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EVALUATION AND COMPARISON OF METAHEURISTIC METHODS 
TO ESTIMATE THE PARAMETERS OF GAMMA DISTRIBUTION 

 
Aynur Yonar1 ve Nimet Yapıcı Pehlivan2 

 

ABSTRACT 

Parameter estimation of three parameter (3-p) Gamma distribution is very important as it is one 

of the most popular distributions used to model skewed data. Maximum Likelihood (ML) 

method based on finding estimators that maximize the likelihood function, is a well-known 

parameter estimation method. It is rather difficult to maximize the likelihood function formed 

for the parameter estimation of the 3-p Gamma distribution. In this study, five well known 

metaheuristic methods, Simulated Annealing (SA), Genetic Algorithm (GA), Particle Swarm 

Optimization (PSO), Differential Evolution (DE), and Artificial Bee Colony (ABC), are 

suggested to obtain ML estimates of the parameters for the 3-p Gamma distribution. Monte-

Carlo simulations are performed to examine efficiencies of the metaheuristic methods for the 

parameter estimation problem of the 3-p Gamma distribution. Also, differences between 

solution qualities and computation time of the algorithms are investigated by statistical tests. 

Moreover, one of the multi-criteria decision-making methods, Technique for Order 

Performance by Similarity to Ideal Solution (TOPSIS), is preferred for ranking the 

metaheuristic algorithms according to their performance in parameter estimation. Results show 

that Differential Evolution is superior to the others for this problem in consideration of all the 



Nicel Bilimler Dergisi / Cilt: 4, Sayı: 2, Aralık 2022 
Journal of Quantitative Sciences / Volume: 4, Issue: 2, December 2022 

 

  
 

 

97 

criteria of solution quality, computation time, simplicity, and robustness of the metaheuristic 

algorithms. In addition, an analysis of real-life data is presented to demonstrate the 

implementation of the suggested metaheuristic methods. 

Keywords: Gamma Distribution, Maximum Likelihood Estimation, Metaheuristic Methods, 

Monte-Carlo Simulation, TOPSIS 

 

GAMMA DAĞILIMININ PARAMETRELERİNİN TAHMİNİ İÇİN 
METASEZGİSEL YÖNTEMLERİN DEĞERLENDİRİLMESİ VE 

KARŞILAŞTIRILMASI 
 

ÖZ 

Üç parametreli (3-p) Gamma dağılımı çarpık verilerin modellenmesinde kullanılan en popular 

dağılımlardan biri olduğundan bu dağılımın parametrelerinin tahmini çok önemlidir. Olabilirlik 

fonksiyonunu maksimize eden parametreleri bulan En Çok Olabilirlik (ML) yöntemi yaygın 

olarak kullanılan bir parametre tahmini yöntemidir.3-p Gamma dağılımının parametrelerinin 

tahmini için olabilirlik fonksiyonunu maksimize etmek çok zordur. Bu çalışmada, 3-p Gamma 

dağılımının parametrelerinin ML tahminlerini elde etmek için beş tane iyi bilinen metasezgisel 

yöntem: Tavlama Benzetimi (SA), Genetik Algoritma (GA), Parçacık Sürüsü Optimizasyonu 

(PSO), Diferansiyel Gelişim (DE) ve Yapay Arı Kolonisi (ABC) önerilmektedir. 3-p Gamma 

dağılımının tahmini probleminde metasezgisel yöntemlerin etkinliğinin araştırılması için 

Monte-Carlo simülasyon çalışmaları yapılmaktadır. Algoritmaların çözüm kalitesi ve 

hesaplama zamanı arasındaki farklar istatistiksel testler ile araştırılmaktadır. Ayrıca, 

metasezgisel algoritmaların parametre tahminindeki performanslarına göre sıralanması için çok 

kriterli karar verme yöntemlerinden biri olan TOPSIS yöntemi önerilmektedir. Sonuçlar, 

metasezgisel algoritmaların çözüm kalitesi, hesaplama zamanı, basitlik ve sağlamlılık kriterleri 

göz önüne alındığında DE’nin diğerlerinden daha iyi olduğunu göstermektedir. Ayrıca, önerilen 

metasezgisel yöntemlerin uygulanabilirliğini göstermek için gerçek bir yaşam verisi analizi 

sunulmaktadır. 

 

Anahtar Kelimeler: Gamma Dağılımı, En Çok Olabilirlik Tahmini, Metasezgisel Yöntemler, 

Monte-Carlo Simülasyonu, TOPSIS 
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1.  INTRODUCTION 

Gamma distribution is one of the extensively used distributions for modeling skewed 

data in various fields such as hydrology, finance, especially for reliability or lifetime (Basak 

and Balakrishnan, 2012; Hirose, 1995; Vaidyanathan and Lakshmi, 2015). Let  be a 

 random variable with shape parameter ,  scale parameter  and location (or 

threshold) parameter . Probability density function and distribution function of are 

expressed as follows, respectively 

                                (1)            

                               (2)         

In Eq. (2), 
 
 indicates incomplete Gamma function (Balakrishnan and Wang, 2000; N. L. 

Johnson et al., 1994, Vaidyanathan and Lakshmi, 2015). 

3-p Gamma distribution contains three special cases according to the values of the shape 

parameter . If  then the distribution is “J” shaped, if  then the distribution is bell-

shaped and if  then the distribution becomes an exponential distribution (Basak and 

Balakrishnan, 2012). It is very important to estimate the parameters of the 3-p gamma 

distribution since it plays an important role in the applied literature. However, the parameter 

estimation for the 3-p Gamma distribution has continued as a challenging and interesting 

problem. The maximum likelihood (ML) method based on the maximization of the likelihood 

function of any distribution, is the most commonly used parameter estimation method for the 

distributions because it usually tends to perform better than its competitors (Nagatsuka et al., 

2014). Thus, the ML method is used for estimating the parameters of the 3-p Gamma 

distribution in this study. Since maximizing the likelihood function of the 3-p Gamma 

distribution is quite difficult, generally iterative techniques such as Newton Raphson and Nelder 

Mead are used in the literature. However, since iterative techniques have an initial value 

problem, it may be suggested to use metaheuristic methods. 

In the literature, various metaheuristic methods have been used for ML parameter 

estimation of different distributions. The Simulated Annealing (SA) algorithm (Abbasi et al., 

2006), a hybrid metaheuristic method that combines variable neighborhood search and the SA 
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(Abbasi et al., 2011), Differential Evolution (DE) algorithm (Örkcü et al., 2015), Particle 

Swarm Optimization (PSO) (Örkcü et al., 2015), PSO with adaptive search space (Acıtaş et al., 

2019) and Artificial Bee Colony with Levy flights (LABC) (Yonar and Pehlivan, 2020a) have 

been proposed to maximize the likelihood function in the ML parameter estimation of a 3-p 

Weibull distribution. A metaheuristic approach by combining variable neighborhood search 

(VNS) and iterated local search (ILS) algorithm (Zoraghi et al., 2012) and PSO method (Özsoy 

et al., 2017) are suggested to maximize likelihood function of the 4-p Burr III distribution. The 

SA approach (Vera and Díaz-García, 2008) is applied to overcome the problem of ML 

estimation in any parameterization scheme for the 3-p Lognormal distribution. The Genetic 

Algorithm (GA) approaches are used for ML parameter estimation of the mixture normal 

distribution (Shin et al., 2014)  and skew normal (SN) distribution (Yalçınkaya et al., 2018). A 

novel DE algorithm approach is proposed for the ML parameter estimation of the 3-p Gamma 

distribution (Yonar and Pehlivan, 2020b). 

In this study, commonly used metaheuristic methods for parameter estimation, the 

Simulated Annealing, Genetic Algorithm, Particle Swarm Optimization, Differential Evolution, 

and Artificial Bee Colony Algorithm, are proposed to estimate the ML estimations for the 3-p 

Gamma distribution. Differences between these algorithms in terms of solution qualities and 

computation time have been examined by statistical tests. Also, Technique for Order Preference 

by Similarity to Ideal Solution (TOPSIS) method (Hwang and Yoon, 1981) which is one of the 

multi-criteria decision-making methods is utilized to determine which algorithm is more 

reasonable for using the ML parameter estimation problem,. The suggested metaheuristic 

methods are ranked by TOPSIS method considering all criteria of solution quality, computation 

time, simplicity, and robustness. In addition, the ML estimates of the parameters for a real-life 

data are obtained by MLE_P method and MML method as well as suggested metaheuristic 

algorithms. To compare these algorithms, log-likelihood ( ), Akaike Information Criterion 

(AIC), and Bayesian Information Criterion (BIC) are used. 

The rest of the study is organized as follows. In Section 2, the ML estimation method 

for parameters of the 3-p Gamma distribution is presented. The SA, GA, PSO, DE and ABC 

algorithms of metaheuristic methods are briefly introduced in Section 3. In Section 4, TOPSIS 

method is explained. In Section 5, Monte-Carlo simulations are performed to examine 

efficiencies of the suggested metaheuristic methods via TOPSIS method for determining the 

best metaheuristic algorithm. Also, a real-life example is analyzed to show an implementation 

log L
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of the considered metaheuristic methods. Finally, some concluding remarks are given in the last 

section. 

 

2.  METHODOLOGY 

2.1.  Maximum likelihood estimation for parameters of the 3-p Gamma distribution 

Due to obtaining consistent and asymptotically efficient estimators, the maximum 

likelihood (ML) method generally outperforms its competitors, e.g.. Least squares method, 

method of moments and so on for parameter estimation. The ML estimators and their properties 

for the 3-p Gamma distribution are given in detailed in (Basak and Balakrishnan, 2012; Clifford 

and Jones, 1982; Cohen and Whitten, 1986; N. L. Johnson et al., 1994). 

Let  be a random variable sample drawn from the  

distribution. The likelihood function and log-likelihood function of the Gamma distribution are 

given in Eq. (3) and Eq. (4), respectively.   

                                                       (3)                                

                                (4)            

where  is a vector of representing unknown parameters (Bowman et al., 1995; N. 

Johnson et al., 1994). The ML estimates of the parameters   and  are points that maximize 

the likelihood function or the log-likelihood function. Thus, there is an optimization problem 

for obtaining the estimates with the ML method. Such problems can be solved by taking the 

first partial derivatives of  according to unknown parameters and equalizing to zero. 

Then, solutions of these equations known as likelihood equations are called ML estimators of 

the parameters for the considered distribution. Since the likelihood equations of the 3-p Gamma 

distribution contain nonlinear functions, they cannot be solved. Therefore, it is recommended 

to use iterative methods such as Newton-Raphson and Nelder-Mead for maximizing the 

. These iterative methods require an initial value that should be approximated to 

global optimum value. It is suggested that using some of the metaheuristic methods, SA, GA, 

PSO, DE, and ABC, to overcome this problem. These metaheuristic methods have some 
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important advantages such as robustness, simplicity of implementation, high solution quality 

and reasonable computation time (run time) as well as no initial value problem. 

 

2.2. Metaheuristic Methods  

Metaheuristic methods mostly start by generating a random initial solution/population 

and loop over an iteration process to make the solution/population evolves. For D-dimensional 

optimization problem,  represents the i th vector of the population at 

iteration g. Each vector is a candidate solution for the optimization problem. The initial 

population for each element of the vector i is generated by using the prescribed lower limit (

) and upper limit ( ) known as search space, as follows (Talbi, 2009; Yang, 2010). 

                                                                                     (5)   

 where  is a uniformly distributed random variable in range . If the algorithm 

is the single-solution based metaheuristic, then an initial solution is generated by taking  

(Price et al., 2006; Talbi, 2009). 

The five metaheuristic algorithms SA, GA, PSO, DE, and ABC used in maximizing the 

likelihood function of the 3-p Gamma distribution, are briefly explained in the following 

subsections. 

 

2.2.1.  Simulated Annealing 

Simulated Annealing (SA) algorithm is based on the principles of statistical mechanics 

whereby the annealing process requires heating and then slowly freezing a substance to obtain 

crystalline structure. Application of the SA is firstly proposed by Kirkpatrick et al. (1983) to 

use optimization problems by taking inspiration the research of Metropolis et al. (1953) in the 

field of statistical mechanics (Abbasi et al., 2006; Talbi, 2009; Yang, 2010; Yonar, 2020). 

The SA is a stochastic algorithm which enables accepting a worse solution. This is the 

most important feature of the SA algorithm. The aim is to delay convergence by escaping from 

local optimum. The SA is single solution-based metaheuristic and proceeds in several iterations. 

At each iteration, a random neighbor solution is generated. The neighbor solution is accepted if 
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it improves the objective function, otherwise, it is selected with a given probability. Depending 

on current temperature and amount of degradation of the objective function, the probability is 

calculated by following 

                                                                                                  (6)                                                                                                                                              

where  is the current solution,  is the neighbor solution, is the objective function 

value at the solution ,  is the Boltzmann’s constant and it can be set  for simplicity,  

and  denotes current temperature for controlling the annealing process (Abbasi et al., 2006; 

Talbi, 2009; Yang, 2010). 

 

2.2.2. Genetic Algorithm 

Genetic Algorithm (GA) is one of the most prominent and widely used search 

techniques to find approximate solutions for optimization and search problems. It was firstly 

developed by Holland (1975) for understanding Darwin’s evolution process of natural systems 

and then, it was applied to optimization and machine learning by Goldberg and Holland (1988). 

The GA is a population-based method, which is a very popular class of evolutionary 

algorithms and has no initial value problem. Generally, the GA algorithm starts by generating 

a random initial population and then it loops over an iteration process to make the population 

evolve. Each iteration called a generation consists of selection, reproduction with crossover and 

mutation operators, evolution, and replacement stages (Talbi, 2009; Yalçınkaya et al., 2018; 

Yang, 2010; Yonar, 2020). 

 

2.2.3.  Particle Swarm Optimization 

 Particle swarm optimization (PSO) first introduced by Eberhart and Kennedy (1995) is 

a biologically inspired technique derived from the collective behavior of bird flocking and fish 

schooling (Acıtaş et al., 2019; Örkcü et al., 2015).  

The PSO is a population-based and self-adaptive search optimization method. The 

population consists of a set of particles. Each particle records its own personal best position 
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(pbest), and knows the best positions found by all particles in the swarm (gbest). Then, all 

particles update the velocity and position in each iteration. 

The velocity and the new position of each particle at iteration k+1, can be calculated as 

follows, respectively: 

                                                                           (7)                                          

                                                                                                                                    (8)                               

In Eqs. (7) and (8),  is the velocity of individual i at iteration ,   is the inertia 

weight,  and  are the acceleration coefficients,  and  are random numbers uniformly 

distributed between 0 and 1,  is the position of individual i at iteration ,  is the best 

position of individual i until iteration ,  is the best position of the group until iteration 

(Örkcü et al., 2015; Talbi, 2009; Yang, 2010; Yonar, 2020). 

 

2.2.4.  Differential Evolution 

Differential evolution (DE) which is a population-based evolutionary algorithm 

proposed by Storn (1996) and Storn and Price (1997), is one of the most successful approaches 

for continuous optimization problems. Similar to the GA, the DE algorithm uses crossover, 

mutation and selection operators. However, the DE uses the mutation operator, while GA uses 

crossover operator to obtain better solutions (Gui et al., 2019; Price et al., 2006). 

The mutation operator in the DE is based on difference between randomly selected two 

solutions from the population. The DE algorithm uses the mutation operator as a search 

mechanism and selection operator to navigate the candidate areas in the search space. In this 

study, the standard variant of the DE, , is handled (Talbi, 2009; Yonar, 2020). 

 

2.2.5.  Artificial Bee Colony 

The Artificial Bee Colony (ABC) algorithm was firstly proposed by Karaboga (2005) 

for numerical optimization problem inspiring the intelligent foraging behavior of honey bees 

(Karaboğa and Öztürk, 2011). Later, it was adapted to solve optimization problem by Akay and 

Karaboğa (2012). 
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In the ABC algorithm, honey bees are classified into three groups: employed bees, 

onlooker bees, and scout bees. The employed bees that are pioneers of the swarm, discover food 

sources, gather honey, and share information about the nectar amount the food sources within 

the hive. Based on this information, onlooker bees choose and exploit better food sources. A 

bee whose food source is bad, change to be a scout bee for searching randomly new food 

sources. In this way, three types of artificial bees form effective cooperation with each other 

(Rajasekhar et al., 2017; Yonar, 2020). 

 

2.3.  TOPSIS Method 

Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method 

proposed by Hwang and Yoon (1981) is one of the well-known multi criteria decision making 

(MCDM) methods. It is based on selection of alternative which has the shortest distance from 

the positive-ideal solution and the farthest distance from the negative-ideal solution. The steps 

of the TOPSIS method for a MCDM problem involving m alternatives and n criteria as follows 

(Chen, 2000; Opricovic and Tzeng, 2004; Şahin and Pehlivan, 2017): 

Step 1: Construct a decision matrix  and determine a weight vector  

Here,  is the value of evaluation for alternative  with respect to criterion   and   denotes 

the weight of criterion . 

Step 2: Constitute the normalized decision matrix  by  .                                                                                                           

Step 3: Construct the weighted decision matrix  by 

                                                                                                                                                                         

Step 4: Determine positive ideal solution and negative ideal solution 

 as follows:  

                                                                         (9)                                                                             
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where  and  express the benefit and cost criteria, respectively. 

Step 5: Calculate distance between each alternative from the positive ideal solutions ( ) and 

negative ideal solutions ( ) as follows:  

                                                                                                               (11)                                                                            

                                                                                                               (12)                                                                        

Step 6: Calculate relative degree of closeness  by following;  

                                                                                                               (13)                                                                          

Step 7:  Rank the values of ,  in descending order. The alternative 

with the largest  value is the best alternative. 

 

3.  RESULTS AND DISCUSSION  

This section is composed of three parts. In the first part, the Monte-Carlo simulation 

study is carried out to examine efficiencies of the estimators obtained by using suggested 

metaheuristic methods. In the second part, these metaheuristic methods are ranked by TOPSIS 

method according to their performances in the ML parameter estimation of the 3-p Gamma 

distribution to determine the best method. In the last part, an analysis of a real-life example is 

presented to demonstrate implementation of the metaheuristic methods. All computations in 

this section are conducted using the “optimization”, “GA”, “pso”, “DEoptim”, and 

“ABCoptim” packages included in the free software RStudio 4.1.3. 

 

3.1.  Simulation Study 

In this part, results of the Monte-Carlo simulation are presented. At first, Nelder-Mead 

Algorithm which is one of the classical methods is utilized to estimate the parameters of the 3-

p Gamma distribution. However, this algorithm is not provided sufficient parameter estimation 
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results when the search is started randomly since it has an initial value problem. For this reason, 

metaheuristic methods which have no initial value problem are proposed to estimate the 

parameters of the 3-p Gamma distribution. The performances of the suggested metaheuristic 

methods are compared in terms of solution quality and computation (run) time. The values of 

the Deficiency (DEF) criteria are used for evaluating the solution quality.  

The DEF criterion is a significant tool for comparing the joint efficiencies of the various 

methods utilized to estimate a set of parameters . It is determined as the sum of 

Mean Square Error (MSE) values for the estimators of the parameters (Yalçınkaya et al., 2018).  

For performance evaluation of the methods, real parameter values for the 3-p Gamma 

distribution are specified as , , , 

, and . In addition, samples sizes of 25, 50,100, 250, 500, and 

1000 are considered for each value of the parameter to examine effect of the sample size on the 

performance of the methods in the parameter estimation process.  

Parameter values determined by various trials and literature reviews for each 

metaheuristic algorithm are shown in Table 1. Search space of the algorithms is selected as 

 for all parameters and maximum iteration number are taken as 100 due to rapid 

convergence tendency of the algorithms. 

Table 1. Parameters of the algorithms 

Algorithms Parameters 

SA  , , ,  

GA      , , ,  

PSO      , ,  

DE     , ,  

ABC     ,  

 

Considered algorithms are run 10.000 times to strengthen the reliability of the estimation 

strategy and mean simulation results are presented in Tables 2-6. Computation times are also 

noted in all tables and the best results are highlighted in bold. 
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Table 2.  Simulation results of parameter estimations of the 3-p Gamma distribution for  

n Method     
Mean MSE Mean MSE Mean MSE DEF Comp.Time 

25 

SA 3.6050 12.5249 1.1801 1.2051 10.1921 0.3717 14.1016 12.6098 
GA 3.3577 4.6881 0.8050 0.4559 10.1998 0.2081 5.3521 1.0072 
PSO 4.0844 9.4128 0.8088 0.5196 10.1274 0.3027 10.2351 0.7844 
DE 2.7104 7.1858 1.2074 1.1902 10.3162 0.2940 8.6700 1.0093 
ABC 3.1595 10.6467 1.4434 1.9951 10.1706 0.4288 13.0706 1.8507 

50 

SA 4.2584 6.9467 0.5863 0.0878 10.0514 0.1998 7.2343 12.5680 
GA 3.7019 2.8637 0.5902 0.0552 10.1008 0.1186 3.0375 1.1366 
PSO 4.3519 5.8955 0.5619 0.0700 10.0275 0.1739 6.1394 0.8166 
DE 3.4678 3.0755 0.6217 0.0826 10.1674 0.1345 3.2926 1.0498 
ABC 4.8904 8.3538 0.6508 0.2356 9.7964 0.3605 8.9499 2.1556 

100 

SA 4.1258 3.4340 0.5307 0.0197 10.0304 0.0984 3.5521 12.5506 
GA 3.7987 2.1573 0.5616 0.0258 10.0543 0.0811 2.2642 1.1233 
PSO 4.2946 3.0910 0.5138 0.0181 9.9965 0.0932 3.2023 0.8551 
DE 3.5967 1.6423 0.5606 0.0185 10.1129 0.0677 1.7285 1.1223 
ABC 5.3686 7.7421 0.5182 0.0509 9.6773 0.3427 8.1357 2.2840 

250 

SA 4.0361 1.1110 0.5117 0.0069 10.0137 0.0348 1.1527 14.8486 
GA 3.8364 1.5502 0.5514 0.0188 10.0256 0.0515 1.6205 1.2283 
PSO 4.1988 1.2402 0.4998 0.0069 9.9848 0.0386 1.2858 0.8384 
DE 3.7187 0.7556 0.5352 0.0071 10.0674 0.0292 0.7919 1.2216 
ABC 5.4813 7.5010 0.4960 0.0306 9.6431 0.3353 7.8668 2.2186 

500 

SA 3.9864 0.4538 0.5072 0.0031 10.0129 0.0152 0.4721 17.1158 
GA 3.8688 1.3913 0.5462 0.0158 10.0107 0.0457 1.4528 1.3915 
PSO 4.1895 0.6707 0.4934 0.0036 9.9769 0.0214 0.6956 1.0899 
DE 3.7546 0.4126 0.5265 0.0037 10.0536 0.0157 0.4320 1.3984 
ABC 5.2944 6.9967 0.5016 0.0268 9.6910 0.2909 7.3143 2.3078 

1000 

SA 3.9795 0.1962 0.5043 0.0015 10.0087 0.0067 0.2043 21.0536 
GA 3.9076 1.2942 0.5423 0.0145 9.9966 0.0427 1.3514 1.6647 
PSO 4.1775 0.4177 0.4911 0.0021 9.9742 0.0131 0.4329 1.3248 
DE 3.7908 0.2397 0.5209 0.0021 10.0424 0.0088 0.2507 1.6241 
ABC 5.0017 5.9974 0.5110 0.0237 9.7600 0.2375 6.2587 2.5252 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(4, 0.5, 10)q =

â b̂ µ̂
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Table 3. Simulation results of parameter estimations of the 3-p Gamma distribution for 

 

n Method     
Mean MSE Mean MSE Mean MSE DEF Comp.Time 

25 

SA 2.1720 7.5901 1.4700 1.3486 10.1206 0.1731 9.1118 7.5784 
GA 2.5007 3.3987 0.9648 0.5480 10.0621 0.1212 4.0679 0.8187 
PSO 2.7555 6.2907 1.0209 0.6702 10.0485 0.1554 7.1163 0.8009 
DE 1.7099 3.8043 1.4799 1.3309 10.1812 0.1180 5.2533 1.0541 
ABC 1.9905 6.7478 1.7315 2.1788 10.1039 0.2097 9.1363 2.2390 

50 

SA 2.5539 2.8254 0.7678 0.1513 10.0529 0.0718 3.0485 8.1300 
GA 2.7438 2.1311 0.6890 0.0812 9.9999 0.0778 2.2901 1.0869 
PSO 2.7513 2.7048 0.7152 0.1103 10.0179 0.0725 2.8876 0.8525 
DE 2.3160 1.3711 0.7810 0.1441 10.0863 0.0480 1.5632 1.0970 
ABC 3.3310 7.0879 0.8872 0.4186 9.8320 0.2531 7.7596 2.3120 

100 

SA 2.5238 0.8173 0.6647 0.0239 10.0365 0.0253 0.8665 13.2867 
GA 2.8045 1.6087 0.6422 0.0276 9.9705 0.0607 1.6970 1.1233 
PSO 2.6809 1.0447 0.6447 0.0251 10.0065 0.0320 1.1018 0.8795 
DE 2.4301 0.5346 0.6749 0.0231 10.0510 0.0200 0.5777 1.0979 
ABC 3.7878 6.8260 0.6663 0.1176 9.7233 0.2700 7.2136 2.4334 

250 

SA 2.5065 0.1809 0.6423 0.0072 10.0217 0.0061 0.1943 14.7119 
GA 2.8050 1.2905 0.6290 0.0161 9.9552 0.0498 1.3564 1.1600 
PSO 2.6382 0.3937 0.6265 0.0089 9.9981 0.0127 0.4153 0.1006 
DE 2.4709 0.1638 0.6483 0.0073 10.0274 0.0059 0.1770 1.2283 
ABC 3.6770 5.6510 0.6261 0.0584 9.7406 0.2230 5.9323 2.5921 

500 

SA 2.5195 0.0782 0.6353 0.0033 10.0133 0.0026 0.0842 17.3935 
GA 2.8319 1.2201 0.6219 0.0129 9.9433 0.0500 1.2829 1.1686 
PSO 2.6416 0.2578 0.6205 0.0051 9.9922 0.0081 0.2710 0.1170 
DE 2.4979 0.0809 0.6395 0.0035 10.0167 0.0028 0.0872 1.3578 
ABC 3.2384 3.5731 0.6464 0.0433 9.8307 0.1408 3.7573 2.5476 

1000 

SA 2.5353 0.0346 0.6306 0.0015 10.0080 0.0011 0.0372 19.9183 
GA 2.8257 1.1094 0.6197 0.0107 9.9427 0.0443 1.1644 1.6153 
PSO 2.6561 0.2203 0.6162 0.0033 9.9862 0.0071 0.2307 0.1299 
DE 2.5143 0.0385 0.6347 0.0017 10.0114 0.0013 0.0414 1.5652 
ABC 2.9440 2.2817 0.6584 0.0333 9.8955 0.0896 2.4046 2.6287 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

( )2.56, 0.625, 10q =

â b̂ µ̂
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Table 4. Simulation results of parameter estimations of the 3-p Gamma distribution for 

 

n Method     
Mean MSE Mean MSE Mean MSE DEF Comp.Time 

25 

SA 1.2169 3.3012 1.6660 1.2385 10.0963 0.0633 4.6031 5.5191 
GA 1.8060 2.3949 1.1476 0.6033 10.0136 0.0752 3.0734 1.0010 
PSO 1.8172 3.5000 1.2374 0.7682 10.0313 0.0722 4.3404 0.8030 
DE 1.0518 1.8715 1.6726 1.2314 10.1170 0.0437 3.1465 1.0367 
ABC 1.1218 2.9718 1.9220 2.0505 10.0919 0.0727 5.0951 2.2336 

50 

SA 1.5649 0.8411 1.0054 0.2454 10.0502 0.0179 1.1044 6.1675 
GA 2.0361 1.8314 0.8410 0.1439 9.9657 0.0670 2.0422 1.0725 
PSO 1.7797 1.1584 0.9128 0.1801 10.0213 0.0261 1.3646 0.8680 
DE 1.5239 0.6160 1.0063 0.2390 10.0559 0.0145 0.8694 1.0629 
ABC 1.8356 3.4181 1.2357 0.6197 9.9571 0.0954 4.1332 2.2585 

100 

SA 1.6850 0.1694 0.8062 0.0323 10.0318 0.0048 0.2065 8.3841 
GA 2.0675 1.2917 0.7466 0.0393 9.9549 0.0526 1.3836 1.0836 
PSO 1.7906 0.3808 0.7910 0.0389 10.0129 0.0104 0.4301 0.9052 
DE 1.6697 0.1562 0.8122 0.0336 10.0333 0.0046 0.1945 1.1550 
ABC 2.0559 2.7207 0.9588 0.2203 9.9120 0.0883 3.0293 2.3672 

250 

SA 1.7212 0.0469 0.7738 0.0085 10.0169 0.0012 0.0566 10.0441 
GA 2.1008 1.2731 0.7249 0.0224 9.9402 0.0526 1.3480 1.2152 
PSO 1.8048 0.1808 0.7587 0.0118 10.0024 0.0052 0.1978 1.0134 
DE 1.7148 0.0491 0.7769 0.0091 10.0174 0.0012 0.0595 1.2084 
ABC 1.8660 1.0963 0.8713 0.0888 9.9522 0.0392 1.2243 2.5713 

500 

SA 1.7417 0.0205 0.7641 0.0037 10.0099 0.0005 0.0247 15.6388 
GA 2.1274 1.2778 0.7167 0.0188 9.9313 0.0545 1.3511 1.3907 
PSO 1.8151 0.1286 0.7493 0.0067 9.9974 0.0038 0.1391 1.1789 
DE 1.7352 0.0222 0.7671 0.0041 10.0104 0.0005 0.0268 1.4208 
ABC 1.7985 0.6199 0.8480 0.0602 9.9722 0.0229 0.7031 2.9035 

1000 

SA 1.7571 0.0093 0.7576 0.0017 10.0057 0.0002 0.0112 19.7226 
GA 2.1161 1.1832 0.7153 0.0165 9.9323 0.0504 1.2501 1.6143 
PSO 1.8251 0.1204 0.7448 0.0046 9.9939 0.0039 0.1289 1.4486 
DE 1.7509 0.0103 0.7602 0.0019 10.0063 0.0002 0.0124 1.6428 
ABC 1.8010 0.4230 0.8238 0.0458 9.9777 0.0160 0.4848 3.3278 

 

 

 

 

 

 

 

 

( ) 1.778, 0.75, 10q =

â b̂ µ̂
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Table 5. Simulation results of parameter estimations of the 3-p Gamma distribution for  

n Method     
Mean MSE Mean MSE Mean MSE DEF Comp.Time 

25 

SA 0.5988 0.3782 1.7379 0.7463 10.0364 0.0049 1.1295 6.1487 
GA 1.1018 1.4889 1.3692 0.5094 9.9655 0.0516 2.0499 0.9317 
PSO 0.8677 0.8354 1.5609 0.7004 10.0108 0.0133 1.5491 0.7997 
DE 0.5867 0.2739 1.7375 0.7439 10.0376 0.0039 1.0217 1.0754 
ABC 0.5812 0.3559 2.0319 1.6269 10.0362 0.0053 1.9881 1.0214 

50 

SA 0.7434 0.1127 1.3716 0.2226 10.0186 0.0009 0.3363 6.1915 
GA 1.1618 1.2099 1.1587 0.1957 9.9534 0.0478 1.4534 1.0698 
PSO 0.8636 0.2795 1.3009 0.2259 10.0061 0.0048 0.5102 0.8669 
DE 0.7423 0.1001 1.3709 0.2222 10.0187 0.0008 0.3230 1.0831 
ABC 0.7305 0.1967 1.5969 0.6567 10.0162 0.0021 0.8555 1.2136 

100 

SA 0.8521 0.0394 1.1850 0.0712 10.0095 0.0002 0.1107 6.5034 
GA 1.2070 1.0464 1.0468 0.0913 9.9495 0.0443 1.1820 1.0772 
PSO 0.9160 0.1437 1.1572 0.0794 10.0012 0.0030 0.2262 0.9207 
DE 0.8507 0.0392 1.1861 0.0710 10.0096 0.0002 0.1104 1.1183 
ABC 0.8262 0.0806 1.3774 0.3327 10.0080 0.0006 0.4139 1.5680 

250 

SA 0.9347 0.0115 1.0746 0.0185 10.0039 0.0000 0.0300 8.0523 
GA 1.2807 1.1432 0.9730 0.0546 9.9398 0.0505 1.2484 1.1483 
PSO 0.9824 0.0948 1.0547 0.0256 9.9970 0.0024 0.1228 0.9780 
DE 0.9328 0.0112 1.0760 0.0182 10.0039 0.0000 0.0294 1.1146 
ABC 0.9162 0.0542 1.2356 0.1936 10.0021 0.0003 0.2481 1.5694 

500 

SA 0.9671 0.0046 1.0363 0.0072 10.0020 0.0000 0.0118 11.9227 
GA 1.2971 1.0705 0.9463 0.0456 9.9391 0.0485 1.1646 1.2685 
PSO 1.0071 0.0799 1.0226 0.0140 9.9955 0.0023 0.0962 1.1618 
DE 0.9658 0.0044 1.0372 0.0071 10.0020 0.0000 0.0116 1.1578 
ABC 0.9534 0.0470 1.1833 0.1521 9.9999 0.0004 0.1995 1.8515 

1000 

SA 0.9821 0.0019 1.0184 0.0031 10.0010 0.0000 0.0050 16.6259 
GA 1.3004 1.0254 0.9345 0.0417 9.9401 0.0450 1.1121 1.3761 
PSO 1.0189 0.0643 1.0055 0.0093 9.9952 0.0019 0.0755 1.3333 
DE 0.9814 0.0019 1.0189 0.0030 10.0010 0.0000 0.0049 1.3658 
ABC 0.9666 0.0439 1.1610 0.1370 9.9993 0.0002 0.1811 2.6882 

 

 

 

 

 

 

 

 

 

 

 

 

( )  1, 1, 10q =

â b̂ µ̂
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Table 6. Simulation results of parameter estimations of the 3-p gamma distribution for 

 

n Method     
Mean MSE Mean MSE Mean MSE DEF Comp.Time 

25 

SA 0.4725 0.0404 1.7167 0.4728 10.0088 0.0003 0.5135 7.6273 
GA 0.8282 1.1742 1.4611 0.4342 9.9544 0.0416 1.6500 0.9449 
PSO 0.6050 0.3324 1.6355 0.5118 9.9959 0.0046 0.8488 0.6951 
DE 0.4715 0.0344 1.7164 0.4723 10.0089 0.0003 0.5070 0.7928 
ABC 0.4607 0.0519 2.1172 1.4948 10.0088 0.0004 1.5471 1.1183 

50 

SA 0.5496 0.0130 1.4743 0.1545 10.0031 0.0000 0.1675 13.2066 
GA 0.8580 0.9997 1.3106 0.2169 9.9500 0.0412 1.2578 1.0308 
PSO 0.6221 0.1488 1.4221 0.1775 9.9952 0.0028 0.3291 0.8009 
DE 0.5496 0.0130 1.4742 0.1545 10.0031 0.0000 0.1675 0.7323 
ABC 0.5353 0.0277 1.8069 0.7885 10.0031 0.0000 0.8163 1.7725 

100 

SA 0.5977 0.0057 1.3489 0.0585 10.0011 0.0000 0.0641 14.4397 
GA 0.8855 0.9812 1.2201 0.1272 9.9489 0.0420 1.1504 1.1519 
PSO 0.6450 0.1007 1.3248 0.0760 9.9949 0.0023 0.1790 0.8404 
DE 0.5977 0.0057 1.3490 0.0585 10.0011 0.0000 0.0642 0.8528 
ABC 0.5817 0.0213 1.6523 0.5234 10.0011 0.0000 0.5447 2.0264 

250 

SA 0.6256 0.0022 1.2840 0.0202 10.0003 0.0000 0.0224 9.4667 
GA 0.8908 0.9395 1.1810 0.0886 9.9494 0.0427 1.0708 1.1487 
PSO 0.6645 0.0754 1.2611 0.0351 9.9951 0.0021 0.1126 0.8456 
DE 0.6256 0.0022 1.2839 0.0202 10.0003 0.0000 0.0224 1.0555 
ABC 0.6077 0.0184 1.5722 0.3947 10.0002 0.0000 0.4130 2.2037 

500 

SA 0.6336 0.0011 1.2661 0.0095 10.0001 0.0000 0.0105 15.9482 
GA 0.8895 0.8861 1.1705 0.0772 9.9502 0.0404 1.0037 1.3762 
PSO 0.6650 0.0603 1.2465 0.0226 9.9959 0.0017 0.0846 0.8639 
DE 0.6337 0.0011 1.2660 0.0095 10.0001 0.0000 0.0106 1.3105 
ABC 0.6132 0.0174 1.5558 0.3750 10.0001 0.0000 0.3924 2.7671 

1000 

SA 0.6376 0.0006 1.2563 0.0047 10.0000 0.0000 0.0053 17.3379 
GA 0.8969 0.9054 1.1621 0.0739 9.9495 0.0408 1.0201 1.7012 
PSO 0.6650 0.0603 1.2465 0.0226 9.9959 0.0017 0.0846 1.2426 
DE 0.6377 0.0006 1.2563 0.0047 10.0000 0.0000 0.0053 1.3528 
ABC 0.6189 0.0167 1.5316 0.3436 10.0000 0.0000 0.3604 3.3038 

 

From Tables 2-6, DEF values decrease for all cases as sample size increases. In other 

words, more efficient parameter estimates are procured as sample size increases with respect to 

MSE criteria. However, it is explicitly noted that the run time of the metaheuristic methods will 

be longer as the increase in sample size complicates the maximizing the likelihood function 

more. Thus, selection of the sample size is very important for the ML estimators. In view of 

solution quality, the DE exhibits good performance with the lowest DEF values in most of the 

cases. Furthermore, the GA for small sample size ( ) and the SA for the large 

sample size ( ) shows good performance as well as the DE. The SA produces 

very close results to the DE especially for sample sizes. 

( )  0.64, 1.25, 10q =

â b̂ µ̂

25, 50n n= =

500, 1000n n= =
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In terms of computation time, the PSO gives the best results with the lowest run time 

for almost all cases except for a few cases where the DE performed well. When compared to 

other methods, the SA shows very poor performance about computation time because it is based 

on single solution 

 Kruskal-Wallis (K-W) tests are also carried out to show whether there is a statistical 

difference between the algorithms in terms of solution quality and computation time. According 

to the K-W test results for solution quality of the algorithms, p-values are computed as 0.893, 

0.548 ,0.131, 0.008, 0.003, and 0.002 for the sample sizes (n) of 25, 50,100, 250, 500, and 1000, 

respectively. There is no statistically significant difference between solution qualities of the 

estimated parameters of the algorithms for  and , whereas a statistically 

significant difference is found for , and  at 95% confidence level. As 

a result of post-hoc comparison tests, significant differences exist between the DE and GA for 

, and  and also between the SA and GA for  and . 

According to the K-W test results for computation time of the algorithms, p-values are 

computed as 0.000 for all sample sizes. There are statistically significant differences between 

computation time of the algorithms at 95% confidence level. As a result of post-hoc comparison 

tests, there are significant differences between the PSO and ABC, and also between the PSO 

and SA for all sample sizes. Moreover, there are significant differences between the GA and 

SA for , and also between the DE and SA for , and  with respect 

to computation time. 

 

3.2.  Comparison of the Metaheuristic Methods via TOPSIS Method 

TOPSIS method is performed for ranking the suggested metaheuristic methods 

according to their performance in the ML parameter estimation of the 3-p Gamma distribution 

for determining the best method among them. For this aim, suggested metaheuristic methods 

of SA, GA, PSO, DE, and ABC are taken as alternatives. In addition, solution quality ( ), 

computation time ( ), simplicity ( ), and robustness ( ) of these methods are considered 

as criteria.  

Solution quality, simplicity and robustness criteria are evaluated as benefit criteria, 

while computation time is assessed as cost criterion. Solution quality is obtained as to be 

inversely proportional to means of the DEF values. Computation time is also calculated by 

25, 50n n= = 100n =

250, 500n n= = 1000n =

250, 500n n= = 1000n = 500n = 1000n =

25n = 50, 100n n= = 1000n =

1C

2C 3C 4C
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taking means of run time in all simulations conducted in this study. Simplicity of the method is 

considered as inversely proportional to number of its parameters. For example, simplicity of 

the SA is  since it has four parameters ( , , nMove, and ). Finally, robustness of the 

method is determined as to be inversely proportional to variation (variance) of the DEF values 

obtained for different samples.  

Since the criteria are considered as equally important, weights of the criteria are taken 

as 0.25. According to the solution quality, simplicity, robustness, and computation time of the 

suggested metaheuristic methods, decision matrix ( ) is formed as follows.  

 

Positive ideal solution nd negative ideal solution are found as 

 and , respectively. 

Also, calculated , and values are presented in Table 7. 

Table 7.  Calculated , and values for the alternatives 

Alternatives    
SA 0.0627 0.0295 0.3199 
GA 0.0142 0.0660 0.8233 
PSO 0.0201 0.0595 0.7471 
DE 0.0043 0.0811 0.9495 

ABC 0.0423 0.0469 0.5260 

 

According to Table 7, ranking of the metaheuristic methods is obtained as 

 due to descending order of  values. The TOPSIS method 

allows to rank five suggested metaheuristic methods considering all criteria, and as a result, the 

best method among the alternatives is determined as the DE. When evaluations are performed 

separately for each criterion in the decision matrix , ranking of the alternatives are obtained 

as  for solution quality,  for 

computation time,  for simplicity, and  

 for robustness. 

1/ 4 s 0T t

D

1 2 3 4

0.6189 12.3571 0.2500 34.5414
0.5687 1.2042 0.2500 26.5129
0.6691 0.8719 0.2500 13.6154
1.0186 1.1788 0.3333 27.4304
0.2717 2.2287 0.5000 0.1091

C C C C
SA
GA

D PSO
DE
ABC

é ù
ê ú
ê ú
ê ú=
ê ú
ê ú
ê úë û

( )0.1692,0.1720,1.6880,1.6222A+ = ( )0.0451,0.2433,0.0844,0.0005A- =

id
+

id
-

iCC

id
+

id
-

iCC

id
+

id
-

iCC

DE GA PSO ABC SA> > > > iCC

D

DE PSO SA GA ABC> > > > PSO DE GA ABC SA> > > >

ABC DE SA GA PSO> > = =

SA DE GA PSO ABC> > > >
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3.3.  Real Life Example 

In this part, a real-life data given by Dumonceaux and Antle (1973) is considered. The 

data known as flood data represent the maximum flood levels of Susquehanna River at 

Harrisburg, Pennsylvania over four periods years between 1969 and 1980 in millions of cubic 

feet per second and given as: 0.654, 0.613, 0.315, 0.449, 0.297, 0.402, 0.379, 0.423, 0.379, 

0.3235, 0.269, 0.740, 0.418, 0.412, 0.494, 0.416, 0.338, 0.392, 0.484, 0.265 (Balakrishnan and 

Wang, 2000; Lakshmi and Vaidyanathan, 2016; Vaidyanathan and Lakshmi, 2015). 

As well as the value of log-likelihood function ( ), Akaike Information Criteria 

(AIC) (Akaike et al., 1973) and Bayesian Information Criteria (BIC) (Stone, 1979) are used for 

comparing the methods.  

The ML estimates of the parameters, log-likelihood values, AIC and BIC values   

corresponding to MLE_P method suggested by Lakshmi and Vaidyanathan (2016) and MML 

method proposed by Cohen and Whitten (1986) in addition to the suggested metaheuristic 

methods in this study, are given in Table 8.  

Table 8.  Parameter estimates, , AIC and BIC for flood data 

Methods     AIC BIC 
SA 1.3865 0.1180 0.2595 16.8010 -27.6021 -15.6276 
GA 1.3638 0.1195 0.2600 16.8009 -27.6018 -15.6274 
PSO 1.7143 0.1020 0.2519 16.7684 -27.5368 -15.5624 
DE 0.9681 0.1658 0.2646 16.8371 -27.6742 -15.6998 

ABC 1.3972 0.1299 0.2417 15.8753 -25.7506 -13.7762 
MLE_P 1.3700 0.1300 0.2700 16.8190 -27.6380 -15.6636 
MML 1.1940 0.1343 0.2628 16.7971 -27.5942 -15.6198 

 

As seen from Table 8, all the suggested metaheuristic methods have very close AIC and 

BIC values except for the ABC algorithm. However, the DE algorithm has the biggest  

and the smallest AIC and BIC values among not only metaheuristic methods but also MLE_P 

and MML methods. Therefore, it can be concluded that the DE algorithm shows better 

performance than the others for ML estimates of the parameters for flood data.  

 

4. CONCLUSION 

In this study, some metaheuristic methods, SA, GA, PSO, DE and ABC, are proposed 

to find ML estimates of the parameters for 3-p Gamma distribution. For examining the 

efficiencies of the estimates obtained by using the metaheuristic methods, Monte-Carlo 

log L

logL

â b̂ µ̂ logL

log L
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simulation studies are conducted, and the algorithms are compared with respect to the DEF 

criteria for solution quality and computation time. Simulation results show that the DE is more 

efficient method in terms of solution quality and the PSO is more efficient method regarding 

computation time in almost all cases when compared to other metaheuristic methods.  

TOPSIS method is also suggested for ranking the metaheuristic methods regarding all 

the criteria of solution quality, computation time, simplicity, and robustness. According to the 

results obtained from the TOPSIS method, the DE is determined as the best method among the 

suggested metaheuristic methods considering all criteria. 

A real-life data is analyzed to show applicability of the metaheuristic methods. The 

superiority of the DE method is also seen in this real-life example.  Finally, it could be said that 

the DE gives the most effective results for ML estimating parameters of the 3-p Gamma 

distribution. Therefore, it may be preferred more than other metaheuristic methods. 

In future studies, it can be suggested to obtain optimal solutions using various 

metaheuristic optimization algorithms for parameter estimation of 3-p Gamma distribution via 

the Maximum Product Range method proposed by Ranneby (1984), which generalizes the ML 

Estimation. 
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