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Abstract. Let k be an algebraically closed field of characteristic zero. The

elementary symmetric polynomial of degree n− 1 in n variables is a homoge-

neous polynomial, hence defines both an affine variety in An
k which we denote

by Cn−1 and a projective variety in Pn−1
k denoted Vn−1. We describe, up

to Brauer equivalence, the central division algebras over the rational function

field of An which ramify only on Cn−1 as well as the central division algebras

over the rational function field of Pn−1 that ramify only on Vn−1. The Brauer

group of the cubic surface V3 in P3 is computed and is shown to consist solely

of Azumaya algebras that are locally trivial in the Zariski topology.
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1. Introduction

Throughout, all cohomology is for the étale topology and all unexplained ter-

minology and notation is as in [10]. Let k be an algebraically closed field of char-

acteristic zero. Fix n ≥ 2 and k[x1, x2, . . . , xn] be the ring of polynomials in the

indeterminates x1, x2, . . . , xn over k. We write An for Spec k[x1, . . . , xn] and Pn−1

for Proj k[x1, . . . , xn]. Since k is algebraically closed, the Brauer groups B(Pn−1)

and B(An) are trivial.

For each d and m such that 1 ≤ d ≤ m ≤ n, let σd(x1, x2, . . . , xm) be the

elementary symmetric polynomial of degree d in the m variables x1, x2, . . . , xm. So

σd(x1, . . . , xm) is equal to the coefficient of λm−d in the polynomial (λ + x1)(λ +

x2) . . . (λ+ xm). The d = 1 and d = m cases are

σ1(x1, . . . , xm) = x1 + · · ·+ xm

σm(x1, . . . , xm) = x1 · · ·xm
(1)
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and for 1 < d < m the recurrence relation

σd(x1, . . . , xm) = σd(x1, . . . , xm−1) + xmσd−1(x1, . . . , xm−1) (2)

is satisfied. Denote by Cd the subvariety of An defined by the zeros of σd(x1, x2,

. . . , xm). We denote by Vd the projective variety in Pn−1 defined by the homoge-

neous polynomial σd(x1, x2, . . . , xm). Our objective is to study the Brauer group

functor on the varieties Cd, An − Cd, Vd, and Pn−1 − Vd.

If X is a variety, with field of rational functions K = K(X), the Brauer group of

X classifies the Azumaya algebras defined over the sheaf of regular functions OX .

The group B(K/X) is defined by the exact sequence

0 → B(K/X) → B(X)
η−→ B(K)

where η is the natural map. If X is nonsingular, then B(K/X) = 0. In a rough

sense, we divide the theory into the study of the image and kernel of η. To under-

stand the image of η we try to study those Azumaya algebras that have nontrivial

generic stalk. These algebras classes are represented over K by division algebras.

The kernel of η however, consists of Azumaya algebras that are split on some Zariski

open subset of X. Different methods tend to be employed when approaching these

two problems.

In the context of this article, the image of η is made up of classes of division

algebras Λ that are central over the rational function field k(x1, . . . , xn). Given

any prime divisor D ⊆ An, we can measure the ramification of the algebra Λ at

D (see [11, Chapter 10]). There are at most finitely many prime divisors where

the ramification of Λ is nontrivial. In Section 2 we study the affine varieties Cn−1

of degree n− 1. The Brauer group An − Cn−1 parametrizes those central division

algebras over k(x1, . . . , xn) that ramify only on the divisor Cn−1. It follows from

[3, Theorem 3.1] that the Brauer group of An−Cn−1 is isomorphic to the subgroup

of torsion elements in the class group Cl(Cn−1). We prove in Theorem 2.1 that this

group is cyclic of order two.

The projective varieties Vn−1 of degree n − 1 are studied in Section 3. The

Brauer group B(Pn−1−Vn−1) parametrizes the central division algebras Λ over the

rational function field of Pn−1 that ramify only on Vn−1. This group is described in

Theorem 3.1. Though the Brauer group and Picard group of the affine cone Cn−1

are trivial by Lemma 1.3, for the projective variety Vn−1 the theory is much richer.

For n = 4, the groups B(V3) and Pic(V3) are computed in Theorem 3.3. It turns

out that the Brauer group of V3 consists entirely of Azumaya algebras that are split

by a finite Zariski open cover of V3.
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The bulk of this article is contained in Section 2 and Section 3 where we are

concerned with the varieties of degree n− 1. In Section 4 we compile some results

on the varieties of degree different from n− 1. As quadric hypersurfaces are fairly

well known, Section 4.1 is included mostly for completeness’ sake. It seems that the

varieties defined by elementary symmetric polynomials have not been mentioned

too much in the literature. Hopefully the few results presented here will show that

this interesting class of varieties is nontrivial but accessible and deserving of more

attention.

Before leaving Section 1 we compute some of the geometric properties of the

varieties Cd and Vd.

Lemma 1.1. Assume 3 ≤ m ≤ n and 1 ≤ d ≤ m− 1. Then

1. Cd is an irreducible rational hypersurface of degree d in An.
2. Vd is an irreducible rational hypersurface of degree d in Pn−1.

Proof. We see in (2) that σd(x1, . . . , xm) is linear in the variable xm. Since the

linear polynomial σ1(x1, . . . , xm−d+1) is irreducible, a finite induction argument

proves that σd(x1, . . . , xm) is irreducible. Therefore both Cd and Vd are irreducible

hypersurfaces. The affine coordinate ring of Cd is the integral domain

O(Cd) =
k[x1, . . . , xn]

(σd(x1, . . . , xm))
=

k[x1, . . . , xn]

(σd(x2, . . . , xm) + x1σd−1(x2, . . . , xm))

where the second equation follows from (2) and symmetry. If we invert σd−1(x2,

. . . , xm), then there is an isomorphism

O(Cd)[σd−1(x2, . . . , xm)−1] ∼= k[x2, . . . , xn][σd−1(x2, . . . , xm)−1] (3)

defined by the map

x1 7→ −σd(x2, . . . , xm)σd−1(x2, . . . , xm)−1.

This shows Cd is birational to An−1. In a similar way one can localize to see that

Vd is birational to An−2. �

The next lemma shows that the varieties Vd in general have singularities but are

nonsingular in codimension one. For the d = n − 1 case, a sharper description of

the singular locus is provided by Theorem 2.1.

Lemma 1.2. Keep the same notation as above but assume m = n.

1. If d = 2 and n ≥ 3, then Vd is a nonsingular hypersurface in Pn−1.

2. Vd is nonsingular in codimension one.

3. If d > 2 and n ≥ 5, then Vd is a singular hypersurface in Pn−1.
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Proof. Let Yi denote the closed subset of Vd where σd−1(x1, . . . , x̂i, . . . , xn) van-

ishes. We see from (3) that Vd is nonsingular on the open complement of Vi. Then

Sing Vd ⊆
n∩
i=1

Yi. (4)

If d = 2, then Yi is defined by the linear equation x1+· · ·+xn = xi. The intersection

in (4) is contained in the intersection of n hyperplanes in Pn−1 in general position,

hence is empty. This proves part 1.

For the remainder of the proof assume d ≥ 3 and n ≥ d + 2. The case d = 2

follows from part 1 and we prove the d = n− 1 case in Theorem 2.1. Let

f1 = σd−1(x2, . . . , xn) = σd−1(x3, . . . , xn) + x2σd−2(x3, . . . , xn)

and

f2 = σd−1(x1, x3, . . . , xn) = σd−1(x3, . . . , xn) + x1σd−2(x3, . . . , xn).

For each i, Wi = Z(fi) is an irreducible hypersurface in Pn−1. Let Ii = (fi) be the

ideal for Wi in k[x1, . . . , xn]. Since neither W1 nor W2 contains the other, W1 ∩W2

has codimension at least two in Pn−1. Now let f = σd(x1, . . . , xn). We prove that

f is not in the radical of I1 + I2. Maybe this is not clear, so a proof is given.

Suppose for sake of contradiction, that r > 0 and fr = af1 + bf2 for some a, b in

k[x1, . . . , xn]. Using (2) twice,

f = σd(x1, . . . , xn) = σd(x2, . . . , xn) + x1f1

= σd(x3, . . . , xn) + x2σd−1(x3, . . . , xn) + x1f1.

For any polynomial g in k[x1, . . . , xn], write g
′ for the polynomial in k[x3, . . . , xn]

obtained by substituting x1 = x2 = 0. Then (f ′)r = a′f ′1 + b′f ′2, hence

σd(x3, . . . , xn)
r = a′σd−1(x3, . . . , xn) + b′σd−1(x3, . . . , xn)

= (a′ + b′)σd−1(x3, . . . , xn).
(5)

Since d ≥ 3, σd−1(x3, . . . , xn) is irreducible of degree d− 1 ≥ 2. If n > d+ 2, then

σd(x3, . . . , xn) is irreducible of degree d ≥ 3. If n = d+ 2, the left hand side of (5)

is a monomial. In either case (5) is a contradiction and we know that W1 ∩W2 is

not contained in the irreducible hypersurface Vd. It follows that W1 ∩W2 ∩ Vd has

codimension at least two in Vd. This together with (4) proves part 2.

Now let {α, β, γ, δ} be any 4-set in {1, . . . , n} and let Iα,β,γ,δ denote the ideal

generated by xα, xβ , xγ , xδ in k[x1, . . . , xn]. Using (2) and symmetry one sees that

σd(x1, . . . , xn) is in Iα,β,γ,δ. Let Zα,β,γ,δ denote the set of zeros of Iα,β,γ,δ in Pn−1.

This shows Vd ⊇ Zα,β,γ,δ. For each 3-set {α, β, γ} in {1, . . . , n}, consider the ideal
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Iα,β,γ in k[x1, . . . , xn] generated by xα, xβ , xγ . Using (2) for d − 1 and n − 1 one

sees that σd−1(x1, . . . , x̂i, . . . , xn) is in Iα,β,γ provided i ̸∈ {α, β, γ}. Since the

intersection of any n − 1-set and any 4-set contains at least a 3-set, it follows

that σd−1(x1, . . . , x̂i, . . . , xn) is always in Iα,β,γ,δ. Then Iα,β,γ,δ contains each first

partial derivative of σd(x1, . . . , xn). This proves

Sing Vd ⊇
∪
(n4)

Zα,β,γ,δ. (6)

The right-hand side of (6) is a subset of Pn−1 of dimension (n − 1) − 4, hence is

non-empty. This proves part 3. �

For the record, we state

Lemma 1.3. In the context of Lemma 1.1, B(Cd) = 0, Pic(Cd) = 0 and Pic(An −
Cd) = 0.

Proof. Follows directly from [3, Proposition 1.2]. �

2. The Affine Variety of Degree n− 1 in An

Fix n ≥ 3 and let {x1, x2, . . . , xn} be a set of indeterminates. For each m

such that 1 < m ≤ n let σm−1(x1, x2, . . . , xm) denote the elementary symmetric

polynomial of degree m− 1 in the variables x1, x2, . . . , xm. Then

σ1(x1, x2) = x1 + x2

σ2(x1, x2, x3) = x1x2 + x3σ1(x1, x2)
(7)

and recursively

σm−1(x1, x2, . . . , xm) = x1 · · ·xm−1+xmσm−2(x1, . . . , xm−1) for 1 < m ≤ n. (8)

A non-recursive formula for σm−1(x1, x2, . . . , xm) is

σm−1(x1, x2, . . . , xm) =
x1 · · ·xm

x1
+ · · ·+ x1 · · ·xm

xm
. (9)

As in Lemma 1.1, let Vm−1 = Z(σm−1(x1, x2, . . . , xm)) be the projective variety in

Pn−1 defined by σm−1(x1, x2, . . . , xm) = 0 and Cm−1 = Z
(
σm−1(x1, x2, . . . , xm)

)
the affine variety in An defined by σm−1(x1, x2, . . . , xm) = 0. The affine coordinate

ring of An − Cm−1 is

O(An − Cm−1) = k[x1, x2, . . . , xn][σm−1(x1, x2, . . . , xm)−1].

Theorem 2.1. Let 3 ≤ m ≤ n. In the above context,

1. The singular locus of Cm−1 has pure codimension two.

2. Cl(Cm−1) ∼= Z/2⊕ Z(r) where r =
(
m−1
2

)
− 1.
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3. B(An − Cm−1) is cyclic of order two.

4. B(An − Cm−1) is generated by the algebra class of the following product of

symbol algebras

(
σm−1(x1, x2, . . . , xm), σm−2(x1, x2, . . . , xm−1)

)
2(

σm−2(x1, x2, . . . , xm−1), σm−3(x1, x2, . . . , xm−2)
)
2
· · ·(

σ2(x1, x2, x3), σ1(x1, x2)
)
2
.

Proof of Part 1: Let 3 ≤ m ≤ n. Let (α, β, γ) be a triple such that 1 ≤ α < β <

γ ≤ m. For each such triple, consider the ideal Iα,β,γ = (xα, xβ , xγ) in k[x1, . . . , xn].

Then

σm−1(x1, . . . , xm) = x2 · · ·xm + x1σm−2(x2, . . . , xm) (10)

shows that σm−1(x1, . . . , xm) is in I1,2,3. By symmetry, σm−1(x1, . . . , xm) is in

Iα,β,γ for all such (α, β, γ). Therefore Cm−1 ⊇ Z(Iα,β,γ). Likewise

σm−2(x2, . . . , xm) = x3 · · ·xm + x2σm−3(x3, . . . , xm) (11)

shows that σm−2(x2, . . . , xm) is in I1,2,3. By symmetry, σm−2(x1, . . . , x̂i, . . . , xm)

is in Iα,β,γ for all such (α, β, γ). Since the partial derivative of σm−1(x1, . . . , xm)

with respect to xi is σm−2(x1, . . . , x̂i, . . . , xm), Iα,β,γ contains all the first partial

derivatives of σm−1(x1, . . . , xm). Therefore Z(Iα,β,γ) is a subset of the singular

locus, Sing (Cm−1). This shows

Sing (Cm−1) ⊇
∪

1≤α<β<γ≤m

Z(Iα,β,γ). (12)

Next we show the reverse inclusion to (12). To do this, let P = (a1, . . . , an) be

a point in An such that P ∈ Sing (Cm−1). We show that at least three of the

coordinates a1, . . . , am are zero. By symmetry, it is enough to assume a3 · · · am ̸= 0

and argue until a contradiction is reached. Since the first partial derivative with

respect to x1 vanishes at P ,

0 = σm−2(a2, . . . , am) = a3 · · · am + a2σm−3(a3, . . . , am) (13)

implies a2 ̸= 0. Since P ∈ Cm−1,

0 = σm−1(a1, . . . , am) = a2 · · · am + a1σm−2(a2, . . . , am) (14)

together with (13) leads to the contradiction a2 = 0. Hence

Sing (Cm−1) =
∪

1≤α<β<γ≤m

Z(xα, xβ , xγ). (15)
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If Zα,β,γ denotes the zeros of Iα,β,γ on Cm−1, then

O(Zα,β,γ) =
O(Cm−1)

Iα,β,γ
∼=
k[x1, . . . , xn]

(xα, xβ , xγ)
(16)

shows that Zα,β,γ is a variety of dimension n − 3 contained in Cm−1 which has

dimension n − 1. This proves Sing (Cm−1) is a subset of pure codimension two in

Cm−1. This is part 1. �

Proof of Part 2: Next we compute the class group of Cm−1. For each ordered pair

(α, β) such that 1 ≤ α < β ≤ m− 1, consider the ideal Iα,β generated by (xα, xβ)

in O(Cm−1). We see by (9) that σm−1(x1, . . . , xm) ∈ Iα,β . Therefore

O(Cm−1)

Iα,β
∼=
k[x1, . . . , xn]

(xα, xβ)
(17)

shows Iα,β is a prime ideal. The rings in (17) have dimension n−2. Since O(Cm−1)

has dimension n−1, it follows that each ideal Iα,β is a prime ideal of height one. By

the recurrence relation (8), any prime ideal that contains σm−2(x1, . . . , xm−1) must

contain one of x1, x2, . . . , xm−1. Likewise, applying (9) to σm−2(x1, . . . , xm−1), we

see that any prime ideal that contains both σm−2(x1, . . . , xm−1) and xα must also

contain xβ for some β ̸= α. The minimal primes in O(Cm−1) containing the element

σm−2(x1, . . . , xm−1) are {Iα,β | 1 ≤ α < β ≤ m − 1} and each of these primes has

height one.

Write OIα,β
for the localization of O(Cm−1) at the prime ideal Iα,β . Rewrite (9)

as

σm−1(x1, . . . , xm) = x1

(
x2 . . . xm

x2
+ · · ·+ x2 . . . xm

xm

)
+ x2x3 · · ·xm. (18)

Notice that for 3 ≤ j ≤ m, xj ̸∈ I12. In the local ring OI1,2 obtained by localizing

O(Cm−1) at I12, x1 = x2u and σm−2(x1, . . . , xm−1) = x1x2v where

u = −(x3 · · ·xm)

(
x2 . . . xm

x2
+ · · ·+ x2 . . . xm

xm

)−1

and

v = −(x3 · · ·xm−1)x
−1
m

are units in OI1,2 . So the maximal ideal in the local ring OI1,2 is principal and x2

is a local parameter. By symmetry x1 is a local parameter as well. Then OI1,2 is a

discrete valuation ring and we have shown that σm−2(x1, . . . , xm−1) has valuation

2. By symmetry, σm−2(x1, . . . , xm−1) has order 2 along Iα,β for each such pair

(α, β).

The right-hand side of (3) is regular so the singular locus of Cm−1 is contained in

the support of the divisor of the function σm−2(x1, . . . , xm−1). By the computations
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above, each local ring OIα,β
is regular. We remark for curiosity’s sake that this gives

another proof that Cm−1 is nonsingular in codimension one. (We already proved

this in Part 1.)

The right-hand side of (3) is a unique factorization domain. Therefore the same

is true for O(Cm−1)[σm−2(x1, . . . , xm−1)
−1]. By [5, Theorem 7.1, p.35], the divi-

sor class group Cl(Cm−1) is generated by the prime divisors in div(σm−2(x1, . . . ,

xm−1)). It follows from the above calculations that

div
(
σm−2(x1, . . . , xm−1)

)
=

∑
1≤α<β≤m−1

2Iα,β . (19)

By Nagata’s Theorem (e.g. [3, Theorem 1.1]) there is an exact sequence

Z →
∑
(m−1

2 )

Z · Iα,β → Cl(Cm−1) → 0 (20)

where the first arrow is defined by 1 7→ div
(
σm−2(x1, . . . , xm−1)

)
. This proves part

2, namely that Cl(Cm−1) ∼= Z/2⊕ Z(r). �

Proof of Part 3. It follows from (20) that the subgroup of Cl(Cm−1) consisting of

torsion elements is generated by the divisor 1
2 div

(
σm−2(x1, . . . , xm−1)

)
=
∑

Iα,β

and has order 2. According to [3, Theorem 3.1(c)] the Brauer group B(X−Cm−1) is

isomorphic to the subgroup of torsion elements in the divisor class group Cl(Cm−1).

It follows that B(X − Cm−1) is a group of order 2 which proves part 3. �

Proof of Part 4. We saw above that x1 is a local parameter for each OI1,β . The

divisor of x1 on Cm−1 is

div(x1) = I1,2 + · · ·+ I1,m.

Thus, on Cm−1 the divisor of the function x1 · · ·xm is

div(x1 · · ·xm) = 2
∑

1≤α<β≤m

Iα,β

= 2
∑

1≤α<β≤m−1

Iα,β + 2
∑

1≤α≤m−1

Iα,m

= div
(
σm−2(x1, . . . , xm−1)

)
+ 2div(xm)

. (21)

This shows that the divisors div(x1 · · ·xm) and div
(
σm−2(x1, . . . , xm−1)

)
differ by

the principal divisor 2 div(xm), hence the subgroup of torsion elements of Cl(Cm−1)

is generated by the divisor 1
2 div(x1 · · ·xm). Define the symbol algebra

Λm−1 =
(
σm−1(x1, . . . , xm), σm−2(x1, . . . , xm−1)

)
2
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over the function field of An, k(x1, . . . , xn). Compute the ramification divisor of

Λm−1 following [4, Section 1]. The ramification is given by the tame symbol.

Then Λm−1 ramifies on the divisors Cm−1 = Z(σm−1(x1, . . . , xm) and Cm−2 =

Z(σm−2(x1, . . . , xm−1)) in An. The ramification of Λm−1 on Cm−1 corresponds to

the square root of the divisor div
(
σm−2(x1, . . . , xm−1)

)
which is given by (19). So

this is an unramified quadratic extension of K(Cm−1). The ramification of Λm−1

on Cm−2 corresponds to the square root of the divisor div(x1 · · ·xm−1) on Cm−2.

Since

σm−1(x1, . . . , xm) = x1 · · ·xm−1 + σm−2(x1, . . . , xm−1)xm,

upon restriction to Cm−2, the function σm−1(x1, . . . , xm) is equal to x1 · · ·xm−1.

By (21) this gives rise to the element of order two in Cl(Cm−2). So the ramification

of Λm−1 on Cm−2 is an unramified quadratic extension of K(Cm−2). Therefore

Λm−1 factors in the Brauer group of K(A2) into the algebra class which represents

a generator of B(A2 − Cm−1) and the class that represents a generator of B(A2 −
Cm−2).

Proceed by induction on m. Consider the case m = 3. Look at

Λ2 =
(
σ2(x1, x2, x3), σ1(x1, x2)

)
2

over k(x1, . . . , xn). Upon restriction to C1 the function σ2(x1, x2, x3) is a square.

So Λ2 ramifies only on C2 and the ramification corresponds to the unramified

quadratic extension K(C2)
√
σ1(x1, x2). This corresponds to the element of order

two in Cl(C2). As mentioned above, this corresponds to the generator of B(A2−C2).

So B(A2 − C2) is generated by the class of Λ2.

Now fix m such that 3 < m ≤ n and assume B(A2 − Cm−2) is generated by the

class of the algebra Λm−2 ⊗ · · · ⊗ Λ2 defined by the product of the symbols(
σm−2(x1, . . . , xm−1, σm−3(x1, . . . , xm−2

)
2
· · ·
(
σ2(x1, x2, x3), σ1(x1, x2)

)
2
. (22)

Multiplying, we get

Λm−1 ⊗ Λm−2 ⊗ · · · ⊗ Λ2 =(
σm−1(x1, . . . , xm, σm−2(x1, . . . , xm−1

)
2(

σm−2(x1, . . . , xm−1, σm−3(x1, . . . , xm−2

)
2

· · ·
(
σ2(x1, x2, x3), σ1(x1, x2)

)
2

(23)

is an algebra class that ramifies only on Cm−1 and therefore represents the generator

of B(X − Cm−1). This completes part 4. �
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3. The Projective Variety of Degree n− 1 in Pn−1

Fix n ≥ 4 and let {x1, x2, . . . , xn} be a set of indeterminates. For each m

such that 2 ≤ m ≤ n let σm−1(x1, x2, . . . , xm) denote the elementary symmetric

polynomial of degree (m − 1) in the variables x1, x2, . . . , xm. Then (7) (8) and

(9) are satisfied by σm−1(x1, x2, . . . , xm). As in Section 1, the projective variety

σm−1(x1, x2, . . . , xm) = 0 in Pn−1 is

Vm−1 = Z(σm−1(x1, x2, . . . , xm)),

the affine cone over Vm−1 in An is

Cm−1 = Z
(
σm−1(x1, x2, . . . , xm)

)
,

and the homogeneous coordinate ring of Vm−1 is

O(Cm−1) = k[x1, . . . , xn]/
(
σm−1(x1, . . . , xm)

)
which is equal to the affine coordinate ring of Cm−1.

Theorem 3.1. Let 4 ≤ m ≤ n. In the above context,

1. The singular locus of Vm−1 has pure codimension two.

2. If s =
(
m−1
2

)
, then

Cl(Vm−1) ∼=

Z(s) , if m is odd

Z/2⊕ Z(s) , if m is even.

3.

B(Pn−1 − Vm−1) ∼=

0 , if m is odd

Z/2 , if m is even.

4. If m is even, then B(Pn−1 − Vm−1) ∼= B(An − Cm−1).

Proof of Part 1: Part 1 follows from Theorem 2.1.1. �

Proof of Part 2: For each ordered pair (α, β) such that 1 ≤ α < β ≤ m, consider

the homogeneous ideal Iα,β generated by (xα, xβ) in O(Cm−1). We see by (17) that

Iα,β is a prime ideal. Let Zα,β = Z(Iα,β) be the prime divisor on Vm−1 defined by

the ideal Iα,β . There is an exact sequence [8]

0 → Z → Cl(Vm−1) → Cl(Cm−1) → 0 (24)

where second arrow maps 1 ∈ Z to the divisor class of a hyperplane section. From

the proof of Theorem 2.1 we know that Cl(Cm−1) is generated by the divisors Zα,β

where 1 ≤ α < β ≤ m − 1. The support of the hyperplane section xm = 0 is

contained in ∪m−1
α=1 Zα,m. We have shown that Cl(Vm−1) is generated by the

(
m
2

)
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divisors {Zα,β | 1 ≤ α < β ≤ m}. The only relations are div (xα/xβ) ∼ 0. Let

F denote the free Z-module with basis {Zα,β | 1 ≤ α < β ≤ m}, where we order

the basis lexicographically on the (α, β). Let M denote the Z-submodule of F

generated by {div(xα/xβ)| 1 ≤ α < β ≤ m}. Therefore Cl(Vm−1) ∼= F/M .

Check that the following identities hold for any α, β, γ.

div(xα/xβ) = −div(xβ/xα)

div(xα/xγ) = div(xα/xβ) + div(xβ/xγ)
(25)

Then M is spanned by the m− 1 divisors

div(x1/xm) = Z1,2 + Z1,3 + · · ·+ Z1,m−1 − Z2,m − . . .

div(x2/xm) = Z1,2 − Z1,m + Z2,3 + . . .

div(x3/xm) = Z1,3 − Z1,m + Z2,3 + . . .

div(xi/xm) = Z1,i − Z1,m + . . .

div(xm−1/xm) = Z1,m−1 − Z1,m + . . .

(26)

If we set

A = div(x1/xm)− div(x2/xm)− div(x3/xm)− · · · − div(xm−1/xm)

= (m− 2)Z1,m −
∑

1≤α<β≤m−1

2Zα,β .

Then M is spanned by the m− 1 divisors in this list:

L = {A,div(x2/xm), . . . ,div(xm−1/xm)}.

Look at the matrix associated to the homomorphism Z(m−1) → F which maps the

ith generator of Z(m−1) to the ith element in L. The top m rows are

0 1 0 0 . . . 0

0 0 1 0 . . . 0

0 0 0 1 . . . 0
...

...
...

...
...

...

0 0 0 0 . . . 1

m− 2 −1 −1 −1 . . . −1

−2 1 1 0 . . . 0


(27)

The matrix (27) clearly has Q/Z-rank m − 1. If m is odd, then the columns of

(27) span a direct summand of F and F/M is free of rank s =
(
m−1
2

)
. Otherwise,

F/M ∼= Z/2⊕ Z(s). This proves part 2. �
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Proof of Part 3: Next we prove that part 3 follows from part 2. For this argument,

let

Wm−1 = Sing Vm−1

which has codimension two in Vm−1, and codimension three in Pn−1. Consider the

exact sequence

B(Pn−1) → B(Pn−1 −Wm−1) → H3
Wm−1

(Pn−1, µ) →

H3(Pn−1, µ) → H3(Pn−1 −Wm−1, µ) → H4
Wm−1

(Pn−1, µ) (28)

of [4, Lemma 0.1]. By [10, p. 245] H3(Pn−1, µ) = 0 and by [10, Lemma 9.1, p.

268] HiWm−1
(Pn−1, µ) = 0 for i < 6. It follows that B(Pn−1) ∼= B(Pn−1 −Wm−1) =

0. Additionally H3(Pn−1, µ) ∼= H3(Pn−1 − Wm−1, µ) = 0. It follows from [4,

Theorem 1.1] that

B(Pn−1 − Vm−1) ∼= H1(Vm−1 −Wm−1, µ). (29)

Since Vm−1 is a projective variety which is regular in codimension one,

H0(Vm−1,Gm) = H0(Vm−1 −Wm−1,Gm) = k∗.

By Kummer theory, H1(Vm−1 −Wm−1, µ) is isomorphic to the subgroup of torsion

elements in

H1(Vm−1 −Wm−1,Gm) = Cl(Vm−1 −Wm−1) = Cl(Vm−1).

Now part 3 follows from (29) and part 2. �

Proof of Part 4: Next we prove that part 4 follows from part 3. View An as an open

subset of Pn by introducing a new homogeneous variable x0. Let C̄m−1 denote the

completion of Cm−1 in Pn. We have the projection along the x0-axis

π : Pn − C̄m−1 → Pn−1 − Vm−1,

the open immersion where x0 ̸= 0

ψ : An − Cm−1 → Pn − C̄m−1,

and the closed immersion where x0 = 0

ϕ : Pn−1 − Vm−1 → Pn − C̄m−1.

Since ϕ is a section to ψ, the map on Brauer groups

π∗ : B
(
Pn−1 − Vm−1

)
→ B

(
Pn − C̄m−1

)
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is an isomorphism [3, Theorem 3.1(a)]. Since ψ is a localization,

ψ∗ : B
(
Pn − C̄m−1

)
→ B

(
An − Cm−1

)
is one-to-one. It follows that

ψ∗π∗ : B
(
Pn−1 − Vm−1

)
→ B

(
An − Cm−1

)
is one-to-one so part 4 follows from part 3. �

Lemma 3.2. In the notation of Theorem 3.1, let U1 denote the open set where

x1 ̸= 0 and let P1 be the closed point of U1 where x2 = · · · = xm = 0. Then

Cl(U1) ∼= Cl(OP1)
∼= Cl(Oh

P1
) ∼= Cl(ÔP1)

∼= Z/2⊕ Z(s)

where s =
(
m−1
2

)
−
(
m−1
1

)
.

Proof. By Theorem 3.1.2, Cl(U1) is generated by the divisors Zα,β passing through

P1, which are precisely the elements of the set {Zα,β | 2 ≤ α < β ≤ m}. Order the

set {Zα,β | 2 ≤ α < β ≤ m} lexicographically on the (α, β) and let F denote the free

Z-module with this basis. The ideal corresponding to P1 is generated by x2, . . . , xm.

Therefore Cl(U1) is the quotient of F modulo the submodule M spanned by the

principal divisors

div(x2) = Z2,3 + Z2,4 + Z2,5 + · · ·+ Z2,m

div(x3) = Z2,3 + Z3,4 + Z3,5 + · · ·+ Z3,m

div(x4) = Z2,4 + Z3,4 + Z4,5 + · · ·+ Z4,m

...

div(xm) = Z2,m + Z3,m + Z4,m + · · ·+ Zm−1,m.

(30)

As a generator for M we can replace div(x2) with

A = div(x2)− div(x3)− div(x4)− · · · − div(xm)

=
∑

3≤α<β≤m

2Zα,β .

Then M is spanned by the m− 1 divisors in the list

L = {div(x3),div(x4), . . . ,div(xm), A}.

Look at the matrix for the homomorphism Z(m−1) → F which maps the ith gen-

erator to the ith element of L. The image of this map is M . In block form, the

matrix is [
Im−2 z

∗ t

]
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where Im−2 is the m− 2-by-m− 2 identity matrix, z is a column of zeros, and t is

a column of twos. Since Cl(U1) ∼= F/M we have shown that Cl(U1) ∼= Z/2Z(s) as

claimed. The same computation applies to the local rings. �

Theorem 3.3. The context is the same as in Theorem 3.1, but we assume n = m =

4. In this notation V3 denotes the cubic surface in P3 defined by the elementary

symmetric polynomial of degree three in four variables.

1. The singular locus of V3 consists of four isolated rational double points.

2. B(K/V3) = B(V3) is cyclic of order two and B
(
V3 − Sing V3

)
= 0.

3. Cl(V3)/Pic(V3) = (Z/2)(3).
4. Pic(V3) = Z(3).

Proof of Part 1: Follows from the computation of the class groups in Lemma 3.2

and [9, Theorem 17.4]. �

Proof of Parts 2 and 3: There are four triples (α, β, γ) such that 1 ≤ α < β < γ ≤
4. For each such triple, let Iα,β,γ denote the homogeneous prime ideal of height

two in O(C3) generated by xα, xβ , xγ . Let Zα,β,γ = Z(Iα,β,γ) be the corresponding

closed subset of V3. By (15), the singular locus of V3 is equal to the union of the

sets Zα,β,γ .

The singular locus of V3 is equal to the union of the four closed points P1 = Z2,3,4,

P2 = Z1,3,4, P3 = Z1,2,4 and P4 = Z1,2,3. Consider the local ring of V3 at the point

P1 = Z2,3,4 which we denote by OP1 . The class group Cl(OP1) is cyclic of order

two, by Lemma 3.2. To set up our notation, restrict to the open neighborhood

of P1 where x1 ̸= 0. The maximal ideal at P1 is generated by x2/x1, x3/x1 and

x4/x1. Therefore, Cl(OP1) is the free group on the three prime divisors Z2,3, Z2,4,

Z3,4 modulo the subgroup spanned by

div(x2/x1) = Z2,3 + Z2,4

div(x3/x1) = Z2,3 + Z3,4

div(x4/x1) = Z2,4 + Z3,4

(31)

We can eliminate one of the generators, say Z2,4 and simplify the relations down

to two. Then Cl(OP1
) is generated by Z2,3 and Z3,4 subject to the relations

div(x2/x4) = Z2,3 − Z3,4 ∼ 0 and div
(
(x2x3/(x1x4)

)
= 2Z2,3 ∼ 0. By symme-

try, the same is true at the other three singular points. We also see that any one

of the prime divisors Zα,β passing through the point Pγ is a generator for the class

group at Pγ .



DIVISION ALGEBRAS 203

On V3 let D = Z1,2 + Z1,4 + Z2,3 + Z3,4. Define these five free abelian groups:

F = Z · Z1,2 ⊕ Z · Z1,4 ⊕ Z · Z2,3 ⊕ Z · Z3,4

F1 = Z · Z2,3 ⊕ Z · Z3,4

F2 = Z · Z1,4 ⊕ Z · Z3,4

F3 = Z · Z1,2 ⊕ Z · Z1,4

F4 = Z · Z1,2 ⊕ Z · Z2,3

(32)

There is a commutative diagram⊕4
i=1 Z2yb

F
a−−−−→

⊕4
i=1 Fiyϕ yc

Cl(V3)/Pic(V3)
ϵ−−−−→

⊕4
i=1 Cl(OPi)

δ−−−−→ B(K/V3) −−−−→ 0y y
0 0

(33)

whose maps are now explained. The bottom row of (33) is exact and is from [1].

There are projection maps F → Fi and a is the direct sum

F
a−→

4⊕
i=1

Fi. (34)

Since the singular locus of V3 is contained in the support of D, V3 − |D| is locally
factorial and there is an exact sequence

F
ϕ−→ Cl(V3)/Pic(V3) → 0 (35)

which is the map ϕ. For each singular point Pi there is an exact sequence

0 → Z2 bi−→ Fi
ci−→ OPi → 0 (36)

where the arrow bi in (36) maps two generators for Z2 to the two defining relations

for the class group of the local ring. So the matrix for bi is(
1 2

−1 0

)
(37)

and b and c are the direct sum maps. From (33) it is routine to derive

F ⊕
4⊕
i=1

Z2 a+b−−→
4⊕
i=1

Fi
ψ−→ B(K/V3) → 0 (38)
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where ψ = δc. The matrix for a+ b in (38) is



0 0 1 0 1 2 0 0 0 0 0 0

0 0 0 1 −1 0 0 0 0 0 0 0

0 1 0 0 0 0 1 2 0 0 0 0

0 0 0 1 0 0 −1 0 0 0 0 0

1 0 0 0 0 0 0 0 1 2 0 0

0 1 0 0 0 0 0 0 −1 0 0 0

1 0 0 0 0 0 0 0 0 0 1 2

0 0 1 0 0 0 0 0 0 0 −1 0


Since the cokernel of ψ is an elementary 2-group, we can compute its rank by

tensoring (38) with Z/2. Then all but half of the relations become trivial and (38)

simplifies to

F ⊗ Z/2⊕
4⊕
i=1

Z/2 a+b−−→
4⊕
i=1

Fi ⊗ Z/2 ψ−→ B(K/V3) → 0. (39)

and the matrix simplifies down to



0 0 1 0 1 0 0 0

0 0 0 1 −1 0 0 0

0 1 0 0 0 1 0 0

0 0 0 1 0 −1 0 0

1 0 0 0 0 0 1 0

0 1 0 0 0 0 −1 0

1 0 0 0 0 0 0 1

0 0 1 0 0 0 0 −1


This matrix has rank 7. This proves B(K/V3) is a cyclic group of order two. If

Ṽ3 → V3 is a desingularization of V3, then the sequence

0 → B(K/V3) → B(V3) → B(Ṽ3) → 0

is exact [2, Theorem 1]. The Brauer group is a birational invariant between complete

nonsingular surfaces [7, Corollary 7.2], so B(Ṽ3) = B(P2) = 0. The second equation

in part 2 follows from [2, Corollary 3]. In (33) the map ϵ is injective, which proves

part 3. �
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Proof of Part 3: Now we prove part 4 assuming part 3. Combining the sequence

(24) with the natural maps from Picard groups to class groups we get the commu-

tative diagram

0 −−−−→ PicP3 −−−−→ PicV3 −−−−→ Pic (V3)/⟨H⟩ −−−−→ 0y=

yα yβ
0 −−−−→ ClP3 −−−−→ ClV3 −−−−→ ClC3 −−−−→ 0

with exact rows. The map α is injective. By the Snake Lemma, β is injective and

the cokernel of α is isomorphic to the cokernel of β. But Part 3 says the cokernel of α

is an elementary 2-group of rank s =
(
3
2

)
. By Theorem 2.1.2 Cl(C3) ∼= Z/2⊕Z(s−1).

We deduce from this that PicV3/⟨H⟩ is necessarily free of rank s− 1. This proves

part 4. �

4. Miscellaneous Results

4.1. The Quadric Hypersurface. Fix n ≥ 3 and let {x1, x2, . . . , xn} be a set of

indeterminates. Let σ2(x1, . . . , xn) denote the elementary symmetric polynomial of

degree two in the variables x1, x2, . . . , xn. As in Section 1, let V2 ⊆ Pn−1 be the

projective variety defined by σ2(x1, . . . , xn) = 0 and C2 the affine variety in X = An

defined by σ2(x1, . . . , xn) = 0. As shown in Lemma 1.2.1, V2 is a nonsingular

rational hypersurface in Pn−1 of degree two. The reader is referred to [8, p. 147]

where the computations of Cl(C2) and Pic(V2) are given as exercises.

Theorem 4.1. In the above context,

1. If n = 3, B(X − C2) ∼= Z/2.
2. If n > 3, B(X − C2) = 0.

Proof. The first case was included in Theorem 2.1. The second case follows directly

from [3, Theorem 2.1(c)]. �

Theorem 4.2. Let n ≥ 3 and V2 ⊆ Pn−1 the projective variety defined by the

elementary symmetric polynomial of degree two in n variables. Then B(Pn−1−V2) =
0 and B(V2) = 0.

Proof. After a suitable linear change of variables, the quadratic form σ2(x1, . . . ,

xn) can be transformed into y1y2 + y23 + · · ·+ y2n. Dehomogenize with respect to y1

and eliminate y2 to see that V2 has an open set U that is isomorphic to the affine

space A(n−2). Since V2 is nonsingular, the natural map B(V2) → B(U) is injective

[10, p. 145]. Hence B(V2) = B(k) = 0. By an exercise [8, p. 147], Pic(V2) is
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torsion-free. It follows from Kummer theory that H1(V2, µ) = 0. This implies that

B(Pn−1 − V2) = 0. �

4.2. Other Cases. We summarize what is known in the cases not covered above.

It follows from the proof of Lemma 1.2 that the class group of Cd is generated by

the prime divisors in div
(
σd−1(x1, . . . , xn−1)

)
. Using [6], we can show that if (d, n)

is any pair in this list {(3, 5), (3, 6), (4, 6), (3, 7), (4, 7), (5, 7)}, then div
(
σd−1(x1, . . . ,

xn−1)
)
is a principal prime divisor on Cd. Hence Cl(Cd) = 0 and it follows by [3,

Theorem 3.1(c)] that B(An − Cd) = 0. Is Cd,n factorial for all pairs d, n such that

2 ≤ d < n− 1?
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