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1. Introduction and Preliminaries

A right seminearring is a set R together with two binary operations “+”and “.”

such that (R,+) and (R, .) are semigroups and for all a, b, c ∈ R : (a+ b)c = ac+ bc

([5]). A right seminearring R is said to have an absorbing zero 0 if a+0 = 0+a = a

and a.0 = 0.a = 0 hold for all a ∈ R. A non-empty subset I of a seminearring R is

called a right (left) ideal if

(i) for all x, y ∈ I, x+ y ∈ I and

(ii) for all x ∈ I and r ∈ R, xr(rx) ∈ I.

The word ideal will always mean a subset of R which is both a left and a

right ideal of R. An element a of a seminearring R is called distributive if for

all x, y ∈ R, a(x+ y) = ax+ ay; R will be called distributive if each of its element

is distributive. A seminearring R is called distributively generated, or d.g. for

short, if R contains a multiplicative subsemigroup D of distributive elements which

generates (R,+). If A, B are the non-empty subsets of a seminearring R, then AB

will denote the set of all finite sums of the form
∑

akbk with ak ∈ A and bk ∈ B.

In particular, for each a ∈ R, aR (Ra) will denote the set of all finite sums of the

form
∑

ark (
∑

rka) with rk ∈ R. Since R is right distributive, Ra = {ra : r ∈ R}.
Clearly aR(Ra) is a right (left) ideal of R.

For any subset A of R, < A > will denote the ideal of R generated by A. If A

and B are ideals of R then the product AB = {
∑n

k=1 akbk : ak ∈ A and bk ∈ B} is

not an ideal. However, if R is distributively generated seminearring then AB is an
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ideal of R. For ideals A,B of R, the sum A + B is defined as the set of all finite

sums
∑

(ak + bk) with ak ∈ A and bk ∈ B.

If R is d.g. seminearring then A+ B is the smallest ideal of R containing both

A and B. More generally, if {Ai : i ∈ I} is an arbitrary family of ideals of a

seminearring R with an absorbing zero, then the sum
∑

Ai is the set of all finite

sums
∑

xj where xj =
∑

i∈I aij such that aij ∈ Ai and aij = 0 for all except

finitely many i ∈ I. If R is d.g. seminearring, then
∑

i∈I Ai is the smallest ideal

of R containing all ideals {Ai : i ∈ I}. Moreover ∩i∈IAi is the greatest ideal of R

contained in all ideals {Ai : i ∈ I}.
Let R be a seminearring with multiplicative identity 1 (i.e. 1.x = x.1 = x for all

x ∈ R}. An additive semigroup (M,+) with neutral element zero is called a left

R-seminearmodule if there exist a function α : R ×M −→ M such that if α(r,m)

is denoted by rm, then

(i) (r1 + r2)m = r1m+ r2m

(ii) (r1r2)m = r1(r2m)

(iii) 1.m = m

(iv) r0 = 0m = 0, for all r1, r2, r ∈ R and m ∈ M .

A mapping α : A −→ B between left R-seminearmodules A and B is a left

R-homomorphism if

(i) α(a+ a1) = α(a) + α(a1)

(ii) α(ra) = rα(a) for all a, a1 ∈ A and r ∈ R.

Generally, the sum of two R-homomorphisms is not an R-homomorphism. Let

R and L be two seminearrings. We shall say that L is an R-seminearring if L has

the structure of R-seminearmodule and r(xy) = (rx)y, for all x, y ∈ L and r ∈ R.

For two R-seminearrings L1 and L2, a seminearring homomorphism f : L1 −→
L2 is called a homomorphism of R-seminearrings if f is an R-homomorphism.

In [3], Brown and McCoy considered the notion of weakly regular rings. These

rings were later studied by Ramamurthi [6], [4] and others. In this paper we initiate

the study of weakly regular seminearrings. In Section 2, we define and characterize

these seminearrings. In Section 3, we construct irreducible spectrum of a d.g.

weakly regular seminearring. In Section 4, we prove a representation theorem for

distributive left weakly regular seminearrings by sections in a presheaf.
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2. Weakly Regular Seminearrings

A ring R is called left weakly regular if x ∈ (Rx)2, for each x ∈ R. Adopting

this definition, a seminearring R will be called left weakly regular if for each x ∈ R,

x ∈ (Rx)2. Every seminearring in this paper contains multiplicative identity.

2.1. Theorem. The following assertions for a seminearring R are equivalent.

(i) R is left weakly regular.

(ii) Every left ideal of R is idempotent (i.e. A2 = A for every left ideal A of R).

Proof. (i) ⇒ (ii) Let A be a left ideal of R. Clearly A2 ⊆ A. For the reverse

inclusion, let x ∈ A, then x ∈ (Rx)2. But Rx ⊆ A, so (Rx)2 ⊆ A2 =⇒ x ∈ A2.

(ii) ⇒ (i) Suppose that every left ideal of R is idempotent. Let x ∈ R then

x ∈ Rx implies that x ∈ (Rx) = (Rx)2. Thus R is left weakly regular. �

2.2. Proposition. Suppose R is distributively generated seminearring. Let x ∈ R

then RxR is a two sided ideal of R generated by x.

Proof. Let a, b ∈ RxR then a =
∑

finite sixti and b =
∑

finite s
′

ixt
′

i where si, s
′

i, ti

and t
′

i ∈ R.

a+ b =

 ∑
finite

sixti +
∑

finite

s
′

ixt
′

i

 ∈ RxR.

If r ∈ R then

ar = (
∑

finite

sixti)r =
∑

finite

six(tir) ∈ RxR.

Since R is d.g. so there exist distributive elements d1, d2, ..., dn such that r =

d1 + d2 + ...+ dn. Thus

ra = (d1 + d2 + ...+ dn)(
∑

finite

sixti)

= d1(
∑

finite

sixti) + d2(
∑

finite

sixti) + ...+ dn(
∑

finite

sixti)

=
∑

finite

(d1si)xti +
∑

finite

(d2si)xti + ...+
∑

finite

(dnsi)xti ∈ RxR.

Thus RxR is a two sided ideal of R. As R contains multiplicative identity, so

x ∈ RxR. If A is any ideal of R containing x, then sxt ∈ A for all s, t ∈ R. Also∑
finite sixti ∈ A implies that RxR ⊆ A. Hence RxR is the two sided ideal of R

generated by x. �
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2.3. Theorem. The following assertions for a distributively generated seminear-

ring R are equivalent.

(i) R is left weakly regular.

(ii) Every left ideal of R is idempotent.

(iii) For each (two sided) ideal I of R, J ∩ I = IJ , for any left ideal J of R.

Proof. (i) ⇔ (ii) From Theorem 2.1.

(ii) ⇒ (iii) Let I be an ideal and J be a left ideal of R. Since IJ ⊆ J and

IJ ⊆ I =⇒ IJ ⊆ J ∩I. Let x ∈ J ∩I =⇒ x ∈ J and x ∈ I. By (ii) x ∈ Rx = (Rx)2

which implies x =
∑

finite(rix)(tix) = (
∑

finite(rixti))x ∈ IJ. Since x ∈ I, so∑
finite rixti ∈ I. Thus J ∩ I ⊆ IJ . Hence J ∩ I = IJ .

(iii) ⇒ (i) Let x ∈ R then x ∈ Rx and x ∈ RxR. As Rx is a left ideal and

RxR is an ideal of R, so by (iii), Rx ∩ RxR = (RxR)(Rx). As x ∈ Rx ∩ RxR =

(RxR)(Rx) = (Rx)(Rx), therefore x ∈ (Rx)2. Hence R is a left weakly regular. �

2.4. Proposition. Each ideal of a left weakly regular seminearring is left weakly

regular (as a seminearring).

Proof. Let J be an ideal of a left weakly regular seminearring R. Let x ∈ J

then Jx is a left ideal of R (since Jx = {jx : j ∈ J} if j1x and j2x ∈ Jx then

j1x + j2x = (j1 + j2)x ∈ Jx, if r ∈ R then r(jx) = (rj)x ∈ Jx. By Theorem 2.1,

(Jx)2 = Jx. As x ∈ R, so x ∈ (Rx)2 that is

x = r1xt1x+ r2xt2x+ . . .+ rnxtnx

= (r1xt1 + r2xt2 + . . .+ rnxtn)x ∈ Jx, since x ∈ J.

As Jx = (Jx)2, so x ∈ (Jx)2. Thus J is a left weakly regular(as a seminearring). �

2.5. Definition. A two sided ideal I of a seminearring R is called left pure if for

each x ∈ I there exists y ∈ I such that x = yx. In other words, I is left pure if and

only if for each a ∈ I the equation a = xa has a solution in I.

2.6. Proposition. A distributively generated seminearring R is left weakly regular

if and only if every two sided ideal I of R is left pure.

Proof. Suppose R is a left weakly regular seminearring and I a two sided ideal of

R. Let a ∈ I. Then a ∈ (Ra)2, that is

a =
∑

finite

(ria)(tia) = (
∑

finite

riati)a = ya, where y =
∑

finite

riati ∈ I.

Thus I is left pure.
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Conversely, assume that every ideal of R is left pure. Let a ∈ R, then RaR is

a two sided ideal of R generated by a. By hypothesis a ∈ (RaR)a = (Ra)(Ra) =

(Ra)2. Thus R is left weakly regular. �

2.7. Proposition. For a distributively generated left weakly regular seminearring

R, the set of all ideals of R (ordered by inclusion) form a complete lattice £R under

the sum and intersection of ideals with I ∩ J = IJ for ideals I, J of R.

A lattice £ is called Brouwerian if for any a, b ∈ £, the set of all x ∈ £ satisfying

a ∧ x ≤ b contains a greatest element c, the pseudo-complement of a relative to b.

A (complete) Brouwerian lattice is distributive.

2.8. Proposition. If R is a distributively generated left weakly regular seminear-

ring, then the lattice £R of all ideals of R (ordered by inclusion) is distributive.

Proof. Follows from [2, Proposition 3.3]. �

2.9. Proposition. Let R be a distributively generated left weakly regular semin-

earring. For an ideal P of R the following assertions are equivalent.

(i) For ideals I, J of R, I ∩ J = P implies I = P or J = P,

(ii) I ∩ J ⊆ P =⇒ I ⊆ P or J ⊆ P,

(iii) < a > ∩ < b >⊆ P =⇒ a ∈ P or, b ∈ P , for any a, b ∈ R.

Proof. (i) ⇒ (ii) Suppose I ∩J ⊆ P for ideals I, J of R. Then P = (I ∩J)+P =

(I+P )∩ (J+P ) by Proposition 2.8. Hence by hypothesis I+P = P or J+P = P

that is I ⊆ P or J ⊆ P .

(ii) ⇒ (iii) It is obvious.

(iii) ⇒ (i) Suppose I, J , are ideals of R containing P properly. Then there exist

a ∈ I\P and b ∈ J\P . By the contrapositivity of (iii), we have < a > ∩ < b >* P .

Hence I ∩ J ̸= P. �

2.10. Definition. An ideal P of R is called irreducible if it is proper (i.e. P ̸= R)

and satisfies one of the equivalent conditions of the above Proposition.

2.11. Proposition. Let R be a distributively generated left weakly regular semin-

earring. If I is a proper ideal of R and a /∈ I, then there exist an irreducible ideal

J of R such that I ⊆ J and a /∈ J.

Proof. By Zorn’s Lemma, there exists an ideal J of R which is maximal with

respect to the property that J is proper, I ⊆ J and a /∈ J . Then J is irreducible.

For if J = P ∩L but both P and L are properly contain J , then P and L are both
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contain a. Hence a ∈ P ∩ L. Since a /∈ J , this contradicts the assumption that

J = P ∩ L. �

The following is an immediate consequence of the above Proposition.

2.12. Proposition. Let R be a distributively generated left weakly regular sem-

inearring. Then each proper ideal of R is the intersection of all irreducible ideals

which contain it.

2.13. Definition. An ideal J of R is called a direct summand of R if there exists

an ideal J
′
, called Cosummand of J , such that J + J

′
= R and J ∩ J

′
= {0}.

2.14. Proposition. Let R be a distributively generated left weakly regular semin-

earring. Then the set of direct summands of R is a Boolean sublattice of £R.

3. Irreducible spectrum of a distributively generated left weakly

regular seminearring

3.1. Definition. We denote by £R the lattice of ideals of R and by H(R) the set

of irreducible ideals of R. For any ideal I of R, we define

ΘI = {J ∈ H(R) : I * J},

ℑ(H(R)) = {ΘI : I ∈ £R}.

In the rest of this section, R will denote a d.g. left weakly regular seminearring.

3.2. Theorem. The set ℑ(H(R)) forms a topology on the set H(R). Moreover,

the assignment I −→ ΘI is an isomorphism between the lattice £R of ideals of R

and the lattice of open subsets of H(R).

Proof. First we show that ℑ(H(R)) forms a topology on the set H(R). Note that

Θ0 = {J ∈ H(R) : (0) * J} = ∅, since (0) is contained in every (irreducible) ideal.

Thus Θ0 is the empty subset of ℑ(H(R)). On the other hand ΘR = {J ∈ H(R) :

R * J} = H(R). This is true since irreducible ideals are proper. So ΘR = H(R) is

an element of ℑ(H(R)). Now let ΘI1 ,ΘI2 ∈ ℑ(H(R)) with I1, I2 ∈ £R. Then

ΘI1 ∩ΘI2 = {J ∈ H(R) : I1 * J and I2 * J}

= {J ∈ H(R) : I1 ∩ I2 * J}

= ΘI1∩I2
.

This follows from Proposition 2.9.
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Now consider an arbitrary family {Iλ}λ∈Λ of ideals of R. Then

∪λ∈ΛΘIλ = ∪λ∈Λ{J ∈ H(R) : Iλ * J}

= {J ∈ H(R) : ∃λ ∈ Λ such that Iλ * J}

= {J ∈ H(R) :
∑
λ

Iλ * J}

= Θ∑
λ Iλ.

Since
∑

λ Iλ is an ideal of R it follows that ∪λ∈ΛΘIλ ∈ ℑ(H(R)). This shows that

ℑ(H(R)) is a topology on H(R). Define

Φ : £R −→ ℑ(H(R))

by setting Φ(I) = ΘI .

It is easily verified that Φ preserves finite intersection and arbitrary union. Hence

Φ is a lattice homomorphism. Finally we show that Φ is an isomorphism. For this

purpose we show that I1 = I2 ⇐⇒ ΘI1 = ΘI2 for I1, I2 in £R. Suppose ΘI1 = ΘI2 .

If I1 ̸= I2, then ∃ x ∈ I1 such that x /∈ I2. Then by Proposition 2.11, there exists

an irreducible ideal J such that I2 ⊆ J and x /∈ J. Hence I1 * J and so J ∈ ΘI1 . By

the assumption ΘI1 = ΘI2 so J ∈ ΘI2 . Hence I2 * J. But this is a contradiction.

Hence I1 = I2. �

3.3. Definition. The set H(R) of irreducible ideals of R will be called irreducible

spectrum of R. The topology ℑ(H(R)) in the above Theorem will be called the

irreducible spectral topology on H(R). We shall denote by H(R) the corresponding

topological space. H(R) will be called irreducible spectral space.

3.4. Proposition. (i) H(R) is a compact space (but not, in general, Hausdorff)

(ii) For I ∈ £R ΘI is open and closed in H(R) iff I is a direct summand of R.

Proof. (i) Suppose ∪λ∈ΛΘI = H(R) be an open covering of H(R). Then
∑

λ Iλ =

R. Since 1 ∈ R =⇒ 1 =
∑

finite xi where xi =
∑

λ∈Λ aλi such that aλi ∈ Iλ and

aλi = 0 for all except finitely many λ ∈ Λ.

Suppose 1 = x1 + x2 + ... + xn and each xi is a sum of mi non-zero aλi then

1 =
∑

finite Iλ where number of Iλ is not more than m1 +m2 + ...+mn. Thus the

open cover {ΘI : λ ∈ Λ} is reducible to a finite subcover. Thus H(R) is compact.

(ii) Suppose ΘI (I ∈ £R) ∈ ℑ(H(R)) is both open and closed. Then there exist

ΘJ with J ∈ £R so that ΘI ∪ ΘJ = H(R) and ΘI ∩ ΘJ = ∅. This implies that

I + J = R and and I ∩ J = {0}. Therefore, I is a direct summand of R. �

The following example shows that H(R) need not be a Hausdorff space.
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3.5. Example. Let R = {0, x, 1} with the following operations

+ 0 x 1

0 0 x 1

x x x x

1 1 x 1

· 0 x 1

0 0 0 0

x 0 x x

1 0 x 1

R is of course a weakly regular seminearring, all of whose ideals are linearly ordered.

£R = {{0}, {0, x}, {0, x, 1}} and H(R) = {{0}, {0, x}}. The spectral space H(R) is

clearly not Hausdorff. Note that H(R) = {∅, {0},H(R)}.

4. Representation of distributive left weakly regular Seminearrings

In this section R will denote a distributive left weakly regular seminearring with

multiplicative identity 1.

4.1. Proposition. Let I and J be ideals of R with J ⊆ I. Then any R-homomorphism

from J to I factors through J .

Proof. Let f : J −→ I be an R-homomorphism. If a ∈ J , then by Proposition

2.6, there exist x ∈ J such that a = xa. Hence f(a) = f(xa) = xf(a) ∈ J, since

x ∈ J. �

4.2. Proposition. For each ideal I of R, I∗ = {
∑

finite fi : fi ∈EndR(I)} is an

R-seminearring.

Proof. Clearly I∗ is a seminearring with neutral element 0 with respect to point-

wise addition and composition of mappings. Define the action of R on I∗ by

(r
∑

finite fi)(x) = (
∑

finite fi(x))r for all r ∈ R. Now we show that I∗ becomes

an R-seminearmodule. If f is an R-endomorphism of I then we show that rf is

also an R -homomorphism of I.

(rf)(x+ y) = (f(x+ y))r = (f(x) + f(y))r

= f(x)r + f(y)r = (rf)(x) + (rf)(y), and

(rf)(ax) = (f(ax))r = (af(x))r = a(f(x)r) = a((rf)(x)).

Thus rf is an R- endomorphism of I. Now

(r
∑

finite

fi)(x) = (
∑

finite

fi(x))r =
∑

finite

fi(x)r =
∑

finite

(rfi)(x)
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As rfi ∈EndR(I) =⇒ r(
∑

finite fi) ∈ I∗. Let r1, r2 ∈ R. Then

((r1 + r2)(
∑

finite

fi))(x) = (
∑

finite

fi(x)(r1 + r2)

= (
∑

finite

fi(x))r1 + (
∑

finite

fi(x))r2, R is distributive

=
∑

finite

(fi(x)r1) +
∑

finite

(fi(x)r2)

=
∑

finite

(r1fi)(x) +
∑

finite

(r2fi)(x)

= (
∑

finite

(r1fi) +
∑

finite

(r2fi))(x)

Thus

(r1 + r2)
∑

finite

fi =
∑

finite

r1fi +
∑

finite

r2fi

= r1(
∑

finite

fi) + r2(
∑

finite

fi)

((r1r2)(
∑

finite

fi))(x) = (
∑

finite

fi(x))(r1r2) =
∑

finite

(fi(x)(r1r2)

=
∑

finite

(r1r2)fi(x) =
∑

finite

r1(r2fi(x))

= r1(
∑

finite

r2fi(x)) = r1(r2
∑

finite

fi(x))

= (r1(r2(
∑

finite

fi)))(x).

Thus

(r1r2)
∑

finite

fi = r1(r2
∑

finite

fi)

1.(
∑

finite

fi) = (
∑

finite

1.fi) =
∑

finite

fi

r.0 = 0(
∑

finite

fi) = 0

So I∗ is an R-seminearmodule.
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Further, let r ∈ R and

n∑
i=1

fi,

m∑
j=1

gj ∈ I∗, then

r((

n∑
i=1

fi)(

m∑
j=1

gj)) = r(

n∑
i=1

m∑
j=1

figj) =

n∑
i=1

m∑
j=1

r(figj)

=

n∑
i=1

m∑
j=1

(rfi)gj = (

n∑
i=1

rfi)(

m∑
j=1

gj).

�

4.3. Definition. Let X be a topological space and ℑ(X) the category of open sets

of X and inclusion maps. A presheaf P of R -seminearmodules on X is a contravari-

ant functor from the category ℑ(X) to the categoryMR of R-seminearmodules, that

is, it consists of the data:

(a) for every open set U ⊆ X, an R-seminearmodule P (U), and

(b) for every inclusion V ⊆ U of open sets, an R-homomorphism

PρUV : P (U) −→ P (V ) subject to the following conditions:

(i) P (∅) = (0), where ∅ is the empty set,

(ii) PρUU : P (U) −→ P (U) is the identity map, and

(iii) If W ⊆ V ⊆ U are three open sets then PρUW = PρVW ◦ PρUV : If P

is a presheaf on X, P (U) is called a section of the presheaf P on the open set U

and the maps PρUV are called restriction maps, and often the notation α|V is used

instead of PρUV (α) if α ∈ P (U).

4.4. Definition. A presheaf P on a topological space X is called a sheaf if the

following additional conditions are satisfied.

(iv) If U is an open set and (Vλ)λ∈Λ is an open covering of U , and if α|Vλ
= β|Vλ

for α, β ∈ P (U) and for all Vλ , then α = β.

(v) If U is an open set and (Vλ)λ∈Λ is an open covering of U and if there are

elements αλ ∈ P (Vλ) for each λ ∈ Λ with the properties that for each λ, µ ∈ Λ,

αλ|Vλ∩Vµ = αµ|Vλ∩Vµ then ∃ α ∈ P (U) such that α|Vλ
= α for each λ ∈ Λ. If a

presheaf satisfies condition (iv) only, it is called separated.

4.5. Theorem. Let R be a distributive left weakly regular seminearring. For every

ideal I of R the assignment ΘI −→ I∗ = PR(I) defines a separated presheaf PR of

R-seminearrings on H(R). The seminearring of the global sections of this presheaf

is isomorphic to R.
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Proof. First, we prepare the data for the existance of a presheaf. By Proposition

4.2, PR(I) = I∗ is an R-seminearring for every ideal I of R. We need to define a

restriction map PρIJ : I∗ −→ J∗, ΘJ ⊆ ΘI , that is when J ⊆ I. By Proposition

4.1, if f : I −→ I is an R-endomorphisms then f |J : J −→ J . If
∑

finite fi ∈ I∗

then PρIJ (
∑

finite fi) =
∑

finite fi|J . As

PρIJ(
∑

finite

fi +
∑

finite

gj) =
∑

finite

fi|J +
∑

finite

gj |J

= PρIJ(
∑

finite

fi) + PρIJ(
∑

finite

gj)

PρIJ(
∑

finite

fi)(
∑

finite

gj) = PρIJ(
∑

finite

figj) =
∑

finite

(figj)|J

=
∑

finite

(fi|J)(gj |J) = (
∑

finite

fi|J)(
∑

finite

gi|J)

= PρIJ(
∑

finite

fi)PρIJ(
∑

finite

gj).

If r ∈ R then

FρIJ(r
∑

finite

fi) = FρIJ(
∑

finite

rfi) =
∑

finite

(rfi)|J

=
∑

finite

r(fi|J) = r
∑

finite

(fi|J) = rFρIJ(
∑

finite

fi).

Thus PρIJ is a homomorphism of R-seminearrings. Thus PR satisfies the condi-

tions of a presheaf. Thus, we have described the presheaf PR. In order to show that

PR is separated, we verify condition (iv) in Definition 4.4. Let I =
∑

λ∈Λ Iλ ∈ £R,

and suppose
∑

fi,
∑

gi ∈ FR(I) = I∗ such that (
∑

fi)|Iλ = (
∑

gi)|Iλ for all λ ∈ Λ.

For each x ∈ I we have x =
∑

finite xi where xi =
∑

λ∈Λ aλi such that aλi ∈ Iλ

and aλi = 0 for all except finitely many λ ∈ Λ.

(
∑

fi)(x) =
∑

finite

fi(x) =
∑

finite

fi(
∑

finite

xi) =
∑

finite

∑
finite

fi(xi)

=
∑

finite

∑
finite

fi(
∑
λ∈Λ

aλi) =
∑

finite

∑
finite

∑
λ∈Λ

fi(aλi)

=
∑

finite

∑
finite

∑
λ∈Λ

gj(aλi) = (
∑

gj)(x).

Hence
∑

fi =
∑

gi, and so PR is separated. Now we show that FR(R) = R∗ ∼= R.

Define h : R∗ −→ R by h(
∑

finite fi) =
∑

finite fi(1). Then h is homomorphism

of R-seminearrings. Suppose h(
∑

finite fi) = h(
∑

finite gi). Then
∑

finite fi(1) =∑
finite gi(1).
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Let r ∈ R,∑
finite

fi(r) =
∑

finite

fi(r.1) =
∑

finite

rfi(1) = r.
∑

finite

fi(1)

= r.
∑

finite

gi(1) =
∑

finite

r.gi(1) =
∑

finite

gi(r.1)

=
∑

finite

gi(r) =⇒
∑

fi =
∑

gi.

So h is 1 − 1. To show that h is surjective, let t ∈ R and define αt : R −→ R

by αt(r) = rt. Clearly αt is an R-homomorphism. Hence αt ∈ R∗ and h(αt) =

αt(1) = 1.t = t. Thus h is also surjective and hence bijective. �

4.6. Theorem. Let R be a distributive left weakly regular seminearring all of

whose ideals are linearly ordered. For every ideal I of R, the assignment ΘI −→
I∗ = PR(I) defines a sheaf PR of R-seminearrings on H(R).

The seminearring of the global sections of this sheaf is isomorphic to R.

Proof. We need only to check condition (v) in Definition 4.4. Let I =
∑

λ∈Λ Iλ ∈
£R. Consider

∑
finite fλ ∈ I∗ and

∑
finite fµ ∈ I∗ which coincides on Iλ ∩ Iµ.

Since ideals of R are linearly ordered, Iλ ⊆ Iµ or Iµ ⊆ Iλ. Hence Iλ + Iµ = Iµ or

Iλ + Iµ = Iλ. Now define f : Iλ + Iµ by

f(x) =

{ ∑
finite fµ(x) if Iλ + Iµ = Iµ∑
finite fλ(x) if Iλ + Iµ = Iλ

Hence, f is an obvious extension of
∑

fλ and
∑

fµ. From this it follows that the

family {Iλ}λ∈Λ is stable under finite sums. Hence f =
∑

fi where fi :
∑

λ∈Λ Iλ −→∑
λ∈Λ Iλ can be defined with no ambiguity. Clearly, f extends each

∑
finite fk.

Hence, PR is a sheaf. �
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