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Abstract. In this study, by using definition of ρ-statistical convergence which

was defined by Cakalli [5], we give some inclusion relations between the con-
cepts of ρ-statistical convergence and statistical convergence in topological

groups.

1. Introduction

In 1951, Steinhaus [29] and Fast [14] introduced the notion of statistical conver-
gence and later in 1959, Schoenberg [28] reintroduced independently. Caserta et al.
[4], Cakalli ([6],[7]), Cinar et al. [8], Colak [9], Connor [10], Et et al. ([11],[12],[13]),
Fridy [15], Gadjiev and Orhan [16], Isik and Akbas ([17],[18]), Kolk [19], Mursaleen
[20], Salat [21], Sengul et al. ([22]-[27]), Aral et al. ([1],[2],[3]) and many others
investigated some arguments related to this notion.

The opinion of statistical convergence depends on the density of subsets of the
natural set N. We say that the δ(E) is the density of a subset E of N if the following

limit exists such that

δ(E) = lim
n→∞

1

n

n∑
k=1

χE(k),

where χE is the characteristic function of E. It is clear that any finite subset of N
has zero natural density and δ (Ec) = 1− δ (E).

We say that the sequence x = (xk) is statistically convergent to ` if for every
ε > 0,

δ ({k ∈ N : |xk − `| ≥ ε }) = 0.

In this case we write S − limxk = ` or xk → ` (S). Equivalently,
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lim
n→∞

1

n
|{k ≤ n : |xk − `| ≥ ε}| = 0.

S will denote the set of all statistically convergent sequences.

If x is a sequence such that xk satisfies property P for all k except a set of natural
density zero, then we say that xk satisfies P for ”almost all k ”, and we abbreviate
this by ”a.a.k.”

2. Main Results

In this section we give the main results of this article. Now we begin a new
definition.

Definition 2.1. Let X be an abelian topological Hausdorf group. A sequence (x(k))
of points in R, the set of real numbers, is called ρ−statistically convergent in topo-
logical groups to ` (Sρ(X)−convergent to `) if there is a real number ` for each
neighbourhood U of 0 such that

lim
n→∞

1

ρn
|{k ≤ n : x(k)− ` /∈ U}| = 0

for each ε > 0, where ρ = (ρn) is a non-decreasing sequence of positive real numbers
tending to∞ such that lim supn

ρn
n <∞, ∆ρn = O(1), and ∆x(n) = x(n+1)−x(n)

for each positive integer n. In this case we write Sρ(X) − limx(k) = ` or x(k) →
` (Sρ(X)). We denote the set of all ρ−statistically convergent in topological groups
sequences by Sρ(X). If ρ = (ρn) = n, ρ−statistically convergent in topological
groups is coincide statistical convergence in topological groups.

Definition 2.2. Let X be an abelian topological Hausdorf group. A sequence x =
(x(k)) of points in R, the set of real numbers, is called Sρ(X)-Cauchy sequence in
topological groups if there is a subsequence (x (k′(n))) of x such that k′(n) 6 n for
each n, limn→∞ x(k′(n)) = ` and for each neighbourhood U of 0

lim
n→∞

1

ρn
|{k ≤ n : x(k)− x (k′ (n)) /∈ U}| = 0,

where ρ = (ρn) is a non-decreasing sequence of positive real numbers tending to ∞
such that lim supn

ρn
n < ∞, ∆ρn = O(1) and ∆x(n) = x(n + 1) − x(n) for each

positive integer n.

Theorem 2.1. If x is ρ−statistically convergent in topological groups, then Sρ(X)−
limx(k) = ` is unique.

Proof. Suppose that (x (k)) has two different ρ−statistical in topological groups
limits `1, `2 say. Since X is a Hausdorff space there exists a neighbourhood U of
0 such that `1 − `2 /∈ U. Then we may choose a neighbourhood W of 0 such that
W +W ⊂ U. Write z (k) = `1 − `2 for all k ∈ N. Therefore for all n ∈ N,

{k ≤ n : z (k) /∈ U} ⊂ {k ≤ n : `1 − x (k) /∈W} ∪ {k ≤ n : x (k)− `2 /∈W} .

Now it follows from this inclusion that, for all n ∈ N,

|{k ≤ n : z (k) /∈ U}| ≤ |{k ∈ Ir : `1 − x (k) /∈W}|+ |{k ≤ n : x (k)− `2 /∈W}| .
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Since Sρ(X)− limx(k) = `1 and Sρ(X)− limx(k) = `2 we get

lim
n→∞

1

ρn
|{k ≤ n : z (k) /∈ U}| ≤ lim

n→∞

1

ρn
|{k ≤ n : `1 − x (k) /∈W}|

+ lim
n→∞

1

ρn
|{k ≤ n : x (k)− `2 /∈W}| .

This contradiction shows that `1 = `2. �

Theorem 2.2. If limk→∞ x(k) = ` and Sρ(X)− lim y(k) = 0, then

Sρ(X)− lim (x(k) + y(k)) = lim
k→∞

x(k).

Proof. Let U be any neighborhood of 0. Then we may choose a symetric neighbour-
hood W of 0 such that W +W ⊂ U. Since limk→∞ x(k) = ` there exists an integer
k0 such that k ≥ k0 implies that x(k)− ` ∈W . Hence

lim
n→∞

1

ρn
|{k ≤ n : x(k)− ` /∈W}| ≤ lim

n→∞

k0

ρn
= 0

and by the assumption that Sρ(X)− lim y(k) = 0 we have

lim
n→∞

1

ρn
|{k ≤ n : y(k) /∈W}| = 0.

Now we have

{k ≤ n : (x(k)− `) + y(k) /∈ U} ⊂ {k ≤ n : x(k)− ` /∈W} ∪ {k ≤ n : y(k) /∈W} .
Hence
1

ρn
|{k ≤ n : (x(k)− `) + y(k) /∈ U}| ≤ 1

ρn
|{k ≤ n : x(k)− ` /∈W}|+ 1

ρn
|{k ≤ n : y(k) /∈W}|

It follows from the above inequality that

lim
n→∞

1

ρn
|{k ≤ n : (x(k)− `) + y(k) /∈ U}| = 0.

Thus Sρ(X)− lim (x(k) + y(k)) = limk→∞ x(k). �

Theorem 2.3. If a sequence x(k) is ρ-statistically convergent to `, then there are
sequences y(k) and z(k) such that limk→∞ y(k) = `, x = y+z and limn→∞

1
ρn
|{k ≤ n : x(k) 6= y(k)}| =

0 and z is a ρ-statistically null sequence.

Proof. Let (Vj) be a nested base of neighborhoods of 0. Take n0 = 0 and choose
an increasing sequence (nj) of positive integers such that

1

ρn
|{k ≤ n : x(k)− ` /∈ Vj}| <

1

j
for n > nj .

Let us define sequences y = y(k) and z = z(k) in the following way. Write z(k) = 0
and y(k) = x(k) if n0 < k ≤ n1 and suppose that nj < nj+1 for j ≥ 1. z(k) = 0
and y(k) = x(k) if x(k) − ` ∈ Vj , y(k) = ` and z(k) = x(k) − ` if x(k) − ` /∈ Vj .
Firstly, we prove that limk→∞ y(k) = `. Let V be any neighborhood of 0. We may
choose a positive integer j such that Vj ⊂ V. Then y(k) − ` = x(k) − ` ∈ Vj and
so y(k)− ` ∈ V for k > nj . If x(k)− ` /∈ Vj , then y(k)− ` = `− ` = 0 ∈ V. Hence
limk→∞ y(k) = `. Finally we show that z = z(k) is a statistically null sequence. It
is enough to show that

lim
n→∞

1

ρn
|{k ≤ n : z(k) 6= 0}| = 0.



12 HACER ŞENGÜL KANDEMIR

For any n ∈ N any neighborhood V of 0, we have

|{k ≤ n : z(k) /∈ V }| ≤ |{k ≤ n : z(k) 6= 0}| .
If j ∈ N such that Vj ⊂ V and ε > 0, we are going to show that

1

ρn
|{k ≤ n : z(k) 6= 0}| < ε.

If np < n ≤ np+1, then

{k ≤ n : z(k) 6= 0} ⊂ {k ≤ n : x(k)− ` /∈ Vp} .
If p > j and np < n ≤ np+1, then

1

ρn
|{k ≤ n : z(k) 6= 0}| ≤ 1

ρn
|{k ≤ n : x(k)− ` /∈ Vp}| <

1

p
<

1

j
< ε.

Thus, the proof is completed. �

Theorem 2.4. The sequence x is Sρ(X)−convergent if and only if x is Sρ(X)−Cauchy
sequence.

Proof. Assume that x is Sρ(X)−convergent. Since X is a Hausdorff space there
exists a neighbourhood U of 0. Then we may choose a neighbourhood Y of 0 such
that Y + Y ⊂ U. We can write

|{k ≤ n : x(k)−x (k′ (n)) /∈ U} ⊂ {k ≤ n : x (k)− ` /∈ Y }∪{k ≤ n : `− x (k′ (n)) /∈ Y } .
Now it follows from this inclusion that, for all n ∈ N,

1

ρn
|{k ≤ n : x(k)− x (k′ (n)) /∈ U}| ≤ 1

ρn
|{k ∈ Ir : x (k)− ` /∈ Y }|+ 1

ρn
|{k ≤ n : `− x (k′ (n)) /∈ Y }| .

Since Sρ(X)− limx(k) = `, we get

lim
n→∞

1

ρn
|{k ≤ n : x(k)− x (k′ (n)) /∈ U}| ≤ lim

n→∞

1

ρn
|{k ≤ n : x (k)− ` /∈ Y }|

+ lim
n→∞

1

ρn
|{k ≤ n : `− x (k′ (n)) /∈ Y }| .

The proof to the contrary is obvious. �

Theorem 2.5. Let ρ = (ρn) be a non-decreasing sequence of positive real numbers

tending to ∞ such that lim supn
ρn
n

< ∞,∆ρn = O(1). If
ρn
n
≥ 1 for all n ∈ N,

then S(X) ⊂ Sρ(X).

Proof. If S(X)− limx(k) = `, then for every ε > 0 we have

1

n
|{k ≤ n : x(k)− ` /∈ U}| = ρn

n

1

ρn
|{k ≤ n : x(k)− ` /∈ U}|

>
1

ρn
|{k ≤ n : x(k)− ` /∈ U}|.

This proves the proof. �

Theorem 2.6. Let ρ = (ρn) and τ = (τn) be two sequences such that ρn 6 τn for
all n ∈ N. If lim infn→∞

ρn
τn
> 0, then Sρ(X) ⊂ Sτ (X).
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Proof. If Sρ(X)− limx(k) = `, then for every ε > 0 we can write

1

τn
|{k ≤ n : x(k)− ` /∈ U}| ≤ ρn

τn

1

ρn
|{k ≤ n : x(k)− ` /∈ U}|.

This is enough for proof. �

The following result is obtained from Theorem 2.5 and Theorem 2.6.

Corollary 2.7. Let ρ = (ρn) and τ = (τn) be two sequences such that ρn 6 τn and
n < τn for all n ∈ N. If lim infn→∞

ρn
τn
> 0, then S(X) ⊂ Sρ(X) ⊂ Sτ (X).
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