (K, qK) has been

extensively studied (see e.g. [2], [3], [4], [5], [7] and [9]). In [3] Bayer-Fluckiger

and Lenstra show that if K/k is Galois, the characteristic of k is different from two

and the order |G| of the group G is odd, then (K, qK) is isomorphic to the G-form

(k[G], q0), where q0 is the unit G-form, that is, the k-bilinear map k[G]× k[G]→ k

defined by the relations q0(g, g) = 1 and q0(g, g′) = 0 if g 6= g′ for all g, g′ ∈ G. It is

easy to see that such an isomorphism exists precisely when K/k has a normal basis

which is self-dual with respect to the bilinear form qK . Bayer-Fluckiger and Lenstra

utilize a general result (see Theorem 2.1 in [3]) concerning hermitian modules and

in a special case G-forms (see Theorem 4) to show the existence of self-dual normal

bases. In Section 3, we use this idea to prove the following generalization of their

result.

Theorem 2. Let K/k be a finite separable field extension and suppose that G is a

subgroup of Autk(K). If the characteristic of k is different from two and K/k has

a normal closure L/k of odd degree, then (K, qK) is isomorphic to the direct sum

of [KG : k] copies of the unit G-form (k[G], q0).

Bayer-Fluckiger [1] has shown that finite Galois extensions of odd degree have

self-dual normal bases in the case when the characteristic of the base field is two

also. It is not clear to the author if Theorem 2 can be extended to this case.

2. Galois module structure

In this section, we give two different proofs of Theorem 1. Then we use this

result to obtain a Galois correspondence theorem for general finite field extensions
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(see Theorem 3). We will use the following two standard facts from field theory.

Let F/F ′ be a field extension.

(F1) If H is a finite subgroup of AutF ′(F ), then [F : FH ] = |H| and for any

field K ′, with FH ⊆ K ′ ⊆ F , F/K ′ is Galois.

(F2) If F/F ′ is finite and Galois, then [F : F ′] = |AutF ′(F )|.

Now we show Theorem 1. We claim that it is enough to show the result for

separable extensions. To show the claim we need some more notations and a lemma.

Let K1/k be the maximally separable subextension of K/k. Then K/K1 is purely

inseparable and since the restriction map from Autk(K) to Autk(K1) is a bijection,

we can, by abuse of notation, assume that G is a subset of both of these groups.

Lemma 1. There is a basis B for K as a vector space over K1 with the property

that s(b) = b, s ∈ S, b ∈ B.

Proof. By induction over the degree of K over K1, we can assume that K =

K1(b) for some purely inseparable b ∈ K over K1. By it’s definition B :=

{1, b, b2, . . . , bpm−1}, where [K : K1] = pm, has the desired property. �

Now we show the claim. By Lemma 1, K = ⊕b∈BK1b where each b belongs to

KG. If we assume that K1 is a free k[G]-module with [KG
1 : k] generators, then, by

(F1), K is a free k[G]-module with

[K : K1][KG
1 : k] =

[K : KG][KG : KG
1 ][KG

1 : k]

[K1 : KG
1 ]

=
|G|[KG : k]

|G|
= [KG : k]

generators and the claim follows. From now on we assume that K/k is separable.

First proof of Theorem 1. Recall that if X is a finite set, then L[X] is defined to be

the set of formal sums
∑

x∈X lxx, where lx ∈ L, x ∈ X. If G acts on X, then L[X]

is, in a natural way, a left L[G]-module. In the following lemma we let G act on

S−1 := {s−1 | s ∈ S} by composition from the left. The action of G on K induces

a left L[G]-module structure on K ⊗k L.

Lemma 2. The left L[G]-modules K ⊗k L and L[S−1] are isomorphic.

Proof. Define a map ϕ : K⊗kL→ L[S−1] by the relation ϕ(a⊗b) =
∑

s∈S s(a)bs−1,

a ∈ K, b ∈ L. It is clear that ϕ is L-linear. Now we show that ϕ respects the ac-

tion of G. Take a ∈ K, b ∈ L and g ∈ G. Then ϕ(g(a ⊗ b)) = ϕ(g(a) ⊗ b) =∑
s∈S sg(a)bs−1. If we put t := sg, then s−1 = gt−1 and hence ϕ(g(a ⊗ b)) =∑
t∈S t(a)bgt−1 = g

∑
t∈S t(a)bt−1 = gϕ(a ⊗ b). By L-dimensionality, we only

need to show that ϕ is injective to finish the proof. Suppose that ϕ(x) = 0
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for some x ∈ K ⊗k L. Take a basis at, t ∈ S, for K as a vector space over

k. Then we can choose lt ∈ L, t ∈ S, such that x =
∑

t∈S at ⊗ lt. Therefore

0 = ϕ(
∑

t∈S at ⊗ lt) =
∑

s∈S
∑

t∈S s(at)lts
−1. This implies that

∑
t∈S s(at)lt = 0,

s ∈ S. However, by Dedekinds linear independence theorem (see e.g. Theorem 4.1

in [8]), the matrix (s(at))s,t is non-singular. Therefore lt = 0, t ∈ S, which in turn

implies that x = 0. �

To finish the first proof of Theorem 1 note that the isomorpism in Lemma 2

implies an isomorphism K⊕[L:k] ∼= k[S−1]⊕[L:k] of k[G]-modules. Therefore, by the

Krull-Schmidt theorem (see e.g. Theorem 7.5 in [8]), K ∼= k[S−1] as k[G]-modules.

Since the action of G on S−1 is faithful, k[S−1] decomposes into a direct sum of

copies of k[G], the number of these copies being equal to the number of orbits for

the action of G on S−1, which, in turn, by (F1), equals |S|/|G| = [K : k]/[K :

KG] = [KG : k]. This ends the first proof.

Second proof of Theorem 1. This proof uses the language of Galois cohomology (for

the details, see e.g. pp. 158-162 in [11]). Put G′ := Autk(L) and V := k[S−1].

Let EV denote the set of all isomorphism classes of left k[G]-modules V ′ with the

property that V ⊗k L and V ′ ⊗k L are isomorphic as left L[G]-modules. Now we

show that EV can be embedded in a pointed cohomology set. We can define an

action of G′ on the set of L[G]-module isomorphisms f : V ⊗k L → V ′ ⊗k L by

g(f) = g ◦ f ◦ g−1, g ∈ G′, where G′ acts on the second factor in V ⊗k L. It is

easy to check that G′ 3 g 7→ pg := f−1 ◦ g(f) ∈ AutL[G](V ⊗k L) is a cocycle,

that is, a map satisfying pgh = pgg(ph), g, h ∈ G′. Two cocycles p and p′ are

called cohomologous, denoted p ∼ p′, if there exists a ∈ AutL[G](V ⊗k L) such that

p′g = a−1pgg(a), g ∈ G′. Then ∼ is an equivalence relation on the set of cocycles and

the corresponding quotient set, denoted H1(G′,AutL[G](V ⊗kL)), is called the first

cohomology set of G′ in AutL[G](V ⊗k L). By making p correspond to V ′ ⊗k L we

get a canonical map from EV to H1(G′,AutL[G](V ⊗k L)). Since (V ⊗k L)G
′

= V

it follows that this map is injective. However, by Hilbert’s theorem 90 (see e.g.

Exercise 2 on p. 160 in [11]), the cohomology set H1(G′,AutL[G](V ⊗k L)) is

trivial. Therefore K and k[S−1] are isomorphic k[G]-modules and we can end the

second proof in the same way as in the first proof.

A Galois correspondence. Let F denote the set of fields between K and k and let

G denote the set of subgroups of G := Autk(K). Define functions α : G→ F and

β : F→ G by α(G′) = KG′
, G′ ∈ G and β(K ′) = AutK′(K), K ′ ∈ F. Also, let β′

denote the restriction of β to F′ := {K ′ ∈ F | K ′ ⊇ KG}.
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Theorem 3. With the above notations, α and β are inclusion reversing maps

satisfying βα = idG and αβ(K ′) ⊇ K ′, K ′ ∈ F, with equality if and only if K ′ ∈ F′.

In particular, β′α = idG and αβ′ = idF′ .

Proof. First we show that βα = idG. Take G′ ∈ G. It is clear that H := βα(G′) =

AutKG′ (K) ⊇ G′. To show the reversed inclusion we first note that, by Theorem 1,

the elements in KG′
correspond to elements x = (

∑
g∈G kg,ig)

[KG:k]
i=1 in k[G]⊕[K

G:k]

satisfying g′x = x, g′ ∈ G′. This is equivalent to the conditions kg′g,i = kg,i, g
′ ∈ G′,

g ∈ G, 1 ≤ i ≤ [KG : k]. In particular, this implies that y := (
∑

g′∈G′ g′)
[KG:k]
i=1

belongs to
(
k[G]⊕[K

G:k]
)G′

. Therefore hy = y, h ∈ H, which implies that H ⊆ G′.
For the second part of the proof take K ′ ∈ F. The inclusion K ′′ := αβ(K ′) =

KAutK′ (K) ⊇ K ′ is obvious. If equality holds, then K ′ ⊇ KG. On the other hand,

suppose that K ′ ⊇ KG. Then K/K ′ is Galois, which, by (F1) and (F2), implies

that [K : K ′′] = |AutK′(K)| = [K : K ′]. Therefore [K ′′ : K ′] = 1 and hence

K ′′ = K ′. The last part is clear. �

3. The trace form

The trace form qK on K induces in a natural way an L-bilinear G-form qL on

K ⊗k L. Also, define a G-form r on L[S−1] by the relation r(s−11 , s−11 ) = 1 and

r(s−11 , s−12 ) = 0 if s1 6= s2 for all s1, s2 ∈ S.

Lemma 3. The G-forms (K ⊗k L, qL) and (L[S−1], r) are isomorphic.

Proof. Define ϕ : K ⊗k L → L[S−1] as in the proof of Lemma 2. All we

need to show is that ϕ respects the bilinear forms. Take a, a′ ∈ K and b, b′ ∈
L. Then qL(a ⊗ b, a′ ⊗ b′) = qK(a, a′)bb′ = trK/k(aa′)bb′ =

∑
s∈S s(aa

′)bb′ =∑
s∈S s(a)s(a′)bb′ =

∑
s1,s2∈S s1(a)bs2(a′)b′r(s−11 , s−12 ) = r(

∑
s1∈S s1(a)bs−11 ,∑

s2∈S s2(a′)b′s−12 ) = r(ϕ(a⊗ b), ϕ(a′ ⊗ b′)). �

Remark 1. Lemma 2 and Lemma 3 (and their proofs) are generalizations from

Galois extensions to the case of separable extensions of isomorphisms established

by Conner and Perlis in [5].

From now on assume that all fields are of characteristic different from two. To

prove Theorem 2, we need the following result.

Theorem 4. ([3]) If two G-forms become isomorphic over an extension of odd

degree, then they are isomorphic.

Suppose that K/k has a normal closure L/k of odd degree. By Lemma 3 and

Theorem 4, the G-forms (K, qK) and (k[S−1], r) are isomorphic. With the same
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argument as in the first proof of Theorem 1 it is clear that (k[S−1], r) is isomorphic

to the direct sum of [KG : k] copies of the unit G-form (k[G], q0). This ends the

proof of Theorem 2.

Remark 2. If we let G be the trivial group, then Theorem 2 implies the existence

of a self-dual basis for all finite separable field extensions K/k with the property

that L/k is of odd degree. This generalizes a result by Conner and Perlis (see (I.6.5)

in [5] and Proposition 5.1 in [3]).
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Gärdhemsvägen 4, Box 957, 461 29 Trollhättan, Sweden

E-mail: patrik.lundstrom@hv.se


