EXTENSIONS OF GM-RINGS OVER GENERALIZED POWER SERIES RINGS

Lunqun Ouyang and Dayong Liu
Received: 18 January 2007; Revised: 8 May 2007
Communicated by Huanyin Chen

Abstract

Let R be a reduced ring, (S, \leq) a cancellative torsion-free strictly ordered monoid, it is shown that ring $\left[\left[R^{S, \leq}\right]\right]$ is a $G M-$ ring if and only if R is a $G M$-ring. We also investigate $G M$ - rings for some special Morita Contexts and module extensions over generalized power series rings. Mathematics Subject Classification (2000): 16U99, 16E50 Keywords: $G M$-rings, module extension, generalized power series

1. Introduction

All rings considered here are associative with identity and R denotes such a ring. We use $U(R)$ to denote the group of units of R . Any concept and notation not defined here can be found in $[6,7]$.

A ring R is said to be a $G M$ - ring provided that for any $x, y \in R$, there exist idempotents $e, f \in R$ and $u \in U(R)$ such that $x-e u, y-f u^{-1} \in U(R)$. A ring R is called a clean ring if for any $x \in R$, there exists $e^{2}=e \in R$ such that $x-e \in U(R)$. Clearly, all clean rings are $G M$ - rings. Many examples and results of $G M$ - rings are given in $[1,2]$.

Let (S, \leq) be an ordered set. Recall that (S, \leq) is artinian if every strictly decreasing sequence of elements of S is finite, and that (S, \leq) is narrow if every subset of pairwise order-incomparable elements of S is finite. Let (S, \leq) be a strictly ordered monoid and R a ring. Let $\left[\left[R^{S, \leq]]}\right.\right.$ be the set of all maps $f: S \rightarrow R$ such that $\operatorname{supp}(f)=\{s \in S \mid f(s) \neq 0\}$ is artinian and narrow. With pointwise addition and the operation of convolution

$$
(f g)(s)=\sum_{(u, v) \in X_{s}(f, g)} f(u) g(v)
$$

[^0]where $X_{s}(f, g)=\{(u, v) \in S \times S \mid s=u+v, f(u) \neq 0, g(v) \neq 0\}$ is a finite set by [8, Theorem 4.1] for every s $\in S$ and $f, g \in\left[\left[R^{S, \leq}\right]\right],\left[\left[R^{S, \leq}\right]\right]$ becomes a ring, with unit element e^{*}, namely
$$
e^{*}(0)=1, \quad e^{*}(s)=0 \text { for every } s \in S, \quad s \neq 0
$$

The elements of $\left[\left[R^{S, \leq}\right]\right]$ are called generalized power series with coefficients in R and exponents in S. For any a $\in R, C_{a} \in\left[\left[R^{S, \leq}\right]\right]$ is given by $C_{a}(0)=a, C_{a}(s)=0$ for all $0 \neq s \in S$. Ordered monoid (S, \leq) is said to satisfy condition ($S 0$) in case $s \geq 0$ for all $s \in S$. Henceforth, unless otherwise mentioned, in this paper, (S, \leq) will always denote a strictly ordered monoid satisfying condition (S0).

In this paper, we show that if R is a reduced ring, then ring [[$R^{S, \leq]] \text { is a } G M-~}$ ring if and only if R is a $G M$ - ring. We also investigate $G M$ - rings for some special Morita Contexts and module extensions rings over generalized power series rings. These given generalizations of $[3$, Theorem $],[2$, Theorem 6$]$ and $[2$, Theorem $11]$.

2. Main results

Lemma 2.1. ${ }^{[6]}$ Let R be a ring, $M_{n \times n}(R)$ the ring of all $n \times n$ matrices with entries in R. Then $\left[\left[M_{n \times n}(R)^{S, \leq]]} \cong M_{n \times n}\left(\left[\left[R^{S, \leq]]}\right)\right.\right.\right.\right.$.

Lemma 2.2. ${ }^{[8]}$ Let (S, \leq) be a cancellative torsion-free strictly ordered monoid and satisfy condition (SO), and let $f \in\left[\left[R^{S, \leq}\right]\right]$. Then $f \in U\left(\left[\left[R^{S, \leq}\right]\right]\right)$ if and only if $f(0) \in U(R)$.

Lemma 2.3. Let R be a ring, and $e_{1}^{2}=e_{1}, e_{2}^{2}=e_{2} \in R$. Then $\left[\left[\left(e_{1} R e_{2}\right)^{S, \leq]]=}\right.\right.$ $C_{e_{1}}\left[\left[R^{S, \leq}\right]\right] C_{e_{2}}$.

Proof. For any $f \in C_{e_{1}}\left[\left[R^{S, \leq}\right]\right] C_{e_{2}}$, there exists $g \in\left[\left[R^{S, \leq}\right]\right]$ such that $f=$ $C_{e_{1}} g C_{e_{2}}$. Thus for any $s \in S$, we have $f(s)=\left(C_{e_{1}} g C_{e_{2}}\right)(s)=C_{e_{1}}(0)\left(g C_{e_{2}}\right)(s)=$ $C_{e_{1}}(0) g(s) c_{e_{2}}(0)=e_{1} g(s) e_{2} \in e_{1} R e_{2}$. So $f \in\left[\left[\left(e_{2} R e_{2}\right)^{S, \leq]]}\right.\right.$. Hence $C_{e_{1}}\left[\left[R^{S, \leq}\right]\right] C_{e_{2}}$ $\subseteq\left[\left[\left(e_{1} R e_{2}\right)^{S, \leq}\right]\right]$. Conversely, for any $f \in\left[\left[\left(e_{1} R e_{2}\right)^{S, \leq}\right]\right]$ and any $s \in \operatorname{supp}(f)$, there exists $r_{s} \in R$ such that $0 \neq f(s)=e_{1} r_{s} e_{2} \in e_{1} R e_{2}$. Define a map $g: S \longrightarrow R$ via

$$
g(s)= \begin{cases}r_{s}, & s \in \operatorname{supp}(f) \\ 0, & s \in S \backslash \operatorname{supp}(f)\end{cases}
$$

Clearly, $\operatorname{supp}(g)=\operatorname{supp}(f)$. Thus $g \in\left[\left[R^{S, \leq}\right]\right]$. For any $s \in \operatorname{supp}(f),\left(C_{e_{1}} g C_{e_{2}}\right)(s)$ $=e_{1} g(s) e_{2}=e_{1} r_{s} e_{2}=f(s)$, for any $s \in S \backslash \operatorname{supp}(f),\left(C_{e_{1}} g C_{e_{2}}\right)(s)=0=f(s)$. Thus $f=C_{e_{1}} g C_{e_{2}} \in C_{e_{1}}\left[\left[R^{S, \leq}\right]\right] C_{e_{2}}$. This implies that $\left[\left[\left(e_{1} R e_{2}\right)^{S, \leq]] \subseteq C_{e_{1}}\left[\left[R^{S, \leq}\right]\right] C_{e_{2}} .}\right.\right.$ Therefore we have $\left[\left[\left(e_{1} R e_{2}\right)^{S, \leq]]}=C_{e_{1}}\left[\left[R^{S, \leq}\right]\right] C_{e_{2}}\right.\right.$.

Lemma 2.4. If R is a $G M$ - ring. Then $\left[\left[R^{S, \leq]] \text { is a } G M-\text { ring. }}\right.\right.$
Proof. Let $f, g \in\left[\left[R^{S, \leq}\right]\right]$, There exist $e^{2}=e, f^{2}=f \in R$ and $u \in U(R)$ such that $f(0)-e u, g(0)-f u^{-1} \in U(R)$ by R is a $G M-$ ring. Since $C_{u} C_{u^{-1}}=e^{*}$, and $\left(f-C_{e} C_{u}\right)(0),\left(g-C_{f} C_{u}^{-1}\right)(0) \in U(R)$, it is easy to see that $f-C_{e} C_{u}, g-C_{f} C_{u}^{-1} \in$ $U\left(\left[\left[R^{S, \leq}\right]\right]\right)$ and $C_{e}^{2}=C_{e}, C_{f}^{2}=C_{f}, C_{u} \in U\left(\left[\left[R^{S, \leq}\right]\right]\right)$. Thus $\left[\left[R^{S, \leq]]}\right.\right.$ is a $G M-$ ring.

Example 1 Let $\mathbf{N} \cup\{\mathbf{0}\}$ denote the monoid which consists of natural numbers and
 power series in one indeterminate and coefficients in R). So if R is a $G M$ - ring, then $R[[X]]$ is also a $G M$ - ring. [2, Theorem 14]

Example 2 Let $S=N^{n} \cup\{0\}$, with the usual order $\left(\amalg \leq_{i}\right)$, or the lexicographic (lex \leq_{i}) order, or the reverse lexicographic (revlex $\left.\leq_{i}\right)$ order. If R is a $G M-$ ring, then $\left[\left[R^{\left.\left.N^{n} \cup\{0\}, \amalg \leq_{i}\right]\right],\left[\left[R^{N^{n} \cup\{0\}, \text { lex } \leq_{i}}\right]\right] \text {, }\left[\left[R^{N^{n} \cup\{0\}, \text { revlex } \leq_{i}}\right]\right] \text { are also } G M-~}\right.\right.$ rings. Since rational number field Q and real number field \mathbb{R} are $G M$ - rings, then $\left[\left[Q^{N^{n}} \cup\{0\}, \amalg \leq_{i}\right]\right],\left[\left[Q^{N^{n} \cup\{0\}, \text { lex } \leq_{i}}\right]\right]$, $\left[\left[Q^{N^{n} \cup\{0\}, \text { revlex } \leq_{i}}\right]\right]$ and $\left[\left[\mathbb{R}^{N^{n} \cup\{0\}, \amalg \leq i}\right]\right]$, $\left[\left[\mathbb{R}^{N^{n}} \cup\{0\}\right.\right.$, lex $\left.\left.\leq_{i}\right]\right],\left[\left[\mathbb{R}^{N^{n} \cup\{0\}, \text { revlex } \leq_{i}}\right]\right]$ are $G M-$ rings.

Let $\left(S_{1}, \leq_{1}\right),\left(S_{2} \leq_{2}\right), \cdots,\left(S_{n}, \leq_{n}\right)$ be cancellative torsion-free strictly ordered monoids satisfying the condition (S0). If R is a $G M-$ ring, then $\left[\left[R^{S_{1} \times S_{2} \times \cdots \times S_{n}, \amalg \leq_{i}}\right]\right]$, $\left[\left[R^{S_{1} \times S_{2} \times \cdots \times S_{n},\left(l e x \leq_{i}\right)}\right]\right]\left[\left[R^{S_{1} \times S_{2} \times \cdots \times S_{n},\left(\text { revlex } \leq_{i}\right)}\right]\right]$ are $G M-$ rings.

A ring R is called reduced if it has no nonzero nilpotent element. It was proved in [5, Lemma 3.4] that if R is a reduced ring, and (S, \leq) a cancellative torsion-free strictly ordered monoid. Then for every idempotent $f^{2}=f \in\left[\left[R^{S, \leq}\right]\right]$, there exists an idempotent $e \in R$ such that $f=C_{e}$.

Lemma 2.5. Let R be a reduced ring, (S, \leq) a cancellative torsion-free strictly ordered monoid. If $\left[\left[R^{S, \leq}\right]\right]$ is a $G M-$ ring, then R is a $G M-$ ring.

Proof. Let $a, b \in R$, then $C_{a}, C_{b} \in\left[\left[R^{S, \leq} \leq\right]\right.$. Since [[$\left.\left.R^{S, \leq}\right]\right]$ is a $G M$ - ring, there exist $C_{e}^{2}=C_{e}, C_{f}^{2}=C_{f} \in\left[\left[R^{S, \leq]]}\right.\right.$ where $e^{2}=e \in R, f^{2}=f \in R$, and $\tau \in$ $U\left(\left[\left[R^{S, \leq]])}\right.\right.\right.$ such that $C_{a}-C_{e} \tau, C_{b}-C_{f} \tau^{-1} \in U\left(\left(\left[\left[R^{S, \leq]]) \text {. Thus }\left(C_{a}-C_{e} \tau\right)(0)=}\right.\right.\right.\right.$ $a-e \tau(0) \in U(R)$ and $\left(C_{b}-C_{f} \tau^{-1}\right)(0)=b-f \tau^{-1}(0) \in U(R)$. This implies that R is a $G M$ - ring.

Example 3 Let R be a reduced ring. If the formal power series ring $R[[X]]$ is a $G M$ - ring, then so is R by Lemma 2.5. This can be proved in a directly simple manner. Given any $x, y \in R$, we have $x, y \in R[[X]]$ as well. Thus we can find
idempotents $e(x), f(x) \in R[[X]]$ and a unit $u(x) \in R[[X]]$ such that $x-e(x) u(x), y-$ $f(x) u(x)^{-1} \in U(R[[X]])$. It is well know that $h(x) \in R[[X]]$ is a unit if and only if $h(0) \in R$ is a unit, and if R is a reduced ring, then the set of all idempotents in $R[[X]]$ equal to the set of all idempotents in R. Thus we know $x-e(0) u(0), y-$ $f(0) u(0)^{-1} \in U(R)$, One easily checks that $e(0)=e, f(0)=f$ are idempotents and $u(0) \in R$ is a unit. Thus R is a $G M-$ ring.

Let $e_{1}, e_{2}, \cdots, e_{n} \in R$ be idempotents. Clearly,

$$
\begin{aligned}
& \left(\begin{array}{ccc}
C_{e_{1}}\left[\left[R^{S, \leq}\right]\right] C_{e_{1}} & \cdots & C_{e_{1}}\left[\left[R^{S, \leq}\right]\right] C_{e_{n}} \\
\vdots & \ddots & \vdots \\
C_{e_{n}}\left[\left[R^{S, \leq}\right]\right] C_{e_{1}} & \cdots & C_{e_{n}}\left[\left[R^{S, \leq}\right]\right] C_{e_{n}}
\end{array}\right) \\
& \quad=\left\{(\begin{array} { l l l }
{ C _ { e _ { 1 } } r _ { 1 1 } C _ { e _ { 1 } } } & { \cdots } & { C _ { e _ { 1 } } r _ { 1 n } C _ { e _ { n } } } \\
{ \vdots } & { \ddots } & { \vdots } \\
{ C _ { e _ { n } } r _ { n 1 } C _ { e _ { 1 } } } & { \cdots } & { C _ { e _ { n } } r _ { n n } C _ { e _ { n } } }
\end{array}) r _ { i j } \in \left[\left[R^{S, \leq]](0 \leqslant i, j \leqslant n)}\right.\right.\right.
\end{aligned}
$$

form a ring with the identity $\operatorname{diag}\left(C_{e_{1}}, \cdots, C_{e_{n}}\right)$.

Theorem 2.6. Let $e_{1}, e_{2}, \cdots, e_{n}$ be idempotents of a ring R. If all $e_{i} R e_{i}$ are $G M$-rings, then so is the ring

$$
\left(\begin{array}{ccc}
C_{e_{1}}\left[\left[R^{S, \leq}\right]\right] C_{e_{1}} & \cdots & C_{e_{1}}\left[\left[R^{S, \leq}\right]\right] C_{e_{n}} \\
\vdots & \ddots & \vdots \\
C_{e_{n}}\left[\left[R^{S, \leq}\right]\right] C_{e_{1}} & \cdots & C_{e_{n}}\left[\left[R^{S, \leq}\right]\right] C_{e_{n}}
\end{array}\right)
$$

Proof. Clearly, the ring $\left(\begin{array}{ccc}e_{1} R e_{1} & \cdots & e_{1} R e_{n} \\ \vdots & \ddots & \vdots \\ e_{n} R e_{1} & \cdots & e_{n} R e_{n}\end{array}\right)$ is a $G M$-ring by virtue of [2,
Lemma 1]. Since

$$
\begin{aligned}
& {\left[\left[\left(\begin{array}{ccc}
e_{1} R e_{1} & \cdots & e_{1} R e_{n} \\
\vdots & \ddots & \vdots \\
e_{n} R e_{1} & \cdots & e_{n} R e_{n}
\end{array}\right)^{S, \leq}\right]\right] } \\
\cong & {\left[\left[\left(\operatorname{diag}\left(e_{1}, \cdots, e_{n}\right) M_{n}(R) \operatorname{diag}\left(e_{1}, \cdots, e_{n}\right)\right)^{S, \leq}\right]\right] } \\
\cong & {\left[\left(\operatorname{diag}\left(e_{1}, \cdots, e_{n}\right)^{S, \leq}\right]\right]\left[\left[\left(M_{n}(R)\right)^{S, \leq}\right]\right]\left[\left[\left(\operatorname{diag}\left(e_{1}, \cdots, e_{n}\right)^{S, \leq}\right]\right]\right.} \\
\cong & \operatorname{diag}\left(C_{e_{1}}, \cdots, C_{e_{n}}\right) M_{n}\left(\left[\left[R^{S, \leq}\right]\right]\right) \operatorname{diag}\left(C_{e_{1}}, \cdots, C_{e_{n}}\right)
\end{aligned}
$$

$$
\cong\left(\begin{array}{ccc}
C_{e_{1}}\left[\left[R^{S, \leq}\right]\right] C_{e_{1}} & \cdots & C_{e_{1}}\left[\left[R^{S, \leq}\right]\right] C_{e_{n}} \\
\vdots & \ddots & \vdots \\
C_{e_{n}}\left[\left[R^{S, \leq}\right]\right] C_{e_{1}} & \cdots & C_{e_{n}}\left[\left[R^{S, \leq}\right]\right] C_{e_{n}}
\end{array}\right)
$$

Apply Lemma 2.4, we get the result.
 that $\operatorname{supp}(\phi)=\{s \in S \mid \phi(s) \neq 0\}$ is artinian and narrow. From [9], it is immediate that $\left[\left[M^{S, \leq}\right]\right]$ is an $\left[\left[R^{S, \leq}\right]\right]-$ module. For any $f \in\left[\left[R^{S, \leq}\right]\right], \phi \in\left[\left[M^{S, \leq}\right]\right]$ and $s \in S$, the scalar multiplication is defined as follow:

$$
(f \phi)(s)=\sum_{(u, v) \in X_{s}(f, \phi)} f(u) \phi(v) .
$$

Let A_{1}, A_{2}, A_{3} be associative rings with identity. Let M_{21}, M_{31}, M_{32} be $\left(A_{2}, A_{1}\right)-$, $\left(A_{3}, A_{1}\right)-,\left(A_{3}, A_{2}\right)$-bimodule, respectively. Let $\psi: M_{32} \otimes_{A_{2}} M_{21} \longrightarrow M_{31}$ be an $\left(A_{3}, A_{1}\right)$-homomorphism, and let

$$
T=\left(\begin{array}{lll}
A_{1} & 0 & 0 \\
M_{21} & A_{2} & 0 \\
M_{31} & M_{32} & A_{3}
\end{array}\right), T^{S}=\left(\begin{array}{ccc}
{\left[\left[A_{1}{ }^{S, \leq}\right]\right]} & 0 & 0 \\
{\left[\left[M_{21}^{S, \leq}\right]\right]} & {\left[\left[A_{2}{ }^{S, \leq}\right]\right]} & 0 \\
{\left[\left[M_{31}^{S, \leq}\right]\right]} & {\left[\left[M_{32}{ }^{S, \leq}\right]\right]} & {\left[\left[A_{3}^{S, \leq}\right]\right]}
\end{array}\right)
$$

with the usual matrix operations (see[4]), T is a ring. Now we show that T^{S} is also a ring.

Theorem 2.7. There exists a $\left.\left(\left[\left[A_{3}{ }^{S, \leq}\right]\right],\left[A_{1}^{S, \leq}\right]\right]\right)$-homomorphism

$$
\psi^{S}:\left[\left[M_{32}^{S, \leq}\right]\right] \bigotimes_{\left[\left[A_{2}^{S, \leq \leq]]}\right.\right.}\left[\left[M_{21}^{S, \leq}\right]\right] \longrightarrow\left[\left[M_{31}^{S, \leq}\right]\right]
$$

such that with the usual matrix operations,T^{S} is a ring.
Proof. Since M_{32}, M_{21} is $\left(A_{3}, A_{2}\right)-,\left(A_{3}, A_{1}\right)$-bimodule, respectively, according to [9], it is easy to see that $\left[\left[M_{32}{ }^{S, \leq}\right]\right]$ is a $\left(\left[\left[A_{3}{ }^{S, \leq}\right]\right],\left[\left[A_{2}{ }^{S, \leq}\right]\right]\right)-$ bimodule, and $\left[\left[M_{21}{ }^{S, \leq}\right]\right]$ is a $\left(\left[\left[A_{2}{ }^{S, \leq}\right]\right],\left[\left[A_{1}{ }^{S, \leq}\right]\right]\right)$-bimodule. Consider following diagram:

Let $n \in\left[\left[M_{32}^{S, \leq}\right]\right]$ and $m \in\left[\left[M_{21}^{S, \leq}\right]\right]$. Define a map

$$
\alpha_{[n, m]}: S \longrightarrow M_{31}, \quad \alpha_{[n, m]}(s)=\sum_{(u, v) \in X_{s}(n, m)} \psi(n(u) \bigotimes m(v))
$$

for any $s \in S$. It is clearly that $\operatorname{supp}\left(\alpha_{[n, m]}\right) \subseteq \operatorname{supp}(n)+\operatorname{supp}(m)$, thus $\alpha_{[n, m]} \in$ $\left[\left[M_{31}^{S, \leq}\right]\right]$.

Define a map $f:\left[\left[M_{32}^{S, \leq}\right]\right] \times\left[\left[M_{21}^{S, \leq}\right]\right] \longrightarrow\left[\left[M_{31}^{S, \leq}\right]\right]$, where $f((n, m))=\alpha_{[n, m]}$ for any $(n, m) \in\left[\left[M_{32}^{S, \leq}\right]\right] \times\left[\left[M_{21}^{S, \leq}\right]\right]$. Let $n_{1}, n_{2} \in\left[\left[M_{32}^{S, \leq}\right]\right], m \in\left[\left[M_{21}^{S, \leq}\right]\right]$. By the preceding discussions, there exist $\alpha_{\left[n_{1}, m\right]}, \alpha_{\left[n_{2}, m\right]}, \alpha_{\left[n_{1}+n_{2}, m\right]} \in\left[\left[M_{31}^{S, \leq}\right]\right]$. For all $s \in S$,

$$
\begin{aligned}
\alpha_{\left[n_{1}+n_{2}, m\right]}(s)= & \sum_{(u, v) \in X_{s}\left(n_{1}+n_{2}, m\right)} \psi\left(\left(n_{1}+n_{2}\right)(u) \bigotimes m(v)\right) \\
= & \sum_{(u, v) \in X_{s}\left(n_{1}+n_{2}, m\right)} \psi\left(n_{1}(u) \bigotimes m(v)\right) \\
& +\sum_{(u, v) \in X_{s}\left(n_{1}+n_{2}, m\right)} \psi\left(n_{2}(u) \bigotimes m(v)\right) .
\end{aligned}
$$

If $\left(u^{\prime}, v^{\prime}\right) \in X_{s}\left(n_{1}, m\right)$, but $\left(u^{\prime}, v^{\prime}\right) \bar{\in} X_{s}\left(n_{1}+n_{2}, m\right)$, then we have $\left(n_{1}+n_{2}\right)\left(u^{\prime}\right)=$ 0 . So $n_{2}\left(u^{\prime}\right) \neq 0$, thus $\left(u^{\prime}, v^{\prime}\right) \in X_{s}\left(n_{2}, m\right)$ and $\psi\left(n_{1}\left(u^{\prime}\right) \otimes m\left(v^{\prime}\right)\right)+\psi\left(n_{2}\left(u^{\prime}\right) \otimes\right.$ $\left.m\left(v^{\prime}\right)\right)=\psi\left(\left(n_{1}\left(u^{\prime}\right)+n_{2}\left(u^{\prime}\right)\right) \otimes m\left(v^{\prime}\right)\right)=0$. Likewise, if $\left(u^{\prime}, v^{\prime}\right) \in X_{s}\left(n_{2}, m\right)$, but $\left(u^{\prime}, v^{\prime}\right) \bar{\in} X_{s}\left(n_{1}+n_{2}, m\right)$, we also have $\left(u^{\prime}, v^{\prime}\right) \in X_{s}\left(n_{1}, m\right)$ and $\psi\left(n_{1}\left(u^{\prime}\right) \otimes m\left(v^{\prime}\right)\right)+$ $\psi\left(n_{2}\left(u^{\prime}\right) \otimes m\left(v^{\prime}\right)\right)=\psi\left(\left(n_{1}\left(u^{\prime}\right)+n_{2}\left(u^{\prime}\right)\right) \otimes m\left(v^{\prime}\right)\right)=0$. So

$$
\begin{aligned}
\alpha_{\left[n_{1}+n_{2}, m\right]}(s)= & \sum_{(u, v) \in X_{s}\left(n_{1}+n_{2}, m\right)} \psi\left(n_{1}(u) \bigotimes m(v)\right) \\
& +\sum_{(u, v) \in X_{s}\left(n_{1}+n_{2}, m\right)} \psi\left(n_{2}(u) \bigotimes m(v)\right) \\
= & \sum_{(u, v) \in X_{s}\left(n_{1}, m\right)} \psi\left(n_{1}(u) \bigotimes m(v)\right) \\
& +\sum_{(u, v) \in X_{s}\left(n_{2}, m\right)} \psi\left(n_{2}(u) \bigotimes m(v)\right) \\
= & \alpha_{\left[n_{1}, m\right]}(s)+\alpha_{\left[n_{2}, m\right]}(s) \\
= & \left(\alpha_{\left[n_{1}, m\right]}+\alpha_{\left[n_{2}, m\right]}\right)(s) .
\end{aligned}
$$

Thus $\alpha_{\left[n_{1}+n_{2}, m\right]}=\alpha_{\left[n_{1}, m\right]}+\alpha_{\left[n_{2}, m\right]}$, hence $f\left(\left(n_{1}+n_{2}, m\right)\right)=f\left(\left(n_{1}, m\right)\right)+f\left(\left(n_{2}, m\right)\right)$. Analogously, we see that $f\left(\left(n, m_{1}+m_{2}\right)\right)=f\left(\left(n, m_{1}\right)\right)+f\left(\left(n, m_{2}\right)\right)$ for all $n \in$ $\left[\left[M_{32}^{S, \leq}\right]\right], m_{1}, m_{2} \in\left[\left[M_{21}^{S, \leq}\right]\right]$.

For any $n \in\left[\left[M_{32}^{S, \leq}\right]\right], \tau \in\left[\left[A_{2}^{S, \leq}\right]\right], m \in\left[\left[M_{21}^{S, \leq}\right]\right]$ and any $s \in S$, we have

$$
\begin{aligned}
f((n \tau, m))(s)= & \alpha_{[n \tau, m]}(s) \\
= & \sum_{\left(u^{\prime}, u\right) \in X_{s}(n \tau, m)} \psi\left((n \tau)\left(u^{\prime}\right) \bigotimes m(u)\right) \\
= & \sum_{\left(u^{\prime}, u\right) \in X_{s}(n \tau, m)} \psi\left(\sum_{(v, w) \in X_{u^{\prime}}(n, \tau)}(n(v) \tau(w) \bigotimes m(u))\right. \\
= & \left.\sum_{\left(u^{\prime}, u\right) \in X_{s}(n \tau, m)} \psi(v, w) \in X_{u^{\prime}(n, \tau)} \psi \sum_{\left.\left(u^{\prime}, u\right) \in X_{s}(n \tau, m) \tau(v) \bigotimes m(u)\right)} \psi \sum_{(v, w, u) \in X} \psi(n(v) \tau(w) \bigotimes m(v)) \tau(w) \bigotimes m(u)\right) \\
= & \sum_{(v, w, u) \in X_{s}(n, \tau, m)} \psi(n(v) \tau(w) \bigotimes m(u)) \\
= & \sum_{(v, w, u) \in X_{s}(n, \tau, m)} \psi(n(v) \bigotimes \tau(w) m(u)) \\
= & f((n, \tau m))(s) .
\end{aligned}
$$

Where $X=\left\{(v, w, u) \in X_{s}(n, \tau, m) \mid n \tau(v+w)=0\right\}$. Thus we have $f(n \tau, m)=$ $f(n, \tau m)$ and hence f is a bilinear balanced morphism. Then there exists a homomorphism $\psi^{S}:\left[\left[M_{32}^{S, \leq}\right]\right] \bigotimes_{\left[\left[A_{2}^{S, \leq}\right]\right]}\left[\left[M_{21}^{S, \leq}\right]\right] \longrightarrow\left[\left[M_{31}^{S, \leq}\right]\right]$ such that the preceding diagram commutes.

Next, we check that ψ^{S} is a bimodule homomorphism. For any $a \in\left[\left[A_{3}^{S, \leq}\right]\right], n \in$ $\left[\left[M_{32}^{S, \leq}\right]\right], m \in\left[\left[M_{21}^{S, \leq}\right]\right]$ and any $s \in S$.

$$
\begin{aligned}
\psi^{S}(a n, m)(s) & =\alpha_{[a n, m]}(s) \\
& =\sum_{\left(u^{\prime}, u\right) \in X_{s}(a n, m)} \psi\left((a n)\left(u^{\prime}\right) \bigotimes m(u)\right) \\
& =\sum_{\left(u^{\prime}, u\right) \in X_{s}(a n, m)} \psi\left(\sum_{v, w) \in X_{u^{\prime}}(a, n)}(a(v) n(w) \bigotimes m(u))\right. \\
& =\sum_{(v, w, u) \in X_{s}(a, n, m)} \psi(a(v) n(w) \bigotimes m(u)) \\
& =\sum_{(v, w, u) \in X_{s}(a, n, m)} a(v) \psi(n(w) \bigotimes m(u)) \\
& =a \psi^{S}(n, m)(s) .
\end{aligned}
$$

Thus $\psi^{S}(a n, m)=a \psi^{S}(n, m)$. This implies that ψ^{S} is a left $\left[\left[A_{3}^{S, \leq}\right]\right]-$ module homomorphism. Analogously, it is easy to verify that ψ^{S} is a right $\left[\left[A_{1}^{S, \leq}\right]\right]$ - module homomorphism. Thus ψ^{S} is a bimodule homomorphism. With the usual matrix operations, T^{S} is a ring, see [4].

Theorem 2.8. Let A_{1}, A_{2}, A_{3} be reduced rings, (S, \leq) a cancellative torsion-free strictly ordered monoid. Then the following conditions are equivalent:
(1) A_{1}, A_{2}, and A_{3} are $G M$-rings.
(2) The formal triangular matrix ring over generalized power series

$$
T^{S}=\left(\begin{array}{ccc}
{\left[\left[A_{1}{ }^{S, \leq}\right]\right]} & 0 & 0 \\
{\left[\left[M_{21}^{S, \leq}\right]\right]} & {\left[\left[A_{2}{ }^{S, \leq}\right]\right]} & 0 \\
{\left[\left[M_{31}^{S, \leq}\right]\right]} & {\left[\left[M_{32}{ }^{S, \leq}\right]\right]} & {\left[\left[A_{3}{ }^{S, \leq}\right]\right]}
\end{array}\right)
$$

is a $G M-r i n g$.
Proof. $(1) \Rightarrow(2)$ Since A_{1}, A_{2}, and A_{3} are $G M$-rings, so are rings $\left.\left[\left[A_{1}^{S, \leq}\right]\right],\left[A_{2}^{S, \leq}\right]\right]$ and $\left[A_{3}^{S, \leq}\right]$] by virtue of Lemma 2.4. According to [2, Theorem 6], the result follows.
$(2) \Rightarrow(1)$ Applying $\left[2\right.$, Theorem 6], we have $\left.\left[\left[A_{1}^{S, \leq}\right]\right],\left[A_{2}^{S, \leq}\right]\right]$ and $\left.\left[A_{3}^{S, \leq}\right]\right]$ are $G M-$ rings. Then according to Lemma 2.5, we get the result.

Example 4 Let A_{1}, A_{2}, A_{3} be reduced rings and N the semigroup of natural numbers. Let $S=N \cup\{0\}$, with the usual order. then

$$
\begin{aligned}
T^{S} & =\left(\begin{array}{ccc}
{\left[\left[A_{1}{ }^{S, \leq}\right]\right]} & 0 & 0 \\
{\left[\left[M_{21}^{S, \leq} \leq\right]\right]} & {\left[\left[A_{2}^{S, \leq}\right]\right]} & 0 \\
{\left[\left[M_{31}^{S, \leq]]}\right.\right.} & {\left[\left[M_{32}^{S, \leq}\right]\right]} & {\left[\left[A_{3}^{S} S, \leq\right]\right]}
\end{array}\right) \\
& \cong\left(\begin{array}{ccc}
A_{1}[[X]] & 0 & 0 \\
M_{21}[[X]] & A_{2}[[X]] & 0 \\
M_{31}[[X]] & M_{32}[[X]] & A_{3}[[X]]
\end{array}\right)
\end{aligned}
$$

where $A_{i}[[X]](i=1,2,3)$ is the ring of formal power series, and $M_{i j}[[X]](i=$ $2,3, j=1,2)$ is a bimodule of power series rings. If A_{1}, A_{2}, A_{3} are $G M-$ rings, then T^{S} is also a $G M$-ring. Actually, let

$$
F=\left(\begin{array}{lll}
f_{1} & 0 & 0 \\
m_{21} & f_{2} & 0 \\
m_{31} & m_{32} & f_{3}
\end{array}\right) \in T^{S}, \quad G=\left(\begin{array}{lll}
g_{1} & 0 & 0 \\
n_{21} & g_{2} & 0 \\
n_{31} & n_{32} & g_{3}
\end{array}\right) \in T^{S}
$$

Since $A_{i}(i=1,2,3)$ is a $G M$ - ring, by Lemma 2.4, we have $A_{i}[[X]]$ is also a $G M-$ ring. Thus there exist $e_{i}^{2}=e_{i}, p_{i}^{2}=p_{i} \in A_{i}[[X]], u_{i} \in U\left(A_{i}[[X]]\right)$ and $v_{i} \in$ $U\left(A_{i}[[X]], v_{i}^{\prime} \in U\left(A_{i}[[X]]\right)\right.$ such that $f_{i}=e_{i} u_{i}+v_{i}$, and $g_{i}=p_{i} u_{i}^{-1}+v_{i}^{\prime}(i=1,2,3)$.

Set

$$
F_{1}=\left(\begin{array}{lll}
e_{1} & 0 & 0 \\
0 & e_{2} & 0 \\
0 & 0 & e_{3}
\end{array}\right), W=\left(\begin{array}{lll}
u_{1} & 0 & 0 \\
0 & u_{2} & 0 \\
0 & 0 & u_{3}
\end{array}\right), K_{1}=\left(\begin{array}{lll}
v_{1} & 0 & 0 \\
m_{21} & v_{2} & 0 \\
m_{31} & m_{32} & v_{3}
\end{array}\right)
$$

It is easy to verify that $F_{1}^{2}=F_{1} \in T^{S}$, and

$$
\begin{aligned}
& K_{1}\left(\begin{array}{lll}
v_{1}^{-1} & 0 & 0 \\
-v_{2}^{-1} m_{21} v_{1}^{-1} & v_{2}^{-1} & 0 \\
v_{3}^{-1} m_{32} v_{2}^{-1} \otimes m_{21} v_{1}^{-1}-v_{3}^{-1} m_{31} v_{1}^{-1} & -v_{3}^{-1} m_{32} v_{2}^{-1} & v_{3}^{-1}
\end{array}\right) \\
& =\left(\begin{array}{lll}
v_{1}^{-1} & 0 & 0 \\
-v_{2}^{-1} m_{21} v_{1}^{-1} & v_{2}^{-1} & 0 \\
v_{3}^{-1} m_{32} v_{2}^{-1} \otimes m_{21} v_{1}^{-1}-v_{3}^{-1} m_{31} v_{1}^{-1} & -v_{3}^{-1} m_{32} v_{2}^{-1} & v_{3}^{-1}
\end{array}\right) K_{1} \\
& =\operatorname{diag}(1,1, \cdots, 1),
\end{aligned}
$$

This means that F_{1} is a idempotent and K_{1} is a unit. Moreover, $F=F_{1} W+K_{1}$ and W is a unit. Analogously, we have a idempotent $F_{2}=\left(\begin{array}{lll}p_{1} & 0 & 0 \\ 0 & p_{2} & 0 \\ 0 & 0 & p_{3}\end{array}\right)$, and a unit $K_{2}=\left(\begin{array}{ccc}v_{1}^{\prime} & 0 & 0 \\ n_{21} & v_{2}^{\prime} & 0 \\ n_{31} & n_{32} & v_{3}^{\prime}\end{array}\right)$ such that $G=F_{2} W^{-1}+K_{2}$. Therefore we conclude that T^{S} is a $G M$ - ring. Conversely, if T^{S} is a $G M$-ring, similar to the proof of Theorem 6 in [2], we obtain that $A_{i}[[X]]$ is a $G M$-ring. Then by Lemma 2.5, we have $A_{i}(i=1,2,3)$ is a $G M$ - ring.

Corollary 2.9. Let R be a reduced ring, (S, \leq) a cancellative torsion-free strictly ordered monoid. A ring R is a GM-ring if and only if the ring of all $n \times n$ lower triangular matrices over $\left[\left[R^{S, \leq]]}\right.\right.$ is a GM-ring.

Proof. According to Theorem 2.8, the result follows.
Analogously, let R be a reduced ring, (S, \leq) a cancellative torsion-free strictly ordered monoid. we deduce that a ring R is a $G M$-ring if and only if the ring of all $n \times n$ upper triangular matrices over $\left[\left[R^{S, \leq}\right]\right]$ is a $G M-$ ring.

Let M be a (R, R)-bimodule, then the module extension of R by M is the ring $R \bowtie M$ with the usual addition and multiplication defined by $\left(r_{1}, m_{1}\right)\left(r_{2}, m_{2}\right)=$ $\left(r_{1} r_{2}, r_{1} m_{2}+m_{1} r_{2}\right)$ for $r_{1}, r_{2} \in R$ and $m_{1}, m_{2} \in M$. Now we investigate $G M-$ rings for module extension of $\left[\left[R^{S, \leq]]}\right.\right.$ by $\left[\left[M^{S, \leq}\right]\right]$ and introduce a large class of such rings.

Lemma 2.10. Let ring $R \bowtie M$ be the module extension of R by M. Let $\left[\left[R^{S, \leq]] \bowtie}\right.\right.$ $\left[\left[M^{S, \leq}\right]\right]$ be the module extension of $\left[\left[R^{S, \leq]]}\right.\right.$ by $\left[\left[M^{S, \leq}\right]\right]$. Then $\left[\left[R^{S, \leq}\right]\right] \bowtie\left[\left[M^{S, \leq}\right]\right] \cong$ $\left[\left[(R \bowtie M)^{S, \leq]] .}\right.\right.$

Proof. Let

$$
\begin{aligned}
T(R, M) & =\left\{\left.\left(\begin{array}{ll}
r & m \\
0 & r
\end{array}\right) \right\rvert\, r \in R, m \in M\right\} \\
T^{*}(R, M) & =\left\{\left.\left(\begin{array}{ll}
f & m \\
0 & f
\end{array}\right) \right\rvert\, f \in\left[\left[R^{S, \leq}\right]\right], m \in\left[\left[M^{S, \leq}\right]\right]\right\} .
\end{aligned}
$$

With the usual matrix operations, $T(R, M)$ and $T^{*}(R, M)$ are rings. As in the proof of [7, Proposition 4.3], it is easy to show that $T^{*}(R, M) \cong\left[\left[T(R, M)^{S, \leq}\right]\right]$. Moreover, $R \bowtie M \cong T(R, M)$ and $\left[\left[R^{S, \leq]]} \bowtie\left[\left[M^{S, \leq]]} \cong T^{*}(R, M)\right.\right.\right.\right.$. So $\left[\left[R^{S, \leq]] \bowtie}\right.\right.$ $\left[\left[M^{S, \leq}\right]\right] \cong\left[\left[(R \bowtie M)^{S, \leq}\right]\right]$, as asserted.

Theorem 2.11. Let R be a ring, $M a(R, R)$-bimodule. If R is a $G M$-ring, then $\left[\left[R^{S, \leq}\right]\right] \bowtie\left[\left[M^{S, \leq}\right]\right]$ is a $G M$-ring.

Proof. Since R is a $G M$-ring, so is ring $R \bowtie M$ by [2, Theorem 11]. Use the fact that $\left[\left[R^{S, \leq}\right]\right] \bowtie\left[\left[M^{S, \leq}\right]\right] \cong\left[\left[(R \bowtie M)^{S, \leq}\right]\right]$, then the result follows by Lemma 2.4.
 a GM-ring.

Proof. It is a immediate consequence of Theorem 2.11.
Corollary 2.13. Let R be an exchange ring with artinian primitive factors. Then $\left[\left[R^{S, \leq}\right]\right] \bowtie\left[\left[R^{S, \leq}\right]\right]$ is a $G M$-ring.

Proof. Since R is an exchange ring with artinian primitive factors, it is a $G M$-ring. Thus we get the result by Corollary 2.12 .

Acknowledgements. The authors are grateful to the referee for his (her) careful reading the article and nice suggestions which lead to the current versions of Examples 1, 2 and 3.

References

[1] H. Chen, Stable ranges for Morita contexts, Southeast Asian Bull. Math., 25(2001), 209-216.
[2] H. Chen, Extensions of GM-rings, Czechoslovak Mathematical Journal, 55(130)(2005), 273-281.
[3] J. Han and W. K. Nicholson, Extensions of Clean Rings, Comm. Algebra, 29(6)(2001), 2589-2595.
[4] Y. Hirano, Another Triangular Matrix Ring Have Auslander-Gorenstein Property, Comm. Algebra, 29(2001), 719-735.
[5] Z. Liu, Special Properties of Generalized Power Series, Comm. Algebra, 32(8)(2004), 3215-3226.
[6] P. Ribenboim, Semisimple Rings and Von Neumann Regular Rings of Generalized power series, J. Algebra, 198(1991), 327-338.
[7] P. Ribenboim, Noetherian Rings of Generalized Power Series, J. Pure. Appl. Algebra., 79(1992), 293-312.
[8] P. Ribenboim, Rings of Generalized Power Series,II: Units and Zero-Divisors, J. Algebra, 168(1994), 71-89.
[9] K. Varadarajan, Generalized Power Series Modules, Comm. Algebra, 29(3)(2001), 1281-1294.

Lunqun Ouyang

1. Department of Mathematics, Hunan Normal University,Changsha 410081, P. R. China
2. Department of Mathematics, Hunnan Science and Technology University, Xiangtan 411201, P.
R. China

E-mail: Ouyanglqtxy@163.com

Dayong Liu

Department of Mathematics, Hunan Normal University,Changsha 410081, P. R. China
E-mail: liudy7082@sina.com

[^0]: This research is supported by Hunan Provincial Natural Science Foundation of China (06jj20053) and Scientific Research Fund of Hunan Province Education Department (06A017).

