
INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
H. Hışıl et al., Vol. 11, No. 2, pp. 12-24

Fast 4 Way Vectorized Ladder for the Complete
Set of Montgomery Curves

Hüseyin Hışıl1, Berkan Eğrice2, Mert Yassı1

1Yaşar University, İzmir, Türkiye
2EPAM Systems Inc., İzmir, Türkiye

Corresponding Author: huseyin.hisil@yasar.edu.tr

Research Paper Received: 25.03.2022 Revised: 31.05.2022 Accepted: 19.06.2022

Abstract—This paper introduces 4 way vectorization of Montgomery ladder on any Montgomery form elliptic curve. Our algorithm

takes 2M4 + 1S4 (M4: A vector of four field multiplications, S4: A vector of four field squarings) per ladder step for variable-scalar

variable-point multiplication. This is a theoretical improvement over the squared Kummer ladder which takes 2M4 + 1S4 + 1d4 per

ladder step. This paper also introduces new formulas for doing arithmetic over GF (2255 − 19). We provide two implementations

of curve25519 using our proposed algorithm. The first implementation uses AVX2 instruction set and takes 98484 cycles. This

is competitive with the current speed record of 95437 cycles by Nath and Sarkar. The second implementation uses AVX-512

instruction set and takes 74368 cycles. This sets the new speed record over Faz-Hernández, López, and Dahab’s implementation

which takes 81600 cycles.

Keywords—Montgomery ladder, elliptic curves, genus 1, Kummer lines, Diffie-Hellman key exchange, public key cryptography.

1. Introduction

Elliptic curve cryptography was proposed by
Miller [1] and Koblitz [2] in late 80s. In the past
three decades, elliptic curves became one of the
central objects in public key cryptography. The
group law computations on elliptic curves are partic-
ularly interesting as they allow efficient arithmetic
on computers. In addition, hard instances of dis-
crete logarithm problem can be defined on elliptic
curves over finite fields of fairly small size. These
two properties of elliptic curves make them perfect
candidates for many cryptographic primitives such
as key exchange, key encapsulation mechanism, and
digital signatures. In all of these primitives, the

bottleneck operation is the multiplication of a point
on an elliptic curve with a scalar. This operation
is called scalar multiplication. Optimizing scalar
multiplication is one of the main challenges in
elliptic curve cryptography.

An elliptic curve can be represented in several
different forms. One of these forms was introduced
by Peter L. Montgomery in his celebrated article [3]
in 1987. An elliptic curve in Montgomery form is
written as in Equation (1)

By2 = x3 + Ax2 + x (1)

with constants A and B satisfying B(A2 − 4) 6= 0.
Let P be a point on this curve. Let x(P) be the x-

12

https://orcid.org/0000-0002-1019-2187
https://orcid.org/0000-0003-3968-9434
https://orcid.org/0000-0001-7328-9501

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
H. Hışıl et al., Vol. 11, No. 2, pp. 12-24

coordinate of P . Let k be a positive integer. Mont-
gomery ladder algorithm which was also proposed
in [3], computes x(kP) by accessing a single point
doubling and a single point addition operation per it-
eration of its main loop. In this setting, Montgomery
provides doubling formulas to compute x(2P) given
x(P), and differential addition formulas to compute
x(P + Q) given x(P), x(Q), and x(P − Q). The
auxiliary value x(P −Q) is maintained naturally by
the ladder. This regular structure of Montgomery
ladder made it a perfect candidate to be used in
elliptic curve cryptography.

In 2006, Bernstein [4] proposed an elliptic curve
Diffie-Hellman key exchange function, Curve25519,
which uses Montgomery ladder along with a twist-
secure Montgomery curve over the field GF (2255−
19). Bernstein [4] also provided fast software which
implements Curve25519, runs in constant-time, and
can defend against timing-attacks. Bernstein’s de-
sign is later re-specified by the Internet Research
Task Force in RFC 7748 memorandum.

Montgomery ladder was also adapted to other
elliptic curve forms. For example, Brier and Joye [5]
presented formulas for any elliptic curve written in
short Weierstrass form y2 = x3+ a4x+ a6 covering
all elliptic curves over a field k with char(k) 6= 2, 3.
Analogous formulas over a field of characteristic
2 were given by Lopez and Dahab [6]. Additional
alternative differential additions formulas can be
found in [7], [8], [9] and [10].

Building on an earlier work of Chudnovsky and
Chudnovsky [11], Gaudry introduced doubling and
differential addition analogues on genus 2 Kummer
surfaces in [12]. As a follow up work, Gaudry and
Lubicz introduced genus 1 analogues of Kummer
surfaces in [13]. Their study covers both odd and
even characteristics. We refer to these Kummer lines
as canonical Kummer lines in this work following
the language of [14]. Explicit formulas for squared

Kummer lines appeared in EFD1 with credits to
Gaudry [12] and Gaudry, Lubicz [13].

Emerging hardware trend in single-instruction
multiple-data (SIMD) circuits led researchers de-
velop vectorized implementations of ladders. A
SIMD implementation of Gaudry-Schost squared
Kummer surface [15] was introduced by Bernstein,
Chuengsatiansup, Lange, and Schwabe [16]. Their
implementation is currently the speed leader in the
genus 2 setting. The genus 1 setting is actively in
development. Chou [17, Alg. 3.1] put forward a
2 way vectorized implementation of Montgomery
ladder using the inherent 2 way parallelism in the
classic formulas. Chou’s implementation uses the
2 way vectorized 32 × 32 → 64-bit multipliers on
Sandy Bridge and Ivy Bridge. A 4 way vectorized
implementation of squared Kummer lines were pre-
sented by Karati and Sarkar in [18]. Their imple-
mentation uses the 4 way vectorized 32×32→ 64-
bit multipliers on Haswell and Skylake. Karati and
Sarkar report that their implementation offers com-
petitive performance in Kummer line based scalar
multiplication for genus one curves over prime
order fields using SIMD operations. Faz-Hernández,
López, and Dahab provided a 2×2 way implementa-
tion of Montgomery ladder on Haswell and Skylake,
see [19]. The arithmetic of the underlying field is 2
way vectorized in their implementation (hence the
notation 2× 2).

Putting the vectorization option of the underlying
field a side (which is also an option for squared
Kummer lines), the sequence of recent advances in
ladder implementations may lead to the illusion that
Montgomery curves are less vectorization-friendly
than Kummer lines. In this work,

• we show that Montgomery curves are efficiently
4 way vectorizable. See Section 3.

1. http://www.hyperelliptic.org/EFD/ (last accessed 2022-
03-18)

13

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
H. Hışıl et al., Vol. 11, No. 2, pp. 12-24

• we propose a new 9 limb representation of
field elements which has potential to be faster
than the widely applied 10 limb representation,
in implementations without using field level
vectorization. See Section 4.

• we provide timings for our 4×1 way vectorized
implementation on AVX2. See Section 6.

• we provide timings for our 4×2 way vectorized
implementation on AVX-512. See Section 6.
This implementation sets the new speed record
in variable-scalar variable-point multiplication
over the field GF (2255 − 19).

Source code related to this project is publicly
available at the following URL.

https://github.com/crypto-ninjaturtles/montgomery4x

2. Montgomery ladder

This section provides preliminaries on Mont-
gomery ladder. We will skip detailed discussions on
the group law, the pseudo-group structure, working
solely on the x-line, point recovery etc. These are
all very well understood and available in several
texts in the literature, cf. [20, Chapter 4] and [21].
Our approach will be more implementation oriented.
Therefore, the treatment in this section is far from
being comprehensive.

The abscissa x(P) of a point P is repre-
sented in homogenous projective space P in the
form (x(P) : 1). In this projective representation,
(X : Z) = (λX : λZ) for all non-zero λ ∈ K. The
point (1 : 0) is the pseudo-identity element. From
now on, we update the definition of P and use the
projective notation.

Given the points (X3 : Z3), (X2 : Z2), and
(X1 : Z1) = (X3 : Z3) − (X2 : Z2), we have
(X5 : Z5) = (X3 : Z3)+(X2 : Z2) and (X4 : Z4) =

2(X2 : Z2). Montgomery [3] provided the explicit

formulas in (2) for (X5 : Z5) and (X4, Z4):(
Z1(X2X3 − Z2Z3)

2 : X1(X2Z3 − Z2X3)
2
)
,(

(X2
2 − Z2

2)
2 : 4X2Z2(X

2
2 + AX2Z2 + Z2

2)
)
, (2)

respectively.

These differential addition and doubling formulas
are the building blocks of the Montgomery ladder.
Before providing the ladder, we simplify our no-
tation and define the functions DBLADD and SWAP.
The function DBLADD inputs three points where the
third is the difference of the first two, and outputs
the sum of the two initial points and the double of
the second input point. The output is overwritten to
(X3 : Z3) and (X2 : Z2), respectively as given in
(3).

DBLADD ((X3 : Z3), (X2 : Z2), (X1 : Z1)) (3)

The function SWAP inputs two points and a single
bit. If swap is 0, then the output is identical to the
input. If swap is 1, then the output is the swapped
input points. The Montgomery ladder is provided
succinctly in Algorithm 1.

In cryptographic applications, the output of Algo-
rithm 1 is typically normalized as X2/Z2 in order
to obtain a unique representative of the output.
In addition, ` is fixed in order to fix the number
of iterations. Moreover, one can force k to be
multiple of a small power of 2 to surpass active
attacks exploiting the existence of small subgroups.
Cryptographic applications which are required to
run in constant-time must have each sub-operation
run in constant-time. We refer to curve25519

specification for full detail, [4].

14

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
H. Hışıl et al., Vol. 11, No. 2, pp. 12-24

Algorithm 1 Montgomery ladder

Input: P = (X : Z) 6= (1: 0) and k =
∑`−1

i=0 ki2
i

with k`−1 = 1, ki ∈ {0, 1}.
Output: kP .

1: (X3 : Z3)← P , (X2 : Z2)← (1 : 0)
2: (X1 : Z1)← P , prevbit← 0
3: for i = `− 1 down to 0 do
4: swap← prevbit⊕ k[i]
5: prevbit← k[i]
6: SWAP(swap, (X3 : Z3), (X2 : Z2))
7: DBLADD((X3 : Z3), (X2 : Z2), (X1 : Z1))
8: end for
9: SWAP(k[0], (X3 : Z3), (X2 : Z2))

10: return (X2 : Z2)

3. 4 way Montgomery ladder

Montgomery’s formulas (2) lie at the heart
of curve25519. Several implementations of
curve25519 are available in public domain.
Karati and Sarkar [18] commented for the ladder
step used in curve25519 specification [4, Ap-
pendix B]:

“The structure of this ladder is not as
regular as the ladder step on the Kum-
mer line. This makes it difficult to opti-
mally group together the multiplications
for SIMD implementation.”

In this work, we aim to show that a higher level
of parallelism can be achieved with new tweaks
on the ladder step, see Figure 1. In the figure, H
stands for Hadamard transformation which inputs
two coordinates X and Z and outputs X + Z and
X − Z.

The point doubling side of Figure 1 is recogniz-
ably different than Bernstein’s diagram. Specifically,
the squaring step now utilizes all 4 channels in
vectorized form. On the other hand, an inspection
on Figure 1 reveals that the outputs X4, Z4, X5,

Figure 1. DBLADD: 4 way vectorized ladder step
for the curve By2 = x3 + Ax2 + x.

and Z5 agree with (2) up to a multiplication of
the coordinates by a constant with no effect on the
correctness of DBLADD routine.

The ladder step in Figure 1 takes 2M4 + 1S4. In
comparison, Karati and Sarkar’s 4 way vectorized
ladder step [18, Fig. 1] takes 2M4+1S4+1d4 (d4:
A vector of four field multiplications by four small
constants). There is a speed trade-off between these
two approaches, which is not clear immediately
from the high level operation counts:

• Multiplication with constants: A squared Kum-
mer line requires one multiplication by [a2 +

b2, a2 − b2, a2 + b2, a2 − b2] followed by re-
duction (denoted d4), per ladder step. Such
a multiplication-reduction does not occur in
Figure 1.

15

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
H. Hışıl et al., Vol. 11, No. 2, pp. 12-24

• Extra permutations: Data transfers between
SIMD channels occur in Hadamard transform
and constant-time conditional point swap op-
erations in both types of ladder steps. Our
algorithm requires additional transfers and lin-
ear operations following the second Hadamard
transform.

These two items constitute a speed trade-off
which depends heavily on the cost d4 and the
comparative throughput of SIMD multiplication and
data transfer instructions, which can significantly
vary depending on the micro-architecture.

4. Implementation on AVX2

This section provides implementation details for
4 way vectorization of Montgomery ladder. Imple-
menters are not limited to the specification of this
section because Figure 1 is independent of choices
made here. The same applies to Section 5.

We fix p = 2255 − 19 and work over GF (p). We
start by explaining field multiplication. The discus-
sion is narrowed to a single field multiplication. On
the other hand, the implementation computes 4 field
multiplications simultaneously in vector form. We
refer to [16] for a comprehensive explanation of the
concept. We use core ideas from [22], [16], [17],
and [18]. Yet, we made different implementation
choices.

Multiplication. We represent reduced field ele-
ments in 9 limbs rather than 10 and keep unreduced
products in 11 limbs rather than 10. We provide
justifications for how intermediate values always
fit into 64 bit registers, without producing any
overflow. This is a hybridization of two commonly
followed methods:

• doing the 255 × 255 → 510 bit multiplication
first and then reducing to 255 bits, cf. [18] and

• merging reduction with integer multiplication
and keeping elements always in specified num-
ber of limbs, cf. [4].

These scenarios are not in the context of the 4 way
ladder (Figure 1) and thus omitted in this work.

We designed a two-layer implementation to carry
out field multiplications with a redundant represen-
tation of elements. Both layers use a 3 way splitting
strategy. Therefore, a field element is represented
by 9 limbs each of which can accommodate non-
negative values smaller than 264.

The higher layer is described as follows. A field
element u is represented by integers u0, u1, and u2
such that u = u0+285u1+2170u2. We note that this
is not a unique representation. Let v be an integer
also represented in the same way. We then have the
congruence (4).

uv ≡ 20(u0v0 + 19u1v2 + 19u2v1) +

285(u0v1 + u1v0 + 19u2v2) +

2170(u0v2 + u1v1 + u2v0) (mod p)

(4)

The congruence 255 ≡ 0 (mod 3) helps greatly
in obtaining simple formulas. If we did not have this
condition the given formulas would have contained
several multiplications by 2 in addition to multipli-
cations by 19. Such a situation would have added
more linear operations to the ladder step.

The nine long multiplications in the form uivj
are reduced to six by three Karatsuba optimizations
which are capable of sharing the sub-expressions
uivi. These operations are provided in (5).

20(u0v0 + 19((u1 + u2)(v1 + v2)− u1v1 − u2v2)) +

285(19u2v2 + (u0 + u1)(v0 + v1)− u0v0 − u1v1) +

2170(u1v1 + (u0 + u2)(v0 + v2)− u0v0 − u2v2)

(5)

16

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
H. Hışıl et al., Vol. 11, No. 2, pp. 12-24

This variant leads to an increased number of
additions/subtractions some of which can be shared.
We eliminated these repeating operations at the cost
of using more registers in our implementation. The
additions of the form ui + uj are 3-limb additions.
All other additions and subtractions are 5-limb
additions.

These high level operations do not provide low
level details. For instance, we do not have hardware
multipliers that can accommodate 85×85→ 170-bit
integer multiplications. Therefore, we further split
each digit in the higher layer into three limbs which
are provided in Equations (6).

u0 = a0 + 229a1 + 257a2, v0 = b0 + 229b1 + 257b2,
u1 = a3 + 229a4 + 257a5, v1 = b3 + 229b4 + 257b5,
u2 = a6 + 229a7 + 257a8, v2 = b6 + 229b7 + 257b8.

(6)

Now, for instance, u0v0 can be computed with the
formulas given in Equation (7).

u0v0 = 20(a0b0) +

229(a0b1+ a1b0) +

257(a0b2+ a2b0+ 2a1b1) +

286(a1b2+ a2b1) +

2114(a2b2)

(7)

These operations take 9 multiplications and 5 ad-
ditions all of which can be directly carried out by the
target hardware. Karatsuba optimization is not used
here since the trade-off between multiplications and
additions do not provide a practical speed-up at this
level. The registers a0, a1, a2 are bounded carefully
as to prevent overflowing of the 64 bit registers and
allow the final carries to be delayed to the end of the
field operation. More explicitly, the multiplication
algorithm inputs 9-limb integers and produces the

11 limbs given in Equations (8).

w0 = a0b0 + 19(a3b6 + a6b3),

w1 = a0b1+a1b0+19(a3b7+a4b6+a6b4+a7b3),

w2 = a0b2 + 2a1b1 + a2b0 + 19(a3b8 + a8b3 +

2(a4b7 + a7b4) + a5b6 + a6b5),

w3 = a0b3 + a3b0 + 2(a1b2 + a2b1) + 19(a6b6 +

2(a4b8 + a5b7 + a7b5 + a8b4)),

w4 = a0b4+a1b3+a2b2+a3b1+a4b0+19(a5b8+

a6b7 + a7b6 + a8b5),

w5 = a0b5+a2b3+a3b2+a5b0+2(a1b4+a4b1)+

19(a6b8 + 2a7b7 + a8b6),

w6 = a0b6+a3b3+a6b0+2(a1b5+a2b4+a4b2+

a5b1 + 19(a7b8 + a8b7)),

w7 = a0b7 + a1b6 + a2b5 + a3b4 + a4b3 + a5b2 +

a6b1 + a7b0 + 19a8b8,

w8 = a0b8 + a2b6 + a3b5 + a5b3 + a6b2 + a8b0 +

2(a1b7 + a4b4 + a7b1),

w9 = 2(a1b8+a2b7+a4b5+a5b4+a7b2+a8b1),

w10 = a2b8 + a5b5 + a8b2

(8)

which satisfy in turn the congruence in (9).

uv ≡ w ≡ (w0 + 229w1 + 257w2)+

285(w3 + 229w4 + 257w5)+

2170(w6 + 229w7 + 257w8)+

2255(w9 + 229w10) (mod 2255 − 19)

(9)

We do not perform all of these 9 × 9 = 81

multiplications but just 9 × 6 = 54. This is due
to the shared-Karatsuba approach explained earlier.

17

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
H. Hışıl et al., Vol. 11, No. 2, pp. 12-24

Input/output specification. We set important
bounds in inequalities (10) for the input and output
limbs.

0 ≤ a0, a3, a6 < 229 + k

0 ≤ a1, a2, a4, a5, a7, a8 < 228 + k.

(10)

The k = 173 is a constant whose role is going to
become clear in the reduction step. We always en-
sure the accuracy of these bounds after a reduction
step, which provide an easy-to-follow input/output
specification.

The limbs wi are displayed explicitly (in the item
list) in order to help check the boundaries on the
output easily. In particular, we need to show that
these limbs cannot exceed 264. Now, inputting the
largest possible values for each limb of u and v and
evaluating on the formulas provided in inequalities
(11).

w0 < 263.29, w1 < 263.29, w2 < 263.88,
w3 < 263.91, w4 < 262.95, w5 < 262.98,
w6 < 262.59, w7 < 261.05, w8 < 260.17,
w9 < 259.59, w10 < 257.59

(11)

Clearly, all of these values can be accommodated
without overflow in 64-bit registers wi.

Even if we have computed all wi, we are not quite
done yet. We only have a semi-reduced w satisfying
the congruence (12).

w ≡ uv (mod 2255 − 19) (12)

We need to do the carries in order to get rid of
w9, w10 and also match the output requirements in

inequalities (13).

0 ≤ w0, w3, w6 < 229 + k

0 ≤ w1, w2, w4, w5, w7, w8 < 228 + k

(13)

The bounds on the output agree with the input
specification of u and v in (10).

Carries (Reduction after multiplication). This
operation is composed of several steps. Each step
transforms w towards satisfying the input/output
specification without violating the congruence in
(12) and without producing an overflow. The reduc-
tion proceeds as in set of assignments (14).

1 : t← bw9/2
29c, w9 ← w9 mod 229, w10 ← w10 + t,

2 : w0 ← w0 + 19w9, w9 ← 0,

3 : w1 ← w1 + 19w10, w10 ← 0,

4 : t← bw0/2
29c, w0 ← w0 mod 229, w1 ← w1 + t,

5 : t← bw1/2
28c, w1 ← w1 mod 228, w2 ← w2 + t,

6 : t← bw2/2
28c, w2 ← w2 mod 228, w3 ← w3 + t,

7 : t← bw3/2
29c, w3 ← w3 mod 229, w4 ← w4 + t,

8 : t← bw4/2
28c, w4 ← w4 mod 228, w5 ← w5 + t,

9 : t← bw5/2
28c, w5 ← w5 mod 228, w6 ← w6 + t,

10 : t← bw6/2
29c, w6 ← w6 mod 229, w7 ← w7 + t,

11 : t← bw7/2
28c, w7 ← w7 mod 228, w8 ← w8 + t,

12 : t← bw8/2
28c, w8 ← w8 mod 228, w0 ← w0 + 19t

13 : t← bw0/2
29c, w0 ← w0 mod 229, w1 ← w1 + t.

(14)

In this sequence of operations, we are accumulating
on registers wi which contain values potentially very
close to 264. Once more, we need to justify that these
additions do not constitute any overflow.

• Step 1: t = bw9/2
29c < 259.59−29 = 230.59. So,

w10+ t < 257.59+230.59 < 257.60. Therefore, the
updated value of w10 still fits into 64 bits. A bit
of care is needed now to track the updated w9.
Although we computed w9 ← w9 mod 229 for
maximum possible inputs, the updated value of

18

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
H. Hışıl et al., Vol. 11, No. 2, pp. 12-24

w9 can still get values as large as 229 − 1 for
some other input. Therefore, we assume for the
sake of our inspection that we take w9 = 229−1
from here.

• Step 2: Now, we must have w0 + 19w9 <

263.29 + 19(229 − 1) < 263.30. Multiplication
by 19 here is performed with 32 × 32 → 64

bit multiplication instruction vpmuludq since
both 19 and w9 are smaller than 232.

• Step 3: Similarly, we must have w1 + 19w10 <

263.29 + 19(257.60) < 263.75. We note that 19w10

is computed as 19w10 = 16w10 + 2w10 + w10

by using vpaddq and vpsllq instructions
because w10 can exceed 232, and thus, is not
suitable to be inputted to vpmuludq. We note
that w9 ← 0 and w10 ← 0 are displayed just for
mathematical correctness.

• Steps 4-11: Repeating the same inspection
by computing each step sequentially, we get
w1,...,8 < 264 after additions as expected. Limbs
w0,...,7 obey the input/output specification after
reducing w1,2,4,5,7 modulo 228 and w3,6 modulo
229. Again, we assume for the sake of our
inspection that w0,3,6 = 229−1 and w1,2,4,5,7,8 =

228 − 1 after the modular reductions are per-
formed for these digits.

• Step 12: We get t = bw8/2
28c < 260.17−28 =

232.17. So, w0 + 19t < (229 − 1) + 19(232.17) <

236.43. Now, w8 also obeys the input/output
specification after being reduced modulo 228.
We note that 19t is computed as 19t = 16t +

2t+ t since w8 can exceed 232.
• Step 13: We get w1 + t < (228 − 1) +

(236.43−29) < 228 + 173. This upper bound
explains the value of k. We note that a lower
upper bound can be found with an increased
precision in calculations. Moreover, much larger
values for k works without producing overflow

in reduction2 but 173 is adequate to test the
stability of limbs.

Now, all wi agree with the input/output specifica-
tion of ui and vi. We intentionally added k to all
limbs in the input/output specification rather than
adding just to w1 because

• this simplifies the notation, and
• we need such extra additions when designing

parallel carry chains.

The reduction step can be summarized as h9 →
h10 followed by the very long sequence given in
(15).

h8 → h0 → h1 → h2 → h3 → h4 → h5 → h6 →
h7 → h8 → h0 → h1 (15)

We do faster by computing two sequences given in
(16)

h4 −−−−→ h5 → h6 → h7 → h8 → h0 → h1,

h9 → h10, h0 → h1 → h2 → h3 → h4 → h5
(16)

in parallel at processor’s ports. We refer to [22] and
[17] for similar optimizations.

In this parallel reduction, not only w1 but also
w5 can exceed 228 − 1 by k. But we have already
relaxed w5 (like all other limbs) by additions of k
in our inspection.

Squaring. Squaring can be explained as a simpli-
fied multiplication routine given in (17).

20(u20+ 19((u1 + u2)
2 − u21 − u22)) +

285(19u22+ (u0 + u1)
2 − u20 − u21) +

2170(u21+ (u0 + u2)
2 − u20 − u22)

(17)

2. We reiterate that we use a redundant representation. Therefore,
reduction does not produce a unique representative. Nevertheless, we
still call it reduction since we can do arithmetic in this form.

19

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
H. Hışıl et al., Vol. 11, No. 2, pp. 12-24

The nine long multiplications in the form uivj
are reduced now to six squares. In addition, the
computation of u20 can be further optimized at the
lower level in the form given in Equation (18).

u2i = 20(a20) +

229((2a0)a1) +

257((2a1)a1+ (2a0)a2) +

286((2a1)a2) +

2114(a22)
(18)

Similar applies to the other squarings. Our imple-
mentation delays multiplication by twos and pushes
them towards the higher layer.

Squeeze/Unsqueeze. A field element w satisfying
the input/output specification can be squeezed from
9 limbs to 5 by computing (19).

wi+4 ← wi+4 ⊕ 232wi for i = 0, 1, 2, 3

(19)

Now, w is represented by w4, w5, w6, w7, w8 only.
Linear operations such as (field) additions and sub-
tractions can be handled in this form provided that
computed values do not exceed 232 − 1. This is
always the case in our implementation.

A squeezed field element is unsqueezed into the
original form by computing (20).

wi ← wi+4/2
32 for i = 0, 1, 2, 3 and

wi+4 ← wi+4 mod 232 for i = 0, 1, 2, 3

(20)

at multiplication, squaring, and reduction moments.
We note that we skip computing wi+4 ← wi+4 mod

232 before multiplication and squaring since the
higher 32 bits are not taken into consideration by
vpmuludq instruction. See also [16].

This squeeze/unsqueeze method is adapted from
the software introduced in [16]. The difference is
that we group together the limbs of a field el-
ement where Bernstein, Chuengsatiansup, Lange,
and Schwabe group together points on a genus 2
Kummer surface.

Despite the added cost of squeezing and un-
squeezing, linear operations in squeezed form can
be done faster and save cycles in total.

Double Hadamard. This step can be put in 4
way vectorized form in modulus 2255− 19 as given
in Equation (21).

(H×H)(X3, Z3, X2, Z2) =

(X3 + Z3, X3 − Z3, X2 + Z2, X2 − Z2) =

(X3 + Z3, X3 + (3p− Z3), X2 + Z2, X2 + (3p− Z2))

(21)

The additions of 3p are to ensure thatH×H (double
Hadamard) produces non-negative values for output
limbs. We drop the word “double” for simplicity.
This 3p needs to be prepared with some care as
given in (22).

20([3(229 − 19)] + 229[3(228 − 1)] + 257[3(228 − 1)])+

285([3(229 − 1)] + 229[3(228 − 1)] + 257[3(228 − 1)])+

2170([3(229 − 1)] + 229[3(228 − 1)] + 257[3(228 − 1)])

(22)

Observe that each limb3 is greater than the cor-
responding maximum bound in the input/output
specification.

All of the limbs of X3 + Z3, X3 + (3p − Z3),
X2 + Z2, and X2 + (3p− Z2) are always less than
232 after the first Hadamard operation in Figure 1.
To show this, we concentrate to the linear operations
appearing at the right of the bottom of the figure.

3. The value of each limb appears in square brackets.

20

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
H. Hışıl et al., Vol. 11, No. 2, pp. 12-24

• Z4 is computed as the sum of three values. In
order to simplify our analysis, we assume that
all inputs to these additions take largest possible
values. Then, w0,3,6 = 3((229 − 1) + k) < 231

and w1,2,4,5,7,8 = 3((228 − 1) + k) < 230.
• X4 is computed as the difference of two values.

We assume that minuend takes the largest and
the subtrahend takes the smallest possible value.
Then, w0,3,6 = ((229 − 1) + k) + (2(229 − 1)−
0) < 231 and w1,2,4,5,7,8 = ((228 − 1) + k) +

(2(228 − 1)− 0) < 230. Observe that we added
2p rather than 3p this time, which is adequate
because 2(229−1) > (229−1)+k and likewise
2(228 − 1) > (228 − 1) + k. So, even if the
subtrahend takes the maximum possible value,
the limbs are still non-negative.

Up to this point, we showed that wi of both X4

and Z4 fit into 31 bits. We now feed these extreme
values4 to the first Hadamard operation. Clearly, we
have 0 ≤ wi < 232 for X+Z. Separately, assuming
that wi = 0 for Z, we have 0 ≤ wi < 232 for
X + (3p − Z). Analyzing the second Hadamard is
even simpler since its inputs are already reduced
values.

Fast carries (Fast reduction after Hadamard).
Following a Hadamard step, a reduction operation
must be applied to the output to match the in-
put/output specification. This time, reduction can be
performed faster since we do not have limbs w9 and
w10. Therefore, fast reduction can be defined as a
trimmed version of the reduction after multiplication
with the steps given in set of assignments (23).

1 : t← bw0/2
29c, w0 ← w0 mod 229, w1 ← w1 + t,

2 : t← bw1/2
28c, w1 ← w1 mod 228, w2 ← w2 + t,

3 : t← bw2/2
28c, w2 ← w2 mod 228, w3 ← w3 + t,

4 : t← bw3/2
29c, w3 ← w3 mod 229, w4 ← w4 + t,

4. Noticed that all these operations can be performed in squeezed
form.

5 : t← bw4/2
28c, w4 ← w4 mod 228, w5 ← w5 + t,

6 : t← bw5/2
28c, w5 ← w5 mod 228, w6 ← w6 + t,

7 : t← bw6/2
29c, w6 ← w6 mod 229, w7 ← w7 + t,

8 : t← bw7/2
28c, w7 ← w7 mod 228, w8 ← w8 + t,

9 : t← bw8/2
28c, w8 ← w8 mod 228, w0 ← w0 + 19t

10 : t← bw0/2
29c, w0 ← w0 mod 229, w1 ← w1 + t.

(23)

We do better by computing these operations in
squeezed form and computing (24)

h0 → h1 → h2 → h3 −−−−→ h4 → h5,

h4 → h5 → h6 → h7 → h8 → h0 → h1 (24)

in parallel on two 32 bit SIMD channels. We do
not further exploit processor’s port level parallelism
since the sequence is short enough to produce low
latency.

5. Implementation on AVX-512

AVX-512 provides 8 way SIMD multiplication
with the vpmuludq instruction. This provides
twice as much 32 × 32 → 64 bit multipliers in
comparison to AVX2. Therefore it is reasonable to
question whether the 4 way vectorized ladder can
be computed faster on AVX-512. Since Figure 1
supports up to 4 way vectorization, additionally, we
need to vectorize the field arithmetic in 8/4=2 way
form to get a 4× 2 way ladder.

Although, our 9 limb multiplication fits nicely on
4× 1 ladder, it does not seem to be the best choice
for its 4 × 2 counterpart. Yet, there is room for
research in finding a fast 2 way vectorization of 9
limb multiplication described in Section 5. We do
not pursue this idea further here.

As a practical solution, we decided to use a 2
way vectorized version of the 10 limb multiplication
algorithm using Radix-225.5 from [4]. This algorithm
was previously used with minor modifications in

21

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
H. Hışıl et al., Vol. 11, No. 2, pp. 12-24

[22] and [17]. Fortunately, we were able to reuse
optimized codes freely available in public domain.
In particular, we used the 2 way AVX2 targeted
intmul and intsqr functions from

hp-ecc-vec/src/eltfp25519_2w_redradix.c

by Faz Hernández, López, Dahab 5 and have those
functions run on AVX-512. Then, we applied the
ladder step in Figure 1 to get a 4 × 2 = 8 way
vectorized implementation of Montgomery ladder
over the field GF (2255−19). The speed comparison
is given in Section 6.

6. Results

The final inversion. Our implementation reduces
the output of scalar multiplication to a unique repre-
sentative in the underlying field in radix 256. There-
fore, we compute X2/Z2 after the main loop. We
integrated Nath and Sarkar’s [23] freely available
and optimized inversion software without further
modification. In particular, we used

pmp-inv-master/p25519/SL-DCC/1

which requires BMI2 instruction set. Nath and
Sarkar report 9301 Skylake cycles for this inversion.

Measuring cycles. We measure cycles for
variable-scalar variable-point multiplication only.
Our code changes base point and scalar at each
iteration and excludes extra cycles coming from
this randomization. Our implementation chains the
outputs to prevent the compiler removing portions
of the code. Measured cycle counts are given in
Table 1 along with selected results from literature.
The table is limited to our results and recently

5. https://github.com/armfazh/hp-ecc-vec (last accessed
2022-03-18)

published measurements available for the Skylake
micro-architecture.

Table 1.
Skylake cycles for variable-scalar variable-point

multiplication.

ladder instr. set limbs cycles (median) ratio

4× 1 AVX2 10 123 102, [18] 1x

4× 1 AVX2 10 116 654, this work .95x

1× 1 BMI2 4 113 874, [24] .93x

2× 2 AVX2 5 99 400, [19] .81x

4× 1 AVX2 9 98 484, this work .80x

4× 1 AVX2 10 95 437, [25] .78x

2× 4 AVX-512 5 81 600, [19] 1x

4× 2 AVX-512 5 74 368, this work .91x

Table 1 justifies our motivation in proposing the
9 limb representation in Section 5. The 9 limb
method is solidly faster than 10 in the context
of our 4 way ladder and specified implementation
platform. See [25] for new results on an other Sky-
lake CPU with different microarchitecture. Nath and
Sarkar’s fastest implementation uses an extremely
small curve constant where our proposed algorithm
does not require such an assumption. That is, our
implementation takes exactly the same number of
cycles for any curve constant which can be provided
parametrically while Nath and Sarkar’s reported
cycle counts are heavily dependent on the size of the
curve constants which are hard-coded. We note that
both implementations use the same elliptic curve,
namely curve25519, for a fair comparison.

Figure 1 shows its real potential in our AVX-
512 implementation. The reported 74368 cycles sets
the new record among curve25519 family of
implementations, to the best of our knowledge.

22

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
H. Hışıl et al., Vol. 11, No. 2, pp. 12-24

Variable-scalar fixed-base multiplication. Our im-
plementation can be used directly in a fixed-base
multiplication without further modification. Never-
theless, one can make precomputation on fixed-base
point to get additional speed up. In that case, we
refer to Algorithm 5 of [24].

Apart from architecture dependent discussions,
we expect that our 4 way ladder will gradually
become even more useful if the current trend of in-
creasing the level of SIMD parallelism in hardware
continues. We reiterate that the speeds we achieve
are common for all Montgomery curves; not specific
to ones with small constants.

Acknowledgments

This work is funded by Yasar University Scientific
Research Project SRP-057. We thank Erdem Alkım,
Sedat Akleylek, and members of the Cyber Security
and Cryptology Laboratory, Ondokuz Mayis Univer-
sity, for providing us access to OMU-i9, a Skylake
i9-7900X machine. We developed the AVX-512
implementation on OMU-i9. The measurements re-
lating to were both taken on OMU-i9. We thank the
reviewers for their valuable comments.

References

[1] V. Miller, “Use of elliptic curves in cryptography,” in
CRYPTO’85, ser. Lecture Notes in Computer Science, vol.
218. Springer, 1985, pp. 417–426. [Online]. Available:
https://doi.org/10.1007/3-540-39799-X 31

[2] N. Koblitz, “Elliptic curve cryptosystems,” Mathematics
of Computation, vol. 48, no. 177, pp. 203–209,
January 1987. [Online]. Available: https://doi.org/10.1090/
S0025-5718-1987-0866109-5

[3] P. Montgomery, “Speeding the Pollard and elliptic curve
methods of factorization,” Mathematics of computation,
vol. 48, no. 177, pp. 243–264, 1987. [Online]. Available:
https://doi.org/10.2307/2007888

[4] D. Bernstein, “Curve25519: New Diffie-Hellman speed
records,” in Public Key Cryptography - PKC 2006, 9th
International Conference on Theory and Practice of Public-
Key Cryptography, New York, NY, USA, April 24-26,
2006, Proceedings, ser. Lecture Notes in Computer Science,
M. Yung, Y. Dodis, A. Kiayias, and T. Malkin, Eds., vol.
3958. Springer, 2006, pp. 207–228. [Online]. Available:
https://doi.org/10.1007/11745853 14

[5] E. Brier and M. Joye, “Weierstraß elliptic curves and side-
channel attacks,” in Public Key Cryptography, 5th International
Workshop on Practice and Theory in Public Key Cryptosystems,
PKC 2002, Paris, France, February 12-14, 2002, Proceedings,
ser. Lecture Notes in Computer Science, D. Naccache and
P. Paillier, Eds., vol. 2274. Springer, 2002, pp. 335–345.
[Online]. Available: https://doi.org/10.1007/3-540-45664-3 24

[6] J. López and R. Dahab, “Fast multiplication on elliptic curves
over GF(2m) without precomputation,” in Cryptographic
Hardware and Embedded Systems, First International
Workshop, CHES’99, Worcester, MA, USA, August 12-13, 1999,
Proceedings, ser. Lecture Notes in Computer Science, Ç. Koç
and C. Paar, Eds., vol. 1717. Springer, 1999, pp. 316–327.
[Online]. Available: https://doi.org/10.1007/3-540-48059-5 27

[7] W. Castryck, S. Galbraith, and R. R. Farashahi, “Efficient arith-
metic on elliptic curves using a mixed Edwards-Montgomery
representation,” Cryptology ePrint Archive, Report 2008/218,
2008, https://eprint.iacr.org/2008/218.

[8] D. J. Bernstein, T. Lange, and R. Rezaeian Farashahi,
“Binary Edwards curves,” in Cryptographic Hardware and
Embedded Systems – CHES 2008, E. Oswald and P. Rohatgi,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008,
pp. 244–265. [Online]. Available: https://doi.org/10.1007/
978-3-540-85053-3 16

[9] R. Rezaeian Farashahi and S. G. Hosseini, “Differential
addition on binary elliptic curves,” in Arithmetic of Finite
Fields, S. Duquesne and S. Petkova-Nikova, Eds. Cham:
Springer International Publishing, 2016, pp. 21–35. [Online].
Available: https://doi.org/10.1007/978-3-319-55227-9 2

[10] R. Rezaeian Farashahi and S. G. Hosseini, “Differential
addition on twisted Edwards curves,” in Information
Security and Privacy - 22nd Australasian Conference,
ACISP 2017, Auckland, New Zealand, July 3-5, 2017,
Proceedings, Part II, ser. Lecture Notes in Computer
Science, J. Pieprzyk and S. Suriadi, Eds., vol.
10343. Springer, 2017, pp. 366–378. [Online]. Available:
https://doi.org/10.1007/978-3-319-59870-3 21

[11] D. Chudnovsky and G. Chudnovsky, “Sequences of numbers
generated by addition in formal groups and new primality
and factorization tests,” Advances in Applied Mathematics,
vol. 7, no. 4, pp. 385–434, 1986. [Online]. Available:
https://doi.org/10.1016/0196-8858(86)90023-0

[12] P. Gaudry, “Fast genus 2 arithmetic based on Theta
functions,” Journal of Mathematical Cryptology (JMC),
vol. 1, no. 3, pp. 243–265, 2007. [Online]. Available:

23

https://doi.org/10.1007/3-540-39799-X_31
https://doi.org/10.1090/S0025-5718-1987-0866109-5
https://doi.org/10.1090/S0025-5718-1987-0866109-5
https://doi.org/10.2307/2007888
https://doi.org/10.1007/11745853_14
https://doi.org/10.1007/3-540-45664-3_24
https://doi.org/10.1007/3-540-48059-5_27
https://eprint.iacr.org/2008/218
https://doi.org/10.1007/978-3-540-85053-3_16
https://doi.org/10.1007/978-3-540-85053-3_16
https://doi.org/10.1007/978-3-319-55227-9_2
https://doi.org/10.1007/978-3-319-59870-3_21
https://doi.org/10.1016/0196-8858(86)90023-0

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
H. Hışıl et al., Vol. 11, No. 2, pp. 12-24

https://doi.org/10.1515/JMC.2007.012
[13] P. Gaudry and D. Lubicz, “The arithmetic of characteristic

2 Kummer surfaces and of elliptic Kummer lines,” Finite
Fields and Their Applications, vol. 15, no. 2, pp. 246 –
260, 2009. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S1071579708000804

[14] J. Renes and B. Smith, “qDSA: small and secure digital
signatures with curve-based Diffie-Hellman key pairs,” in
Advances in Cryptology - ASIACRYPT 2017, ser. Lecture
Notes in Computer Science, T. Takagi and T. Peyrin, Eds.,
vol. 10625. Springer, 2017, pp. 273–302. [Online]. Available:
https://doi.org/10.1007/978-3-319-70697-9 10

[15] P. Gaudry and E. Schost, “Genus 2 point counting over prime
fields,” J. Symb. Comput., vol. 47, no. 4, pp. 368–400, 2012.
[Online]. Available: http://dx.doi.org/10.1016/j.jsc.2011.09.003

[16] D. Bernstein, C. Chuengsatiansup, T. Lange, and P. Schwabe,
“Kummer strikes back: New DH speed records,” in Advances
in Cryptology - ASIACRYPT 2014 - 20th International
Conference on the Theory and Application of Cryptology and
Information Security, Kaoshiung, Taiwan, R.O.C., December
7-11, 2014. Proceedings, Part I, ser. Lecture Notes in
Computer Science, P. Sarkar and T. Iwata, Eds., vol.
8873. Springer, 2014, pp. 317–337. [Online]. Available:
https://doi.org/10.1007/978-3-662-45611-8 17

[17] T. Chou, “Sandy2x: New Curve25519 speed records,” in
Selected Areas in Cryptography - SAC 2015 - 22nd
International Conference, Sackville, NB, Canada, August 12-
14, 2015, Revised Selected Papers, ser. Lecture Notes in
Computer Science, O. Dunkelman and L. Keliher, Eds., vol.
9566. Springer, 2015, pp. 145–160. [Online]. Available:
https://doi.org/10.1007/978-3-319-31301-6 8

[18] S. Karati and P. Sarkar, “Kummer for genus one over prime
order fields,” in Advances in Cryptology - ASIACRYPT 2017 -
23rd International Conference on the Theory and Applications
of Cryptology and Information Security, Hong Kong, China,
December 3-7, 2017, Proceedings, Part II, ser. Lecture
Notes in Computer Science, T. Takagi and T. Peyrin, Eds.,
vol. 10625. Springer, 2017, pp. 3–32. [Online]. Available:
https://doi.org/10.1007/978-3-319-70697-9 1

[19] A. Faz-Hernández, J. López, and R. Dahab, “High-performance
implementation of elliptic curve cryptography using vector
instructions,” ACM Trans. Math. Softw., vol. 45, no. 3, Jul.
2019. [Online]. Available: https://doi.org/10.1145/3309759

[20] D. Bernstein and T. Lange, Montgomery Curves and the Mont-
gomery Ladder. Cambridge University Press, 2017, pp. 82–
115.

[21] C. Costello and B. Smith, “Montgomery curves and their
arithmetic - The case of large characteristic fields,” J.
Cryptographic Engineering, vol. 8, no. 3, pp. 227–240, 2018.
[Online]. Available: https://doi.org/10.1007/s13389-017-0157-6

[22] D. Bernstein and P. Schwabe, “NEON crypto,” in Cryptographic
Hardware and Embedded Systems – CHES 2012, ser. Lecture
Notes in Computer Science, E. Prouff and P. Schaumont, Eds.,

vol. 7428. Berlin, Heidelberg: Springer Berlin Heidelberg,
2012, pp. 320–339. [Online]. Available: https://doi.org/10.1007/
978-3-642-33027-8 19

[23] K. Nath and P. Sarkar, “Efficient arithmetic in (pseudo-
)mersenne prime order fields,” Cryptology ePrint Archive, Re-
port 2018/985, 2018, https://eprint.iacr.org/2018/985.

[24] T. Oliveira, J. López, H. Hışıl, A. Faz-Hernández, and
F. Rodrı́guez-Henrı́quez, “How to (pre–)compute a ladder
– improving the performance of X25519 and X448,”
in Selected Areas in Cryptography - SAC 2017 - 24th
International Conference, Ottawa, ON, Canada, August 16-
18, 2017, Revised Selected Papers, ser. Lecture Notes in
Computer Science, C. Adams and J. Camenisch, Eds., vol.
10719. Springer, 2017, pp. 172–191. [Online]. Available:
https://doi.org/10.1007/978-3-319-72565-9 9

[25] K. Nath and P. Sarkar, “Efficient 4-way vectorizations of
the Montgomery ladder,” Cryptology ePrint Archive, Report
2020/378, 2020, https://eprint.iacr.org/2020/378.

[26] T. Takagi and T. Peyrin, Eds., Advances in Cryptology
- ASIACRYPT 2017 - 23rd International Conference on
the Theory and Applications of Cryptology and Information
Security, Hong Kong, China, December 3-7, 2017, Proceedings,
Part II, ser. Lecture Notes in Computer Science, vol. 10625.
Springer, 2017. [Online]. Available: https://doi.org/10.1007/
978-3-319-70697-9

24

https://doi.org/10.1515/JMC.2007.012
http://www.sciencedirect.com/science/article/pii/S1071579708000804
http://www.sciencedirect.com/science/article/pii/S1071579708000804
https://doi.org/10.1007/978-3-319-70697-9_10
http://dx.doi.org/10.1016/j.jsc.2011.09.003
https://doi.org/10.1007/978-3-662-45611-8_17
https://doi.org/10.1007/978-3-319-31301-6_8
https://doi.org/10.1007/978-3-319-70697-9_1
https://doi.org/10.1145/3309759
https://doi.org/10.1007/s13389-017-0157-6
https://doi.org/10.1007/978-3-642-33027-8_19
https://doi.org/10.1007/978-3-642-33027-8_19
https://eprint.iacr.org/2018/985
https://doi.org/10.1007/978-3-319-72565-9_9
https://eprint.iacr.org/2020/378
https://doi.org/10.1007/978-3-319-70697-9
https://doi.org/10.1007/978-3-319-70697-9

	Introduction
	Montgomery ladder
	4 way Montgomery ladder
	Implementation on AVX2
	Implementation on AVX-512
	Results
	References

