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Abstract. Let (W, S) be a Coxeter system and suppose that w ∈ W is fully

commutative (in the sense of Stembridge) and has a reduced expression be-

ginning (respectively, ending) with s ∈ S. If there exists t ∈ S such that s

and t do not commute and tw (respectively, wt) is no longer fully commuta-

tive, we say that w is left (respectively, right) weak star reducible by s with

respect to t. We say that a fully commutative element is non-cancellable if it

is irreducible under weak star reductions. In this paper, we classify the non-

cancellable elements in Coxeter groups of types B and affine C. In a sequel

to this paper, the classification of the non-cancellable elements play a pivotal

role in inductive arguments used to prove the faithfulness of a diagrammatic

representation of a generalized Temperley–Lieb algebra of type affine C.
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1. Introduction

Let (W,S) be a Coxeter system with group W and finite set of generating in-
volutions S. Our principal focus in this paper will be the infinite Coxeter group

of type affine C, denoted C̃, and its finite subgroups of type B. A well-known

result in the theory of Coxeter groups, known as Matsumoto’s Theorem, states

that any two reduced expressions for w ∈ W are equivalent under the equivalence

relation generated by braid relations. If w is such that any two of its reduced ex-

pressions are equivalent by iterated commutations of commuting generators, w is

called fully commutative [20]. We denote the set of fully commutative elements of

W by FC(W ). Fully commutative elements arise in several contexts and have many

special properties relating to the study of the smoothness of Schubert varieties [6],

Kazhdan–Lusztig polynomials [1,11], and the decomposition of a Coxeter group
into cells [13,18].

Let w ∈ FC(W ). Suppose that w has a reduced expression beginning with s ∈ S.

Then we say that w is left star reducible by s with respect to t to the shorter element

sw provided that there exists t ∈ S such that s and t do not commute and sw has a
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reduced expression beginning with t [10]. We make an analogous definition for right

star reducible. The definition of star reducible is related to C.K. Fan’s definition

of cancellable in [5, §4] and is also a special case of D. Kazhdan and G. Lusztig’s

notion of a star operation, which is defined for arbitrary Coxeter systems in [17,
§10.2].

We say that W is star reducible if for every fully commutative w, there exists a

sequence u = w0, w1, . . . , wk = w such that each wi+1 is left or right star reducible

to wi and u is equal to a product of commuting generators. It turns out that a

Coxeter group of type C̃ is star reducible if and only if there is an even number of

generators. However, Coxeter groups of type B are star reducible regardless of the

parity of the generating set [10, Theorem 6.3]. In a star reducible Coxeter group,

products of commuting generators form the set of fully commutative elements that

are irreducible under star reductions.
In this paper, we weaken the notion of star reducible and define the non-cancel-

lable elements, which include products of commuting generators. Let w ∈ FC(W )

and suppose that w has a reduced expression beginning with s ∈ S. We say that w

is left weak star reducible if (i) w is star reducible by s with respect to t, and (ii)

tw is no longer fully commutative. We make an analogous definition for right weak

star reducible and define an element w ∈ FC(W ) to be non-cancellable (or weak

star irreducible) if it is neither left or right weak star reducible.

The non-cancellable elements of a Coxeter group W are intimately related to the

two-sided cells of the generalized Temperley–Lieb algebra (in the sense of Graham
[9]) associated to W . The connection between the non-cancellable elements and the

two-sided cells has been examined for types E and Ã in [5] and [7], respectively.

This idea is also briefly touched upon for types B, F , and H in [5]. Due to length

considerations, we will not elaborate on the connection between the non-cancellable

elements and the two-sided cells.

Our motivation for studying the non-cancellable elements stems from the fact

that computation involving the monomial basis elements of the generalized Temper-

ley–Lieb algebra of W that are indexed by non-cancellable elements is “well-

behaved”. In fact, our classification of the non-cancellable elements in a Coxeter
group of type C̃ (Theorem 5.1.1) is a key component in the proof that establishes

the faithfulness of a diagrammatic representation of the generalized Temperley–Lieb

algebra of type C̃, which is the focus of subsequent papers by the author.

In Section 2 of this paper, we establish our notation and introduce all of the nec-

essary terminology. In Section 3, we explore some of the combinatorics of Coxeter
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groups of types B and C̃ and introduce the type I and type II elements, which play

a central role in this paper.

Section 4 is concerned with classifying the non-cancellable elements in a Coxeter

group of type B (Theorem 4.2.1), which verifies Fan’s unproved claim in [5, §7.1]
about the set of fully commutative elements in a Coxeter group of type B having

no generator appearing in the left or right descent set that can be left or right

cancelled, respectively.

Using the classification of the type B non-cancellable elements, we prove the

main result of this paper (Theorem 5.1.1), which classifies the infinitely many non-

cancellable elements in a Coxeter group of type C̃. The proof of Theorem 5.1.1,

as well as the preparatory lemmas, rely heavily on the notation of heaps that we

develop in Section 2.4.

Lastly, in Section 6, we expand on our discussion of our motivation for classifying
the non-cancellable elements in a Coxeter group of type C̃ and briefly discuss future

research.

This paper is an adaptation of chapters 1–5 of the author’s 2008 PhD thesis,

titled A diagrammatic representation of an affine C Temperley–Lieb algebra [4],

which was directed by Richard M. Green at the University of Colorado at Boulder.

However, some of the results presented here, especially those in Section 4, have new

and streamlined arguments.

2. Preliminaries

2.1. Coxeter groups. A Coxeter system is pair (W,S) consisting of a distin-

guished (finite) set S of generating involutions and a group W , called a Coxeter
group, with presentation

W = 〈S : (st)m(s,t) = 1 for m(s, t) < ∞〉,
where m(s, s) = 1 and m(s, t) = m(t, s). It turns out that the elements of S are

distinct as group elements, and that m(s, t) is the order of st. Given a Coxeter

system (W,S), the associated Coxeter graph is the graph Γ with vertex set S and

edges {s, t} labeled with m(s, t) for all m(s, t) ≥ 3. If m(s, t) = 3, it is customary to

leave the corresponding edge unlabeled. Given a Coxeter graph Γ, we can uniquely

reconstruct the corresponding Coxeter system (W,S). In this case, we say that

the corresponding Coxeter system is of type Γ, and denote the Coxeter group and
distinguished generating set by W (Γ) and S(Γ), respectively.

Given a Coxeter system (W,S), an expression is any product of generators from

S. The length l(w) of an element w ∈ W is the minimum number of generators

appearing in any expression for the element w. Such a minimum length expression is
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called a reduced expression. (Any two reduced expressions for w ∈ W have the same

length.) A product w1w2 · · ·wr with wi ∈ W is called reduced if l(w1w2 · · ·wr) =∑
l(wi). Each element w ∈ W can have several different reduced expressions that

represent it. Given w ∈ W , if we wish to emphasize a fixed, possibly reduced,
expression for w, we represent it in sans serif font, say w = sx1sx2 · · · sxm

, where

each sxi
∈ S.

Matsumoto’s Theorem [8, Theorem 1.2.2] says that if w ∈ W , then every reduced

expression for w can be obtained from any other by applying a sequence of braid

moves of the form

sts · · ·︸ ︷︷ ︸
m(s,t)

7→ tst · · ·︸ ︷︷ ︸
m(s,t)

where s, t ∈ S, and each factor in the move has m(s, t) letters. The support of

an element w ∈ W , denoted supp(w), is the set of all generators appearing in

any reduced expression for w, which is well-defined by Matsumoto’s Theorem. If

supp(w) = S, then we say that w has full support.

Given a reduced expression w for w ∈ W , we define a subexpression of w to be any

expression obtained by deleting some subsequence of generators in the expression

for w. We will refer to a consecutive subexpression of w as a subword.

Let w ∈ W . We write

L(w) = {s ∈ S : l(sw) < l(w)}

and

R(w) = {s ∈ S : l(ws) < l(w)}.
The set L(w) (respectively, R(w)) is called the left (respectively, right) descent set

of w. It turns out that s ∈ L(w) (respectively, R(w)) if and only if w has a reduced

expression beginning (respectively, ending) with s.

The main focus of this paper will be the Coxeter systems of types Bn and C̃n,

which are defined by the following Coxeter graphs, where n ≥ 2.

Bn
s1

4

s2 s3 sn−1 sn

· · ·

C̃n
s1

4

s2 s3 sn−1 sn

4

sn+1

· · ·

We can obtain W (Bn) from W (C̃n) by removing the generator sn+1 and the cor-
responding relations [14, Chapter 5]. We also obtain a Coxeter group of type B if we

remove the generator s1 and the corresponding relations. To distinguish these two

cases, we let W (Bn) denote the subgroup of W (C̃n) generated by {s1, s2, . . . , sn}
and we let W (B′

n) denote the subgroup of W (C̃n) generated by {s2, s3, . . . , sn+1}.
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It is well-known that W (C̃n) is an infinite Coxeter group while W (Bn) and W (B′
n)

are both finite [14, Chapters 2 and 6].

2.2. Fully commutative elements. Let (W,S) be a Coxeter system of type Γ

and let w ∈ W . Following Stembridge [20], we define a relation ∼ on the set of

reduced expressions for w. Let w and w′ be two reduced expressions for w. We

define w ∼ w′ if we can obtain w′ from w by applying a single commutation move

of the form st 7→ ts, where m(s, t) = 2. Now, define the equivalence relation ≈ by

taking the reflexive transitive closure of ∼. Each equivalence class under ≈ is called
a commutation class. If w has a single commutation class, then we say that w is

fully commutative. By Matsumoto’s Theorem, an element w is fully commutative

if and only if no reduced expression for w contains a subword of the form sts · · · of

length m(s, t) ≥ 3. The set of all fully commutative elements of W is denoted by

FC(W ) or FC(Γ).

Remark 2.2.1. The elements of FC(C̃n) are precisely those whose reduced expres-

sions avoid consecutive subwords of the following types:

(1) sisjsi for |i− j| = 1 and 1 < i, j < n + 1;

(2) sisjsisj for {i, j} = {1, 2} or {n, n + 1}.
The fully commutative elements of W (Bn) and W (B′

n) avoid the respective subwords
above.

In [20], Stembridge classified the Coxeter groups that contain a finite number of

fully commutative elements. According to [20, Theorem 5.1], W (C̃n) contains an

infinite number of fully commutative elements, while W (Bn) (and hence W (B′
n))

contains finitely many. There are examples of infinite Coxeter groups that contain

a finite number of fully commutative elements. For example, Coxeter groups of

type En for n ≥ 9 are infinite, but contain only finitely many fully commutative

elements [20, Theorem 5.1].

2.3. Non-cancellable elements. The notion of a star operation was originally

defined by Kazhdan and Lusztig in [16, §4.1] for simply laced Coxeter systems (i.e.,

m(s, t) ≤ 3 for all s, t ∈ S) and was later generalized to arbitrary Coxeter systems in

[17, §10.2]. If I = {s, t} is a pair of noncommuting generators for W , then I induces

four partially defined maps from W to itself, known as star operations. A star
operation, when it is defined, respects the partition W = FC(W ) ∪̇ (W \ FC(W ))

of the Coxeter group, and increases or decreases the length of the element to which

it is applied by 1. For our purposes, it is enough to define star operations that

decrease length by 1, and so we will not develop the full generality.



196 DANA C. ERNST

Suppose that (W,S) is an arbitrary Coxeter system of type Γ. Let w ∈ W and

suppose that s ∈ L(w). We define w to be left star reducible by s with respect to

t to sw if there exists t ∈ L(sw) with m(s, t) ≥ 3. We analogously define right

star reducible by s with respect to t. Observe that if m(s, t) ≥ 3, then w is left
(respectively, right) star reducible by s with respect to t if and only if w = stv

(respectively, w = vts), where the product is reduced. We say that w is star

reducible if it is either left or right star reducible by some s ∈ S.

We now introduce the concept of weak star reducible, which is related to Fan’s

notion of cancellable in [5]. If w ∈ FC(W ), then w is left weak star reducible by

s with respect to t to sw if (i) w is left star reducible by s with respect to t, and

(ii) tw /∈ FC(W ). Observe that (i) implies that m(s, t) ≥ 3 and that s ∈ L(w).

Furthermore, (ii) implies that l(tw) > l(w). Also, note that we are restricting

our definition of weak star reducible to the set of fully commutative elements. We
analogously define right weak star reducible by s with respect to t. If w is either left

or right weak star reducible by some s ∈ S, we say that w is weak star reducible.

Otherwise, we say that w ∈ FC(W ) is non-cancellable or weak star irreducible (or

simply irreducible).

Example 2.3.1. Consider w, w′ ∈ FC(C̃n) having reduced expressions w = s1s2s1

and w′ = s1s2, respectively. We see that w is left (respectively, right) weak star

reducible by s1 with respect to s2 to s2s1 (respectively, s1s2), and so w is not non-

cancellable. However, w′ is non-cancellable.

Remark 2.3.2. We make a few observations regarding weak star operations.

(1) If w ∈ FC(W ) and s ∈ L(w) (respectively, R(w)), it is clear that sw

(respectively, ws) is still fully commutative. This implies that if w ∈ FC(W )

is left or right weak star reducible to u, then u is also fully commutative.

(2) It follows immediately from the definition that if w is weak star reducible to

u, then w is also star reducible to u. However, there are examples of fully

commutative elements that are star reducible, but not weak star reducible.

For example, consider w = s1s2 ∈ FC(B2). We see that w is star reducible,

but not weak star reducible since tw and wt are still fully commutative for

any t ∈ S. However, observe that in simply laced Coxeter systems (i.e.,
m(s, t) ≤ 3 for all s, t ∈ S), star reducible and weak star reducible are

equivalent.

(3) If w ∈ FC(C̃n), then w is left weak star reducible by s with respect to t if

and only if w = stv (reduced) when m(s, t) = 3, or w = stsv (reduced)
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when m(s, t) = 4. Again, observe that the characterization above applies to

FC(Bn) and FC(B′
n).

2.4. Heaps. Every reduced expression can be associated with a partially ordered

set called a heap that will allow us to visualize a reduced expression while preserving

the essential information about the relations among the generators. The theory of

heaps was introduced in [23] by Viennot and visually captures the combinatorial

structure of the Cartier–Foata monoid of [3]. In [20] and [21], Stembridge studied

heaps in the context of fully commutative elements, which is our motivation here.

Although heaps will be useful for visualizing the arguments throughout the re-

mainder of this paper, we will not exploit their full utility until Section 5, where

we classify the non-cancellable elements of type C̃. In this section, we mimic the

development found in [1], [2], and [20].
Let (W,S) be a Coxeter system. Suppose w = sx1 · · · sxr

is a fixed reduced

expression for w ∈ W . As in [20], we define a partial ordering on the indices

{1, . . . , r} by the transitive closure of the relation l defined via j l i if i < j and

sxi and sxj do not commute. In particular, jli if i < j and sxi = sxj (since we took

the transitive closure). This partial order is referred to as the heap of w, where i is

labeled by sxi . It follows from [20, Proposition 2.2] that heaps are well-defined up

to commutativity class. That is, if w and w′ are two reduced expressions for w ∈ W

that are in the same commutativity class, then the labeled heaps of w and w′ are

equal. In particular, if w is fully commutative, then it has a single commutativity
class, and so there is a unique heap associated to w.

Example 2.4.1. Let w = s3s2s1s2s5s4s6s5 be a reduced expression for w ∈ FC(C̃5).

We see that w is indexed by {1, 2, 3, 4, 5, 6, 7, 8}. As an example, 3l 2 since 2 < 3

and the second and third generators do not commute. The labeled Hasse diagram

for the unique heap poset of w is shown below.
s3

s2

s1

s2

s5

s4

s6

s5

Let w be a fixed reduced expression for w ∈ W (C̃n). As in [1] and [2], we will

represent a heap for w as a set of lattice points embedded in {1, 2, . . . , n + 1} × N.

To do so, we assign coordinates (not unique) (x, y) ∈ {1, 2, . . . , n + 1} × N to each

entry of the labeled Hasse diagram for the heap of w in such a way that:

(1) An entry with coordinates (x, y) is labeled si in the heap if and only if

x = i;
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(2) An entry with coordinates (x, y) is greater than an entry with coordinates

(x′, y′) in the heap if and only if y > y′.

Recall that a finite poset is determined by its covering relations. In the case

of C̃n (and any straight line Coxeter graph), it follows from the definition that

(x, y) covers (x′, y′) in the heap if and only if x = x′ ± 1, y > y′, and there are

no entries (x′′, y′′) such that x′′ ∈ {x, x′} and y′ < y′′ < y. This implies that we
can completely reconstruct the edges of the Hasse diagram and the corresponding

heap poset from a lattice point representation. The lattice point representation

of a heap allows us to visualize potentially cumbersome arguments. Note that

our heaps are upside-down versions of the heaps that appear in in [1] and [2] and

several other papers. That is, in this paper entries on top of a heap correspond

to generators occurring to the left, as opposed to the right, in the corresponding

reduced expression. However, our convention aligns more naturally with the typical

conventions of diagram algebras that are motivating the results of this paper.

Let w be a reduced expression for w ∈ W (C̃n). We let H(w) denote a lattice
representation of the heap poset in {1, 2, . . . , n + 1}×N described in the preceding

paragraph. If w is fully commutative, then the choice of reduced expression for w

is irrelevant, in which case, we will often write H(w) (note the absence of sans serif

font) and we will refer to H(w) as the heap of w.

Given a heap, there are many possible coordinate assignments, yet the x-coordina-

tes for each entry will be fixed for all of them. In particular, two entries labeled by

the same generator may only differ by the amount of vertical space between them

while maintaining their relative vertical position to adjacent entries in the heap.

Let w = sx1 · · · sxr be a reduced expression for w ∈ FC(C̃n). If sxi and sxj

are adjacent generators in the Coxeter graph with i < j, then we must place the
point labeled by sxi at a level that is above the level of the point labeled by sxj .

Because generators that are not adjacent in the Coxeter graph do commute, points

whose x-coordinates differ by more than one can slide past each other or land at

the same level. To emphasize the covering relations of the lattice representation we

will enclose each entry of the heap in a rectangle in such a way that if one entry

covers another, the rectangles overlap halfway.

Example 2.4.2. Let w be as in Example 2.4.1. Then one possible representation

for H(w) is as follows.

s2

s1

s2 s4 s6

s5

s3 s5
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When w is fully commutative, we wish to make a canonical choice for the repre-

sentation H(w) by assembling the entries in a particular way. To do this, we give all

entries corresponding to elements in L(w) the same vertical position and all other

entries in the heap should have vertical position as high as possible. Note that
our canonical representation of heaps of fully commutative elements corresponds

precisely to the unique heap factorization of [23, Lemma 2.9] and to the Cartier–

Foata normal form for monomials [3,10]. In Example 2.4.2, the representation of

H(w) that we provided is the canonical representation. When illustrating heaps,

we will adhere to this canonical choice, and when we consider the heaps of arbi-

trary reduced expressions, we will only allude to the relative vertical positions of

the entries, and never their absolute coordinates.

Given a canonical representation of a heap, it makes sense to refer to the kth

row of the heap, and we will do this when no confusion will arise. Note that for
fully commutative elements, the first row of the heap corresponds to the left descent

set. If w ∈ FC(C̃n), let rk denote the kth row of the canonical representation for

H(w). We will write si ∈ rk to mean that there is an entry occurring in the kth

row labeled by si. If rk consists entirely of entries labeled by sx1 , sx2 , . . . , sxm , then

we will write rk = sx1sx2 · · · sxm .

Let w ∈ FC(C̃n) have reduced expression w = sx1 · · · sxr and suppose sxi and sxj

equal the same generator sk, so that the corresponding entries have x-coordinate k

in H(w). We say that sxi and sxj are consecutive if there is no other occurrence of

sk occurring between them in w. In this case, sxi and sxj are consecutive in H(w),
as well.

Let w = sx1 · · · sxr be a reduced expression for w ∈ W (C̃n). We define a heap

H ′ to be a subheap of H(w) if H ′ = H(w′), where w′ = sy1sy2 · · · syk
is a subex-

pression of w. We emphasize that the subexpression need not be a subword (i.e., a

consecutive subexpression).

Recall that a subposet Q of P is called convex if y ∈ Q whenever x < y < z in

P and x, z ∈ Q. We will refer to a subheap as a convex subheap if the underlying

subposet is convex.

Example 2.4.3. As an example, let w = s3s2s1s2s5s4s6s5 as in Example 2.4.1.
Now, let w′ = s5s4s5 be the subexpression of w that results from deleting all but

fifth, sixth, and last generators of w. Then H(w′) equals

s4

s5

s5
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and is a subheap of H(w), but is not convex since there is an entry in H(w) labeled

by s6 occurring between the two consecutive occurrences of s5 that does not occur

in H(w′). However, if we do include the entry labeled by s6, then

s4 s6

s5

s5

is a convex subheap of H(w).

From this point on, if there can be no confusion, we will not specify the exact
subexpression that a subheap arises from.

The following fact is implicit in the literature (in particular, see the proof of [20,

Proposition 3.3]) and follows easily from the definitions.

Proposition 2.4.4. Let w ∈ FC(W ). Then H ′ is a convex subheap of H(w) if and

only if H ′ is the heap for some subword of some reduced expression for w. ¤

It will be extremely useful for us to be able to recognize when a heap corre-

sponds to a fully commutative element in W (C̃n). The following lemma follows

immediately from Remark 2.2.1 and is also a special case of [20, Proposition 3.3].

Lemma 2.4.5. Let w ∈ FC(C̃n). Then H(w) cannot contain any of the following

convex subheaps:

s1

s2

s1

s2

∅
,

s2

s1

s2

s1

∅ ,
sn

sn+1

sn

sn+1

∅ ,
sn+1

sn

sn+1

sn

∅
,

sk+1

sk

sk+1

∅ ,
sk−1

sk

sk−1

∅ ,

where 1 < k < n+1 and we use ∅ to emphasize that no element of the heap occupies

the corresponding position. ¤

We conclude this section with an observation regarding heaps and weak star

reductions. Let w = sx1 · · · sxr be a reduced expression for w ∈ FC(C̃n). Then w

is left weak star reducible by s with respect to t if and only if

(1) there is an entry in H(w) labeled by s that is not covered by any other

entry; and

(2) the heap H(tw) contains one of the convex subheaps of Lemma 2.4.5.

Of course, we have an analogous statement for right weak star reducible.

3. The type I and type II elements of a Coxeter group of type C̃

In this section, we explore some of the combinatorics of Coxeter groups of types

B and C̃. Our immediate goal is to define two classes of fully commutative elements
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of W (C̃n) that play a central role in the remainder of this paper. Most of these

elements will turn out to be on our list of non-cancellable elements appearing in

Section 5.

3.1. The type I elements. Let w ∈ FC(C̃n). We define n(w) to be the maximum

integer k such that w has a reduced expression of the form w = uxv (reduced), where

u, x, v ∈ FC(C̃n), l(x) = k, and x is a product of commuting generators. Note that

n(w) may be greater than the size of any row in the canonical representation of

H(w). Also, it is known that n(w) is equal to the size of a maximal antichain in

the heap poset for w [19, Lemma 2.9].

Definition 3.1.1. Define the following elements of W (C̃n).

(1) If i < j, let

zi,j = sisi+1 · · · sj−1sj

and

zj,i = sjsj−1 · · · si−1si.

We also let zi,i = si.

(2) If 1 < i ≤ n + 1 and 1 < j ≤ n + 1, let

zL,2k
i,j = zi,2(z1,nzn+1,2)k−1z1,nzn+1,j .

(3) If 1 < i ≤ n + 1 and 1 ≤ j < n + 1, let

zL,2k+1
i,j = zi,2(z1,nzn+1,2)kz1,j .

(4) If 1 ≤ i < n + 1 and 1 ≤ j < n + 1, let

zR,2k
i,j = zi,n(zn+1,2z1,n)k−1zn+1,2z1,j .

(5) If 1 ≤ i < n + 1 and 1 < j ≤ n + 1, let

zR,2k+1
i,j = zi,n(zn+1,2z1,n)kzn+1,j .

If w ∈ W (C̃n) is equal to one of the elements in (1)–(5), then we say that w is of

type I.

The notation for the type I elements looks more cumbersome than the underlying

concept. The notation is motivated by the zigzagging shape of the corresponding

heaps. The index i tells us where to start and the index j tells us where to stop.

The L (respectively, R) tells us to start zigzagging to the left (respectively, right).
Also, 2k+1 (respectively, 2k) indicates the number of times we should encounter an

end generator (i.e., s1 or sn+1) after the first occurrence of si as we zigzag through

the generators. If si is an end generator, it is not included in this count. However,

if sj is an end generator, it is included.
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Example 3.1.2. If 1 < i, j ≤ n + 1, then

H
(
zL,2k
i,j

)
=

si

si−1

.

.

.

s2

s1

s2
.

.

.

.

.

.

.

.

.

sn

sn+1

sn

.

.

.

sj+1

sj

,

where we encounter an entry labeled by either s1 or sn+1 a combined total of 2k

times if i 6= n + 1 and 2k + 1 times if i = n + 1.

Every type I element is rigid, in the sense that each has a unique reduced ex-
pression. This implies that every type I element is fully commutative (there are no

relations of any kind to apply). Furthermore, it is clear from looking at the heaps

for the type I elements that if w is of type I, then n(w) = 1. Conversely, it follows

by induction on l(w) that if n(w) = 1 for some w ∈ FC(C̃n), then w must be of

type I. Lastly, note that there are an infinite number of type I elements since there

is no limit to the zigzagging that their corresponding heaps can do.

The discussion in the previous paragraph verifies the following proposition.

Proposition 3.1.3. If w ∈ W (C̃n) is of type I, then w is fully commutative with

n(w) = 1. Conversely, if n(w) = 1, then w is one of the elements on the list in

Definition 3.1.1. ¤

3.2. The type II elements. It will be helpful for us to define λ = dn−1
2 e. Then

regardless of whether n is odd or even, 2λ will always be the largest even number

in {1, 2, . . . , n + 1}. Similarly, 2λ + 1 will always be the largest odd number in
{1, 2, . . . , n + 1}.
Definition 3.2.1. Define O = {1, 3, . . . , 2λ − 1, 2λ + 1} and E = {2, 4, . . . , 2λ −
2, 2λ}. (Note that O (respectively, E) consists of all of the odd (respectively, even)

indices amongst {1, 2, . . . , n+1}.) Let i and j be of the same parity with i < j. We

define

xi,j = sisi+2 · · · sj−2sj .

Also, define

xO = x1,2λ+1 = s1s3 · · · s2λ−1s2λ+1,
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and

xE = x2,2λ = s2s4 · · · s2λ−2s2λ.

If w ∈ W (C̃n) is equal to a finite alternating product of xO and xE , then we say that

w is of type II. (It is important to point out that the corresponding expressions are

indeed reduced.)

Example 3.2.2. If n is even, then

H
(
xE(xOxE)k

)
=

s2 · · · sn

s1 s3 . . . sn+1

s2 · · · sn

.

.

.

s1 s3 . . . sn+1

s2 · · · sn

,

where the canonical representation has 2k + 1 rows.

The next proposition follows immediately since the heaps of the type II elements
avoid the impermissible configurations of Lemma 2.4.5.

Proposition 3.2.3. If w ∈ W (C̃n) is of type II, then w is fully commutative with
n(w) = λ. ¤

It is quickly seen by inspecting the heaps for the type II elements that if w is of

type II, then w is non-cancellable. Note that if w ∈ FC(C̃n), then λ is the maximum

value that n(w) can take. Furthermore, there are infinitely many type II elements.

However, not every fully commutative element with n-value λ is of type II.

Note that if n is even, then every (xOxE)
k xO with k > 0 is not star reducible.

This fact is implicit in [10] and is easily verified. It follows from our classification

of the type C̃ non-cancellable elements (see Theorem 5.1.1) that these elements are

the only non-star reducible elements in FC(C̃n) (with n even) other than products

of commuting generators; all other non-cancellable elements are star reducible.

4. The type B non-cancellable elements

The goal of this section is to classify the non-cancellable elements of W (Bn). To

accomplish this task, we shall make use of a normal form for reduced expressions
in a Coxeter system of type B.

4.1. Preparatory lemmas. Mimicking [12, §2.1], define

W (k) = {w ∈ W (Bk) : 1 ≤ i < k =⇒ `(siw) > `(w)}.
Then W (k) is a set of minimum length right coset representatives for the subgroup

W (Bk−1) of W (Bk), and `(uv) = `(u) + `(v) for all u ∈ W (Bk−1) and v ∈ W (Bk)
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(see [14, §5.12]). It is an easy exercise to show that the elements of W (k) are given

by

{e, sk, zk,k−1, zk,k−2, . . . , zk,1, z
L,1
k,2 , zL,1

k,3 , . . . , zL,1
k,k}.

(One way this can be established is by working with the signed permutation repre-

sentation of W (Bk). Also, see [12, §2.1].)

Lemma 4.1.1. Let w ∈ W (Bn). Then w has a unique reduced decomposition

w = w1w2 · · ·wn, where each wk ∈ W (k).

Proof. See proof of Lemma 2.1.1 in [12]. ¤

We will refer to the unique reduced decomposition of Lemma 4.1.1 as the normal

form factorization for w.

The next two lemmas plays a crucial role in the proof of Theorem 4.2.1.

Lemma 4.1.2. Let w ∈ FC(Bn) have normal form factorization w = w1w2 · · ·wn.

If there exists k such that wk = zk,1, then for each 1 ≤ i < k, wi equals the identity

e or equals zi,1.

Proof. For sake of a contradiction, assume otherwise. Choose the largest i such

that 1 ≤ i < k and wi is not equal to either the identity or zi,1. First, observe that

we must have i > 1 since W (1) = {e, s1}. By how we chose i, there must exist m

with i < m ≤ k such that wm = zm,1. Choose the smallest such m, so that wl = e

for all i < l < m. Then the only possibilities are that wi = zi,j with 1 < j < i,

or wi = zL,1
i,j with 1 < j ≤ i. Furthermore, sj+1sj is a subword of some reduced

expression for wm. This implies that some reduced expression for w would contain

the subword sjsj+1sj , where the first occurrence of sj comes from wi while sj+1sj

comes from wm. This violates w being fully commutative. ¤

Lemma 4.1.3. Let w ∈ FC(Bn) have normal form factorization w = w1w2 · · ·wn

and suppose that w is non-cancellable such that wn−i = zn−i,n−2i for all 1 ≤ i ≤ k

for some k < n−1
2 . Then wn−(k+1) is equal to zn−(k+1),n−2(k+1) or zn−(k+1),1.

Proof. Since sn−k does not appear in the support of w1w2 · · ·wn−(k+1) and w is

not left weak star reducible, it must be the case that wn−(k+1) 6= e; otherwise,

w is left weak star reducible by sn−k with respect to sn−(k−1). Since w is fully

commutative and not right weak star reducible, it quickly follows that the only

possibilities for wn−(k+1) in W (n−(k+1)) are zn−(k+1),n−2(k+1) or zn−(k+1),1. ¤
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4.2. Classification of the type B non-cancellable elements. The next theo-

rem verifies Fan’s unproved claim in [5, §7.1] about the set of w ∈ FC(Bn) having

no element of L(w) or R(w) that can be left or right cancelled, respectively.

Theorem 4.2.1. Let w ∈ FC(Bn). Then w is non-cancellable if and only if w is

equal to either a product of commuting generators, s1s2u, or s2s1u, where u is a

product of commuting generators with s1, s2, s3 /∈ supp(u). We have an analogous

statement for FC(B′
n), where s1 and s2 are replaced with sn+1 and sn, respectively.

Proof. First, observe that if w is non-cancellable in W (Bn′) for n′ < n, then w is

also non-cancellable in W (Bn) when considered as an element of the larger group.
Also, we see that every element on our list is, in fact, non-cancellable. It remains

to show that our list is complete. We induct on the rank n.

For the base case, consider n = 2. An exhaustive check verifies that the only

non-cancellable elements in W (B2) are s1, s2, s1s2, and s2s1, which agrees with

the statement of the theorem.

For the inductive step, assume that for all n′ ≤ n− 1, our list is complete. Let

w ∈ FC(Bn) and assume that w is non-cancellable with normal form factorization

w = w1w2 · · ·wn. If sn /∈ supp(w), then we are done by induction. So, assume that

sn ∈ supp(w). In this case, sn ∈ supp(wn), but sn /∈ supp(wi) for all 1 ≤ i < n.

Since w is not right weak star redudible, there are only two possibilities: (1) wn =
zn,1, or (2) wn = sn.

Case (1): Suppose that wn = zn,1. Then we may apply Lemma 4.1.2 and

conclude that either (a) wi = e for all i < n, or (b) wi = zi,1 for some i < n. If we

are in situation (a), then w would be left weak star reducible by sn with respect to

sn−1. Assume that (b) occurs and choose the largest such i, so that wi = zi,1 while

wj = e for i < j < n. In this case, w would be right weak star reducible by s1 with

respect to s2. Regardless, we contradict w being non-cancellable. Thus, we must

be in case (2).

Case (2): Now, assume that wn = sn, and for sake of a contradiction, assume
that wn−1 6= e. This implies that

wn−1 ∈ {sn−1, zn−1,n−2, . . . , zn−1,1, z
L,1
n−1,2, . . . , z

L,1
n−1,n−1}.

If wn−1 = sn−1, then w would be right weak star reducible by sn with respect

to sn−1. If wn−1 = zn−1,k for k ∈ {2, . . . , n − 3}, then w would be right weak

star reducible by sk with respect to sk+1. Similarly, if wn−1 = zL,1
n−1,k with k ∈

{2, . . . , n − 2}, then w would be right weak star reducible by sk with respect to

sk−1. Also, if wn−1 = zL,1
n−1,n−1, then w is right weak star reducible by sn with
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respect to sn−1. The only remaining possibilities are: (a) wn−1 = zn−1,n−2, or (b)

wn−1 = zn−1,1.

(a) Suppose that wn−1 = zn−1,n−2. By making repeated applications of Lemma

4.1.3, we can conclude that there exists k such that wk = zk,1. Choose the largest
such k. Then sk+1 ∈ L(wk+1). By Lemma 4.1.2, wk−1 is equal to either e or zk−1,1.

If wk−1 = e, then w would be left weak star reducible by sk with respect to sk+1.

Yet, if wk−1 = zk−1,1, we would have w right weak star reducible by s1 with respect

to s2. In either case, we contradict w being non-cancellable.

(b) Lastly, assume that wn−1 = zn−1,1. In this case, we can apply Lemma 4.1.2

and conclude that wn−2 is equal to either e or zn−2,1. If wn−2 = e, then w would

be left weak star reducible by sn−1 with respect to sn. On the other hand, if

wn−2 = zn−2,1, then w is right weak star reducible by s1 with respect to s2. Again,

we contradict w being non-cancellable.
Therefore, it must be the case that wn−1 = e, which implies that sn−1 /∈ supp(w).

In this case, we can apply the induction hypothesis to w1w2 · · ·wn−1 and conclude

that w is one of the elements on our list (since sn would commute with all the

elements in supp(w1w2 · · ·wn−1)). ¤

5. The type C̃ non-cancellable elements

In this section, we will classify the non-cancellable elements of W (C̃n).

5.1. Statement of theorem. The following theorem is the main result of this

paper.

Theorem 5.1.1. Let w ∈ FC(C̃n). Then w is non-cancellable if and only if w is

equal to one of the elements on the following list.

(i) uv, where u is a type B non-cancellable element and v is a type B′ non-

cancellable element with supp(u) ∩ supp(v) = ∅;
(ii) zR,2k

1,1 , zL,2k
n+1,n+1, zL,2k+1

n+1,1 , and zR,2k+1
1,n+1 ;

(iii) any type II element.

The elements listed in (i) include all possible products of commuting generators.

This includes xO and xE , which are also included in (iii). The elements listed in (ii)

are the type I elements having left and right descent sets equal to one of the end

generators.

5.2. More preparatory lemmas. The proof of Theorem 5.1.1 requires several

technical lemmas whose proofs rely heavily on the heap notation that we developed

in Section 2.4.
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Before proceeding, we make a comment on notation. When representing convex

subheaps of H(w) for w ∈ FC(C̃n), we will use the symbol ∅ to emphasize the

absence of an entry in this location of H(w). It is important to note that the

occurrence of the symbol ∅ implies that an entry from the canonical representation
of H(w) cannot be shifted vertically from above or below to occupy the location of

the symbol ∅. If we enclose a region by a dotted line and label the region with ∅,
we are indicating that no entry of the heap may occupy this region.

We will make frequent use of the following lemma, which allows us to determine

whether an element is of type I.

Lemma 5.2.1. Let w ∈ FC(C̃n). Suppose that w has a reduced expression having

one of the following fully commutative elements as a subword:

(i) zL,2
2,n = s2s1s2s3 · · · sn−1snsn+1sn,

(ii) zR,2
n,2 = snsn+1snsn−1 · · · s3s2s1s2,

(iii) zR,2
1,1 = s1s2 · · · snsn+1sn · · · s2s1,

(iv) zL,2
n+1,n+1 = sn+1sn · · · s2s1s2 · · · snsn+1 .

Then w is of type I.

Proof. One quickly sees that if w has any of the above reduced expressions as

a subword, then w must be of type I; otherwise, H(w) would contain one of the

impermissible configurations of Lemma 2.4.5. ¤

The next two lemmas are generalizations of Lemma 5.3 in [10] and begin to

describe the form that a non-cancellable element that is not of type I can take.
Recall from Section 2.4, that rk denotes the kth row of the canonical representation

of the heap of a fully commutative element.

Lemma 5.2.2. Let w ∈ FC(C̃n) with n ≥ 4 and suppose that w is non-cancellable

and not of type I. If si ∈ rk+1 with i /∈ {1, 2, n, n + 1}, then this entry is covered by
entries labeled by si−1 and si+1.

Proof. Note that our restrictions on i and n force m(si, si−1) = m(si, si+1) = 3.

We proceed by induction.

For the base case, assume that k = 1. Then the entry in r2 labeled by si is

covered by at least one of si−1 or si+1. But since w is not left weak star reducible,
we must have both si−1 and si+1 occurring in r1.

For the inductive step, assume that the theorem is true for all 1 ≤ k′ ≤ k− 1 for

some k. Suppose that si ∈ rk+1 with i /∈ {1, 2, n, n + 1}. Then at least one of si−1

or si+1 occur in rk. We consider two cases: (1) i /∈ {3, n−1} and (2) i ∈ {3, n−1}.
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Case (1): Assume that in addition to i /∈ {1, 2, n, n + 1}, i /∈ {3, n− 1}. Observe

that this forces n ≥ 6. Without loss of generality, assume that si−1 ∈ rk. (The

case with si+1 ∈ rk is symmetric since the restrictions on i imply that we may

apply the induction hypothesis to either i − 1 or i + 1.) By induction, the entry
labeled by si−1 occurring in rk is covered by an entry labeled by si−2 and an entry

labeled by si. This implies that the entry labeled by si occurring in rk+1 must be

covered by an entry labeled by si+1; otherwise, we produce one of the impermissible

configurations of Lemma 2.4.5 corresponding to the subword sisi−1si. This yields

our desired result.

Case (2): For the second case, assume that i ∈ {3, n − 1}. Without loss of

generality, assume that i = 3; the case with i = n−1 can be handled by a symmetric

argument. Then s3 ∈ rk+1 and this entry is covered by either (a) an entry labeled

by s2, (b) an entry labeled by s4, or (c) both. If we are in situation (c), then we
are done. For sake of a contradiction, assume that exactly one of (a) or (b) occurs.

First, assume that (a) occurs, but (b) does not. That is, s2 ∈ rk and the entry

labeled by s3 that occurs in rk+1 is not covered by an entry labeled by s4. Since

k ≥ 2 and w is fully commutative, it must be the case that s1 ∈ rk−1 while the

entry labeled by s2 occurring in rk is not covered by an entry labeled by s3.

For sake of a contradiction, assume that k > 2, so that rk−1 is not the top row

of the canonical representation for H(w). Then we must have s2 ∈ rk−2. Also, we

cannot have k = 3; otherwise, w is left weak star reducible by s2 with respect to s1.

So, k > 3, which implies that the entry labeled by s2 occurring in rk−2 is covered.
This entry cannot be covered by s1 since w is fully commutative. Therefore, we

have s3 ∈ rk−3. But by induction, this entry is covered by an entry labeled by s2

and an entry labeled by s4. This produces one of the impermissible configurations

of Lemma 2.4.5 corresponding to the subword s2s3s2, which contradicts w being

fully commutative. Thus, we must have k = 2.

Now, since w is fully commutative and non-cancellable, we must conclude that

∅

∅

s1

s2

s3

s4
.

.

.

sn

sn+1

forms the top n + 1 rows of the canonical representation of H(w), where rj = sj

for 1 ≤ j ≤ n + 1. Any other possibility either produces one of the impermissible

configurations of Lemma 2.4.5 or violates w not being right weak star reducible.
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Since w is not of type I, this cannot be all of H(w). The only possibility is that

sn ∈ rn+2. Since w is not right weak star reducible, this cannot be all of H(w)

either. So, at least one of sn−1 or sn+1 occur in rn+3. We cannot have sn+1 ∈ rn+3

because w is fully commutative. Thus, sn−1 ∈ rn+3 while sn+1 is not. Again, since
w is not right weak star reducible, we must have sn−2 ∈ rn+4 while sn /∈ rn+4.

Continuing with similar reasoning, we quickly see that

∅

∅

s1

s2

s3

s4
.

.

.

sn

sn+1

sn

.

.

.

s1

s2

s3

s4

is a convex subheap of H(w). But then by Lemma 5.2.1, w is of type I, which is

a contradiction. Therefore, we cannot have possibility (a) occurring while (b) does

not.

The only remaining possibility is that (b) occurs, but (a) does not. That is,
s3 ∈ rk+1 and s4 ∈ rk, while the entry labeled by s3 occurring in rk+1 is not

covered by an entry labeled by s2. Observe that the case n = 4 is covered by an

argument that is symmetric to the argument made above when we assumed that (a)

occurs, but (b) does not, where we take i = n− 1 instead of i = 3. So, assume that

n > 4. Then by induction, entries labeled by s3 and s5 both cover s4 ∈ rk. But then

we produce one of the impermissible configurations of Lemma 2.4.5 corresponding

to the subword s3s4s3, which contradicts w being fully commutative.

We have exhausted all possibilities, and hence we have our desired result. ¤

Lemma 5.2.3. Let w ∈ FC(C̃n) with n ≥ 3 and suppose that w is non-cancellable

and not of type I. If s2 (respectively, sn) occurs in rk+1 and is covered by an entry

labeled by s3 (respectively, sn−1), then an entry labeled by s1 (respectively, sn+1)

covers the entry labeled by s2 (respectively, sn) that occurs in rk+1.

Proof. Assume that s2 occurs in rk+1 and is covered by an entry labeled by s3. The

case involving sn being covered by an entry labeled by sn−1 follows by a symmetric

argument. The case with n = 3 proves to be more difficult than when n > 3. We

handle this more difficult case first.



210 DANA C. ERNST

Assume that n = 3. If k = 1, then s2 ∈ r2 and s3 ∈ r1. This implies that s1

must occur in r1; otherwise, w is left weak star reducible by s3 with respect to

s2. So, assume that k ≥ 2. For sake of a contradiction, assume that the entry

labeled by s2 occurring in rk+1 is not covered by an entry labeled by s1. This
forces s3 ∈ rk. Then at least one of s2 or s4 must cover the entry labeled by s3

occurring in rk−1. Since s1 does not cover the occurrence of s2 ∈ rk+1 and w is

fully commutative, it must be the case that s4 ∈ rk−1, while the entries labeled by

s3 and s2 occurring in rk and rk+1, respectively, are not covered by entries labeled

by s2 and s1, respectively. Then

∅

s2

s3

s4

is a convex subheap of H(w).

First, assume that k = 2, so that s2 ∈ r3, s3 ∈ r2, s4 ∈ r1, and neither s1 nor s2

occur in r1 or r2. Then the subheap immediately above is the northwest corner of

H(w), where the entry labeled by s4 occurs in the top row. Since w is not of type

I, this cannot be all of H(w). Furthermore, since w is fully commutative and not

right weak star reducible, it must be the case that

∅

∅

∅

s2

s3

s4

s1

s2

s3

s4

is the top of H(w). But then by Lemma 5.2.1, w is of type I, which is a contradiction.

Next, assume that k > 2. In this case, the entry in rk−1 labeled by s4 must be

covered by an entry labeled by s3. This implies that s4 cannot occur in rk+1 since

w is fully commutative. However, since w is fully commutative and not left weak

star reducible, it must be the case that

∅

∅

∅
s2

s1

s3

s2

s3

s4

is a convex subheap of H(w). Since w is not of type I, this cannot be all of w. Since

w is fully commutative, the only two possibilities are that the entry labeled by s1

in rk−4 is covered by an entry labeled by s2 or that the entry labeled by s2 in rk+1



TYPE AFFINE C COXETER GROUPS 211

covers an entry labeled by s1. In either case, w is of type I by Lemma 5.2.1, which

yields a contradiction.

We have exhausted all possibilities. Therefore, it must be the case that the

entry labeled by s2 ∈ rk+1 is covered by an entry labeled by s1, as desired. This
completes the case when n = 3.

Now, assume that n ≥ 4. Note that since n ≥ 4, m(s2, s3) = 3. If k = 1, then

s2 ∈ r2 and s3 ∈ r1. This implies that s1 must occur in r1, otherwise, w is left

weak star reducible by s3 with respect to s2. Assume that k ≥ 2, so that s2 ∈ rk+1

is covered by an entry labeled by s3. Then by Lemma 5.2.2, entries labeled by s2

and s4 cover the entry labeled by s3 occurring in rk. Since w is fully commutative,

we must have the entry labeled by s2 occurring in rk+1 covered by an entry labeled

by s1, as desired; otherwise, we produce one of the impermissible configurations of

Lemma 2.4.5 and violate w being fully commutative. This completes the case when
n ≥ 4. ¤

Remark 5.2.4. Lemmas 5.2.2 and 5.2.3 have “upside-down” versions, where we
replace k + 1 with k − 1 and we swap the phrases “is covered by” and “covers.”

The next four lemmas are all of a similar flavor. In each case, we require w ∈
FC(C̃n) to be non-cancellable and we have one lemma for each of the following

rank situations: (1) n = 2, (2) n = 3, (3) n = 4, and (4) n > 4. We have divided

the lemmas up into these four situations because the respective proofs are different

and in some cases we require slight modifications to the hypotheses. These lemmas

will be used to construct elements of type II in the proof of the classification of the

non-cancellable elements of type C̃n.

Lemma 5.2.5. Let w ∈ FC(C̃2) and suppose that w is non-cancellable and not of

type I. If rk+1 = xO (respectively, xE), then rk = xE (respectively, xO).

Proof. Note that when n = 2, we have xO = s1s3 and xE = s2. If rk+1 = s1s3,

then it is clear that rk = s2. Now, assume that rk+1 = s2. Then at least one of

s1 or s3 occurs in rk. For sake of a contradiction, assume that only one of these

occurs in rk, and without loss of generality, assume that s1 ∈ rk while s3 /∈ rk; the
remaining case is handled by a symmetric argument. We consider two cases: (1)

k = 1 and (2) k ≥ 2.

Case (1): First, assume that k = 1, so that s1 ∈ r1 and s2 ∈ r2, while s3 /∈ r1.

This cannot be all of H(w) since w is not of type I. Since w is fully commutative
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and non-cancellable, the only possibility is that

s1

s2

∅

s3∅

forms the top three rows of the canonical representation of H(w). Again, since w is

not of type I, there must be more to H(w). The top five rows of H(w) must equal

s1

s2

∅

s3∅
s2

s1 ∅

since w is fully commutative and non-cancellable. But then according to Lemma

5.2.1, w is of type I, which is a contradiction.

Case (2): For the second case, assume that k ≥ 2. Then we must have s2 ∈ rk−1.

Since w is not left weak star reducible, we cannot have k = 2; otherwise, w is left

weak star reducible by s2 with respect to s1. Thus, k > 2, and hence at least one of

s1 or s3 occurs in rk−2. Since w is fully commutative, s1 /∈ rk−2, and so, s3 ∈ rk−2.

This implies that

s2

s1

s2

∅

s3∅

is a convex subheap of H(w). This cannot be all of H(w) since w is not of type

I. The only possibilities are that s2 ∈ rk−3 or s3 ∈ rk+2 (both possibilities could

occur simultaneously). In either case, w must be of type I by Lemma 5.2.1, which
is a contradiction. ¤

Unlike the previous lemma, the next lemma does not place any requirements on

whether w is or is not of type I.

Lemma 5.2.6. Let w ∈ FC(C̃3) and suppose that w is non-cancellable. If rk+1 =

xO (respectively, xE), then rk = xE (respectively, xO).

Proof. Note that when n = 3, we have xO = s1s3 and xE = s2s4. Assume that

rk+1 = xO; the proof of the other case is similar. Then we must have s2 ∈ rk

since this is the only generator available to cover s1 ∈ rk+1. Since rk+1 = xO,
n(w) > 1, which implies that w is not of type I by Proposition 3.1.3. Then by

Lemma 5.2.3, the entry labeled by s3 ∈ rk+1 must be covered by an entry labeled

by s4. If k = 1, then s4 ∈ rk, as desired. If k > 1, then at least one of s1

or s3 occurs in rk−1. For sake of a contradiction, assume that s1 ∈ rk−1, but
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s3 /∈ rk−1. If k = 2, then w would be left weak star reducible by s1 with respect to

s2. So, we must have k > 2, in which case, s2 ∈ rk−2. But then we produce one

of the impermissible configurations of Lemma 2.4.5 corresponding to the subword

s2s1s2s1, which contradicts w being fully commutative. So, it must be the case
that s3 ∈ rk−1. This implies that the entry labeled by s4 that covers s3 ∈ rk+1

must occur in rk. So, rk = xE , as desired. ¤

Notice that the next lemma requires w to have full support, which the previous

two lemmas did not. (Recall that w has full support if supp(w) = S; see Section

2.1 for the definition.)

Lemma 5.2.7. Let w ∈ FC(C̃4) and suppose that w is non-cancellable and has full

support. If rk+1 = xO (respectively, xE), then rk = xE (respectively, xO).

Proof. Note that when n = 4, we have xO = s1s3s5 and xE = s2s4. We consider

two cases: (1) rk+1 = xO and (2) rk+1 = xE .
Case (1): First, assume that rk+1 = xO. By Lemma 5.2.2, the entry labeled by

s3 ∈ rk+1 is covered by entries labeled by s2 and s4, where at least one of these

occurs in rk. Since s2 (respectively, s4) is the only generator that may cover an

entry labeled by s1 (respectively, s5), we must have both s2 and s4 occurring in rk,

as desired.

Case (2): For the more difficult case, assume that rk+1 = xE . First, we argue

that an entry labeled by s3 covers the occurrences of s2 and s4 in rk+1. For sake of

a contradiction, assume otherwise. Then we must have s1 and s5 both occurring in

rk since these are the only entries available to cover the entries occurring in rk+1.
We consider to subcases: (a) k = 1 and (b) k > 2.

(a) Assume that k = 1, so that r1 = s1s5 and r2 = s2s4. We cannot have s1

(respectively, s5) occurring in r3; otherwise w would be left weak star reducible by

s1 (respectively, s5) with respect to s2 (respectively, s4). Since w has full support,

we must have s3 ∈ r3. By the upside-down version of Lemma 5.2.2, the entry

labeled by s3 ∈ r3 must cover entries labeled by s2 and s4. But this produces

impermissible configurations of Lemma 2.4.5 corresponding to the subwords s2s3s2

and s4s3s4, which contradicts w being fully commutative.

(b) Next, assume that k ≥ 2. Then we must have s2 and s4 occurring in rk−1.

Since w is not left weak star reducible, we must have k > 2; otherwise, w is left
weak star reducible by s2 (respectively, s4) with respect to s1 (respectively, s5).

The entry labeled by s2 (respectively, s4) occurring in rk−1 cannot be covered by

s1 (respectively, s5); otherwise, we produce one of the impermissible configurations

of Lemma 2.4.5. So, we must have s3 ∈ rk−2. If k = 3, then w would be left weak
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star reducible by s3 with respect to either s2 or s4. Thus, k ≥ 4. By Lemma 5.2.2,

the entry labeled by s3 ∈ rk−2 is covered by entries labeled by s2 and s4. But then

we again produce impermissible configurations of Lemma 2.4.5 corresponding to

the subwords s2s3s2 and s4s3s4, which is a contradiction.
We have shown that if rk+1 = xE , then the entries labeled by s2 and s4 occurring

in rk+1 must be covered by an entry labeled by s3. By Lemma 5.2.3, an entry

labeled by s1 (respectively, s5) covers the entry labeled by s2 (respectively, s4)

occurring in rk+1. If rk 6= s1s3s5, we quickly contradict Lemma 2.4.5 or Lemma

5.2.2. Therefore, we must have rk = xO, as desired. ¤

We have reached the last of our preparatory lemmas.

Lemma 5.2.8. Let w ∈ FC(C̃n) with n > 4 and suppose that w is non-cancellable.

If rk+1 = xO (respectively, xE), then rk = xE (respectively, xO).

Proof. If k = 1, then the result follows by Lemmas 5.2.2 and 5.2.3. If k > 1,

the result follows by making repeated applications of Lemmas 5.2.2 and 5.2.3 while

avoiding the impermissible configurations of Lemma 2.4.5. ¤

Remark 5.2.9. Lemmas 5.2.5–5.2.8 all have “upside-down” versions since all of

the arguments reverse nicely. That is, if w is non-cancellable (and not of type I

when n = 2; and has full support when n = 4), then rk = xO (respectively, xE)

implies rk+1 = xE (respectively, xO).

5.3. Proof of classification. We are now ready to prove the classification of the

type C̃ non-cancellable elements.

Proof of Theorem 5.1.1. It is easily seen that every element on our list is non-

cancellable. For sake of a contradiction, assume that there exists w ∈ FC(C̃n) such

that w is non-cancellable, but not on our list. If there exists s /∈ supp(w), then w is

equal to uv (reduced), where u is of type B, v is of type B′, and supp(u)∩supp(v) =

∅. Since w is non-cancellable, both u and v are non-cancellable. But then w must

be one of the elements from (i), which contradicts our assumption that w is not on

our list. So, if w is not on our list, w must have full support. In particular, this

implies that w is not a product of commuting generators. According to Proposition

3.1.3, the only non-cancellable elements with n(w) = 1 are already listed in (ii).
Hence n(w) > 1 (i.e., w is not of type I).

Now, consider the canonical representation of H(w) and suppose that it has m

rows. Since w is not a product of commuting generators, m ≥ 2. Our immediate

goal is to show that rm is equal to either xO or xE . Then we will be able to make
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use of Lemmas 5.2.5–5.2.8 to conclude that w is of type II. We consider three main

cases: (1) n = 2, (2) n = 3, and (3) n ≥ 4.

Case (1): Assume that n = 2. In this case, xO = s1s3 and xE = s2. If s2 ∈ rm,

then rm = xE . Assume that s2 /∈ rm. Then at least one of s1 or s3 occurs in rm.
Then we must have s2 ∈ rm−1. In fact, rm−1 = xE . By the upside-down version of

Lemma 5.2.5, rm = xO.

Case (2): For the second case, assume that n = 3. In this case, xO = s1s3 and

xE = s2s4. For sake of a contradiction, assume that si ∈ rm but si′ /∈ rm, where

|i− i′| = 2. We consider the subcases: (a) i = 1 and (b) i = 3. The cases i = 2 and

i = 4 are similar.

(a) Suppose that i = 1, so that s1 ∈ rm while s3 /∈ rm. Then we must have

s2 ∈ rm−1. Since w has full support and s3 does not occur in rm−1 or rm, we must

have m ≥ 3. Then the entry labeled by s2 occurring in rm−1 cannot be covered
by an entry labeled by s1; otherwise, w is right weak star reducible by s1 with

respect to s2. Thus, s3 ∈ rm−2. But according to Lemma 5.2.3, the entry labeled

by s2 occurring in rm−1 must be covered by an entry labeled by s1, which is a

contradiction.

(b) Next, suppose that i = 3, so that s3 ∈ rm while s1 /∈ rm. Then at least one

of s2 or s4 occurs in rm−1. If s2 ∈ rm−1, then w would be right weak star reducible

by s3 with respect to s2. So, it must be the case that s4 ∈ rm−1, while the entry

labeled by s3 is not covered by an entry labeled by s2. Since w has full support,

we must have m ≥ 3; otherwise, s1, s2 /∈ supp(w). This implies that s3 ∈ rm−2.
But then w is right weak star reducible by s3 with respect to s4, which is again a

contradiction.

Case (3): Lastly, assume that n ≥ 4. For sake of a contradiction, assume that

si ∈ rm but si′ /∈ rm, where |i − i′| = 2. Without loss of generality, assume that

1 ≤ i ≤ n − 1 and i′ = i + 2, so that si+2 /∈ rm; the remaining cases are similar.

We consider three possibilities: (a) i = 1, (b) i = 2, and (c) 3 ≤ i ≤ n− 1.

(a) If i = 1, then this case is identical to (a) in Case (2), where we contradict

Lemma 5.2.3.

(b) Next, assume that i = 2, so that s2 ∈ rm while s4 /∈ rm. Then the entry
labeled by s2 ∈ rm cannot be covered by an entry labeled by s3; otherwise, w would

be right weak star reducible by s2 with respect to s3. This implies that we must

have s1 ∈ rm−1. Since w has full support and s3 does not occur in rm−1 or rm, we

must have m ≥ 3. Then s2 ∈ rm−2. But then w is right weak star reducible by s2

with respect to s1, which is a contradiction.
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(c) Finally, assume that 3 ≤ i ≤ n − 1, so that si ∈ rm while si+2 /∈ rm. By

Lemma 5.2.2, the entry labeled by si ∈ rm must be covered by entries labeled by

si−1 and si+1. However, this implies that w is right weak star reducible by si with

respect to si+1, which is a contradiction.
In any case, we have shown that rm is equal to either xO or xE . By making

repeated applications of Lemma 5.2.5 if n = 2, Lemma 5.2.6 if n = 3, Lemma 5.2.7

if n = 4, or Lemma 5.2.8 if n > 4, w must be equal to an alternating product of xO
and xE . This implies that w is of type II, which contradicts our assumption that w

is not on our list. ¤

6. Closing remarks and further research

The (type A) Temperley–Lieb algebra TL(A), invented by H.N.V. Temperley

and E.H. Lieb in 1971 [22], is a finite dimensional associative algebra which arose
in the context of statistical mechanics. A diagram algebra is an associative algebra

with a basis given by certain diagrams, in which the multiplication rule in the

algebra is given by applying local combinatorial rules to the diagrams. R. Penrose

and L.H. Kauffman showed that TL(A) can be faithfully represented by a diagram

algebra.

In 1987, V.F.R. Jones showed that the (type A) Temperley–Lieb algebra occurs

naturally as a quotient of the type A Hecke algebra, H(A) [15]. If (W,S) is Coxeter

system of type Γ, the associated Hecke algebra H(Γ) is an algebra with a basis given

by {Tw : w ∈ W} and relations that deform the relations of W by a parameter q.
The realization of the Temperley–Lieb algebra as a Hecke algebra quotient was

generalized by J.J. Graham in [9] to the case of an arbitrary Coxeter system, which

we denote by TL(Γ).

One motivation behind studying these generalized Temperley–Lieb algebras is

that they provide a gateway to understanding the Kazhdan–Lusztig theory of the

associated Hecke algebra. Loosely speaking, TL(Γ) retains some of the relevant

structure of H(Γ), yet is small enough that computation of the leading coefficients

of the notoriously difficult to compute Kazhdan–Lusztig polynomials is often much

simpler.

Since Coxeter groups of type C̃ have an infinite number of fully commutative
elements, TL(C̃) is infinite dimensional. With the exception of type Ã, all other

generalized Temperley–Lieb algebras with known diagrammatic representations are

finite dimensional. In the finite dimensional case, counting arguments are employed

to prove faithfulness, but these techniques are not available in the type C̃ case. The
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classification of the non-cancellable elements in Theorem 5.1.1 provides the founda-

tion for inductive arguments used to prove the faithfulness of the diagram algebra

introduced by the author in [4]. This diagram algebra is the first faithful repre-

sentation of an infinite dimensional non-simply laced generalized Temperley–Lieb
algebra (in the sense of Graham). Chapters 6–10 of the author’s PhD thesis are

concerned with establishing this representation and will be the focus of subsequent

papers. In a future paper, we plan to construct a Jones-type trace on H(C̃) using

the diagrammatic representation of TL(C̃), allowing us to non-recursively compute

leading coefficients of Kazhdan–Lusztig polynomials indexed by pairs of fully com-

mutative elements.
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