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Abstract

Let R be a ring, S a multiplicative subset of R. An R-module M is said to be u-S-flat (u-
always abbreviates uniformly) if Tor*(M, N) is u-S-torsion R-module for all R-modules
N. In this paper, we introduce and study the concept of S-cotorsion module which is
in some way a generalization of the notion of cotorsion module. An R-module M is
said to be S-cotorsion if Exth(F, M) = 0 for any u-S-flat module F. This new class of
modules will be used to characterize u-S-von Neumann regular rings. Hence, we introduce
the S-cotorsion dimensions of modules and rings. The relations between the introduced
dimensions and other (classical) homological dimensions are discussed. As applications,
we give a new upper bound on the global dimension of rings.
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1. Introduction

Throughout, all rings considered are commutative with unity, all modules are unital
and S always is a multiplicative subset of R, that is, 1 € S and s1s9 € S for any s1 € 5,
so € S. Let R be a ring and M an R-module. As usual, we use pdp(M), idr(M), and
fdr(M) to denote, respectively, the classical projective dimension, injective dimension,
and flat dimension of M, and wdim(R) and gldim(R) to denote, respectively, the weak
and global homological dimensions of R.

Recall from [1], a ring R is called S-Noetherian if any ideal of R is S-finite. An R-
module M is called S-finite provided that sM C F for some s € S and some finitely
generated submodule F' of M. In [10], X. Zhang defined an R-module M is said to be a
u-S-torsion if sT = 0 for some s € S. So an R-module M is S-finite if and only if M/F is
u-S-torsion for some finitely generated submodule F' of M. Also, the author of this paper
introduced the class of u-S-flat modules F' for which the functor F' ® p — preserves u-S-
exact sequences. The class of u-S-flat modules can be seen as a uniform generalization
of that of flat modules, since an R-module F is u-S-flat if and only if Torf(F, M) is
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u-S-torsion for any R-module M. The class of u-S-flat modules owns the following u-S-
hereditary property: let 0 - A — B — C' — 0 be a u-S-exact sequence, if B and C are
u-S-flat so is A (see [[10], Proposition 3.4]). So it is worth to study the u-S-analogue of
flat dimensions of R-modules and u-S-analogue of weak global dimension of commutative
rings.

Recall from [10] that an R-sequence 0 — M SN % L - 0 s called u-S-exact (at V)

provided that there is an element s € S such that sKer(g) C Im(f) and sIm(f) C Ker(g).

We say a long R-sequence --- — A, 1 ﬁ> A, fn—ﬂ Ap+1 — ... is u-S-exact, if for any
n there is an element s € S such that sKer(fn4+1) C Im(f,) and sIm(f,) C Ker(fn+1).
A u-S-exact sequence 0 - A — B — C' — 0 is called a short u-S-exact sequence. An
R-homomorphism f : M — N is a u-S-monomorphism (resp., u-S-epimorphism, u-S-

isomorphism) provided 0 — M ENSY, (resp., M AN S 0,0 - M LN 5o ) is
u-S-exact. It is easy to verify an R-homomorphism f: M — N is a u-S-monomorphism
(resp., u-S-epimorphism, u-S-isomorphism) if and only if Ker(f) (resp., Coker(f), both
Ker(f) and Coker(f)) is a u-S-torsion module.

In [11], author introduced the u-S-flat dimensions of modules and rings. Let R be a
ring, S a multiplicative subset of R and n be a positive integer. We say that an R-module
has a u-S-flat dimension less than or equal to n, u-S-fdg(M) < n, if Torf, (M, N) is
u-S-torsion R-module for all R-modules N. Hence, the u-S-weak global dimension of R
is defined to be

u-S-w.gl.dim(R) = sup{u-S-fdg(M) | M is an R-module}.
The class X is usually called the right orthogonal complement (relative to the functor
Exth(—,—)) of the class X. Set § the class of all flat R-modules. The modules M with
M € F(R)*, called cotorsion modules [5], have been investigated and successfully used
in the progress of settling the “flat cover conjecture ”, which was conjectured by Enochs
in [4]. It is now well known that all R-modules have flat covers for any ring R [2]. The
class of cotorsion modules contains all pure injective (hence, injective) modules. In [3],
Ding and Mao introduced the cotorsion dimensions of modules and rings; the cotorsion
dimension of an R-module M, denoted by cdr(M), is the least positive integer n for
which Ext};t'(F, M) = 0 for all flat R-modules F, and the global cotorsion dimension
of R, denoted by cot.D(R), is defined as the supremum of the cotorsion dimensions of
R-modules. The global cotorsion dimension of rings measures how far away a ring is from
being perfect. The global cotorsion dimension of rings is also used to give an upper bound
on the global dimension of rings as follows [[3], Theorem 7.2.11]: For any ring R, we have
the inequality
gl.dim(R) < w.gl.dim(R) + cot.D(R).

In Section 2, we study the elements of the right orthogonal complement of the class of
all u-S-flat modules, called the class of S-cotorsion modules, and prove that this new class
is injectively resolving and it is strictly contained in the class of cotorsion modules. We
also prove that a ring is strongly S-perfect if and only if every module is S-cotorsion if
and only if every u-S-flat module is S-cotorsion. Hence, we give a new description of the
u-S-weak global dimension of rings.

In section 3 we introduce and characterize a dimension, called the S-cotorsion dimension,
for modules and rings. The relations between the S-cotorsion dimension and the other
dimensions are discussed. Moreover, we use the global S-cotorsion dimension to give an
upper bound on the global dimension of rings. Many illustrative examples are given.

2. S-cotorsion modules

In this section, we study the right orthogonal complement relative to the functor
Exth(—, —) of the class of all u-S-flat modules. We begin with the following definition.
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Definition 2.1. Let R be a ring and S a multiplicative subset of R. An R-module M is
called S-cotorsion if Extk(F, M) = 0 for any u-S-flat R-module F.

Since every flat module is u-S-flat, we have the following inclusions:
{injective modules} C {S-cotorsion modules} C {cotorsion modules}

If any element in S is a unit, so every cotorsion module is S-cotorsion (since every u-S-flat
module is flat (see [10])). Moreover, using [6, Corollary 2.11], it is easy to see that over a
von Neumann regular ring, the three classes of modules above coincide.

Recall from [8], let S be a multiplicatively closed set of R. An R-module M is said to
be S-torsion-free if sz = 0, for s € S and x € M, implies = = 0.

Proposition 2.2. Let R be a ring and S a multiplicative subset of R. The R-module
Homp(M, E(N)) is S-cotorsion for any R-module M and any S-torsion-free R-module
N. In particular, if R is a domain, Hompg(M, Q) is an S-cotorsion R-module for any
R-module M with Q) is the quotient field of R.

Proof. By [[8], Theorem 3.4.11], for any u-S-flat R-module F' we have the isomorphism
Exth(F, Hompg(M, E(N))) = Hompg(Tor(F, M), E(N))

On the other hand, by [[8], Exercise 2.34], E(N) is an S-torsion-free R-modul and by
[[10], Theorem 3.2], Tor®(F, M) is a u-S-torsion R-module. Thus, by [[10], Proposi-
tion 2.5, Hompg(Tor®(F, M), E(N)) = 0, and so Exth(F, Homg(M, E(N))) = 0. Hence,
Homp(M, E(N)) is an S-cotorsion R-module. The particular case follows from the facts
that @ is an S-torsion-free R-module (by [[8], Example 1.6.12]) and is an injective R-
module (since R is a domain). O

Recall from [[8], Definition 1.6.10] that an R-module M is called an S-torsion module if
for any m € M, thereis an s € S such that sm = 0. It is known (from [[9], Theorem 3.3.2])
that the weak global dimension of a ring R is determined by the injective dimensions of
its cotorsion modules. Next, we give an analogue result for the u-S-weak global dimension
of rings.

Theorem 2.3. Let R be a ring and S a multiplicative subset of R consisting of finite
elements. The following conditions are equivalent for any integer n > 0:
(1) idgr(C) < n for any S-cotorsion R-module C'.
(2) idgp(Hompg(M, E(N))) < n for any R-module M and any S-torsion-free R-module
N.
(3) u-S-w.gl.dim(R) < n

Proof. (1) = (2). Follows from Proposition 2.2.
(2) = (3). Let K be an R-module. Using [[8], Theorem 3.4.11], for any R-module M and
any S-torsion-free R-module N, we have the isomorphism

0 = Ext’;" (K, Homg(M, E(N))) = HomR(Torf?H(K, M),E(N)).
Now, using the monomorphism
0 — Homp(Tork, (K, M), N) — Hompg(TorY, | (K, M), E(N))

we deduce that Hompg(Tor’ (K, M), N) = 0. Hence, Tor’,, (K, M) is S-torsion, and so
u-S-torsion R-module by [[10], Proposition 2.3]. Thus, u-S-fdr(K) < n. Consequently,
u-S-w.gl.dim(R) < n by [[11], Proposition 3.2].

(3) = (1). Let C be an arbitrary S-cotorsion R-module. For any R-module M, consider
an exact sequence

0O—-F—-FP_1—-—=>FB—->M=0
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where Py, ..., P,_1 are projective and so, by [[11], Proposition 3.2], F' is u-S-flat. Then,
Ext;" (M, C) = Extp(F,C) =0
Thus, idg(C) < n. O

Let R be a ring. Recall that a short exact sequence 0 - A —+ B — C' — 0 of R-modules
is called pure exact if 0 > X ® A - X ® B — X ® C' — 0 is exact for every R-module
X. In this case we also say that A is a pure sub-module of B. A module M is called
pure injective if the sequence Homp(B, M) — Homp(A, M) — 0 is exact whenever A is a
pure sub-module of B. It is easily seen that pure injective modules are cotorsion (see [9]
for more details). However, there are pure injective modules which are not S-cotorsion.
Otherwise, kipping in mind [[9], Theorem 3.3.2] and Theorem 2.3 and the fact that u-S-
w.gl.dim(R) < w.gl.dim(R) for any ring R, we will have u-S-w.gl.dim(R) = w.gl.dim(R)
(for any ring R), which is not true in general (see, [[11], Example 3.11]).

X. Zhang in [10], defined the u-S-von Neumann regular ring as follows: Let R be a ring
and S a multiplicative subset of R. R is called a u-S-von Neumann regular ring provided
there exists an element s € S satisfies that for any a € R there exists r € R such that
sa = ra®. Thus by [[10], Theorem 3.13], R is a u-S-von Neumann regular ring if and only
if every R-module is u-S-flat

Corollary 2.4. Let R be a ring and S a multiplicative subset of R consisting of finite
elements. The following conditions are equivalent for any ring R.

(1) R is a u-S-von Neumann regular ring.

(2) Every S-cotorsion R-module is injective.

(3) For any R-module M and any S-torsion-free R-module N,
Homp(M, E(N)) is an injective R-module.

(4) u-S-w.gl.dim(R) =0

Proof. Follows from Theorem 2.3 and [[11], Corollary 3.8]. O

Proposition 2.5. Let R be a ring, S a multiplicative subset of R and M an R-module.
Then, M 1is S-cotorsion if and only if Extgl(F, M) = 0 for each u-S-flat module F and
for each positive integer i.

Proof. Suppose M is an S-cotorsion R-module and let F' be a u-S-flat R-module. For
any positive integer n > 0, consider an exact sequence with the form

0—-F —-P,1— =P —F—=0

where Py, ..., P,_1 are projective, and so necessarily F’ is u-S-flat. Thus, Ext?{H(F , M) =
Exth(F', M) = 0. The case i = 0 is just the definition of S-cotorsion modules. The other
implication is obvious. U

Proposition 2.6. If B is a submodule of an S-cotorsion module C' such that idr(B) < n,
then C/B is S-cotorsion.

Proof. Let 0 - B — C — C/B — 0 be an exact sequence, Let F' be a u-S-flat module.
We have the exact sequence

Ext(F,C) — Ext}(F,C/B) — Ext);™(F, B).
Then we have Exti(F,C) = 0 (since C is S-cotorsion and by Proposition 2.5 ) and

Ext%™ (F, B) = 0 (since idg(B) < n). Then Exty(F,C/B) = 0, which implies that C//B
is S-cotorsion by Proposition 2.5 again. O

Let X be a class of R-modules. X is injectively resolving provided that X contains all
injective modules, and for every short exact sequence 0 - X' — X — X" — 0 with
X’ € X the conditions X € X and X” € X are equivalent.
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Proposition 2.7. The class of all S-cotorsion modules is injectively resolving. Further-
more, it is closed under arbitrary direct products and under direct summands.

Proof. The facts that the class of all S-cotorsion modules is closed under arbitrary direct
products and under direct summands follow easily from [[8], Theorem 3.3.9]. Now, let
0— C"— C — C" — 0 be an exact sequence where C’ is S-cotorsion. Then, for each
u-S-flat R-module F', we have the exact sequence

0 = BExth(F,C") — Exth(F,C) — Exth(F,C") — Ext%(F,C") =0
Hence, we deduce that C is S-cotorsion if and only if C” is S-cotorsion. O

Lemma 2.8. Let R be a ring and S a multiplicative subset of R. If A is a flat R-module
and B a u-S-flat R-module. Then, A ®gr B is u-S-flat R-module.

Proof. Let F' be an R-module. Hence, by [[8], Theorem 3.4.10], we have the isomorphism
Torl'(F, A®r B) = A®p Tor}(F, B).
For some s € S we have
sTorl'(F, A®@g B) = s(A ®g Torf(F, B)) = A ®p sTorl'(F, B).
Since B is a u-S-flat, Tor®(F, B) is a u-S-torsion, so sTorl*(F, B) = 0 for some s. Thus,
sTorf(F,A®p B) = A®R 0.
Hence, Torl'(F, A ®p B) is a u-S-torsion. Then, A ®p B is a u-S-flat. O
Next, we give some characterizations of S-cotorsion modules.

Proposition 2.9. Let R be a ring, S a multiplicative subset of R and M an R-module.
The following conditions are equivalent:

1) M is S-cotorsion.

2) Hompg(F, M) is an S-cotorsion R-module for any flat R-module F.

3) Hompg (P, M) is an S-cotorsion R-module for any projective R-module P.

4) Ewvery ezxact sequence of R-modules 0 — M — B — F — 0 with F is u-S-flat is
splits.
Moreover, if the class of S-cotorsion R-modules is closed under direct sums, then
the above conditions are also equivalent to

(5) P®g M is an S-cotorsion R-module for any projective R-module P.

Proof. (1) = (2). Let F be a flat R-module. For any u-S-flat R-module N, N ®p F' is
u-S-flat by Lemma 2.8.

Now, there exists an exact sequence 0 - K — P — N — 0 with P projective (and so K
is u-S-flat by [[10], Proposition 3.4]), which yields the exactness of the sequence

(
(
(
(

0>KQrF —>PRrF —+>N®rF —0
We have the following exact sequence
Homp(P @ F, M) — Homp(K ®g F, M) — Exth(N @r F, M) =0
which gives rise to the exactness of the sequence
Homp(P,Hompg(F, M)) - Hompg(K,Homp(F,M)) — 0
On the other hand, the following sequence
Homp(P,Hompg(F,M)) — Hompg(K,Hompg(F,M))
—  Exth(N,Homg(F, M))
—  Extp(P,Hompg(F,M)) =0
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is exact. Hence, ExtL(N, Homp(F, M)) = 0, and (2) follows.

(2) = (3). Trivial.

(3) = (1) and (5) = (1). Follows by letting P = R.

(1) & (4). Follows from [[8], Theorem 3.3.5].

(1) = (5). Let F be a u-S-flat R-module and P a projective R-module. As P projective,
there exists a projective module P’ such that RY) = P& P’ for some index set I. Now we
have Exth(F, M) = 0 so ExtL(F, R® M) = 0. Hence

2

®rExth(F,R® M) = Exth(F,(P® P')® M)

> Extp(F,(Po M) (P'e M))
> Exth(F,P® M)®Exth(F,P' @ M) =0
That is Exth(F,P® M) =0 and P ® M is S-cotorsion. O

Recall that a ring is called a perfect if every flat module is projective. It is proved in
[[3], Corollary 7.2.7] that a ring is perfect if and only if every module is cotorsion. Next,
we introduce a new class of rings, which is a u-S-version of perfect rings.

Definition 2.10. Let R be a ring and S a multiplicative subset of R. A ring R is called
a strongly S-perfect ring if every u-S-flat is projective.

We have the following inclusions:
{semisimple rings} C {strongly S-perfect rings} C {perfect rings}.

If S is composed of units, then perfect rings and strongly S-perfect rings coincide. If
0 € S, then every R-module is u-S-flat, so strongly S-perfect rings and semi-simple rings
coincide. And if R is a von Neumann regular ring, the three classes of rings above coincide.

In the following result, we give a characterization of strongly S-perfect rings by using
S-cotorsion modules.

Proposition 2.11. Let R be a ring and S a multiplicative subset of R. The following
conditions are equivalent:

(1) Every R-module is S-cotorsion.
(2) Every u-S-flat R-module is S-cotorsion.
(3) R is strongly S-perfect.

Proof. (1) = (2). Obvious.

(2) = (3). Let M be a u-S-flat R-module and pick a short exact sequence 0 - N — P —
M — 0, where P is projective, and so N is also u-S-flat by [[10], Proposition 3.4]. Thus,
by hypothesis, ExtL(M, N) = 0. Hence, M is a direct summand of P, and so projective.
Hence, R is strongly S-perfect.

(3) = (1). Let M be an R-module. For any u-S-flat R-module F', we have Exth(F, M) = 0
since F' is projective by (3). Hence, M is S-cotorsion. O

We know every S-cotorsion module is cotorsion. In the next Proposition, we prove that
every cotorsion module is S-cotorsion if R is strongly S-perfect.

Proposition 2.12. Let R be a ring and S a multiplicative subset of R. The following
conditions are equivalent:
(1) Ewvery cotorsion module is S-cotorsion.
(2) Every u-S-flat module is flat
Moreover, if R is perfect ring, the above conditions are also equivalent to
(3) R is strongly S-perfect.
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Proof. (1) = (2). Recall that it is proved now that all R-modules have flat covers for
any ring R (see, [2]). Let M be a u-S-flat R-module and let f : F' — M be a flat cover of
M which is certainly an epimorphism. Using [[9], Lemma 2.1.1], K = ker(f) is a cotorsion
R-module, and so an S-cotorsion R-module. Thus, Extp(M, K) = 0. Therefore, M is a
direct summand of F', and so it is flat.

(2) = (1). Let M be a cotorsion R-module. For any u-S-flat R-module F', we have
Exth(F, M) = 0, since F is flat by (2). Hence, M is an S-cotorsion.

(3) & (2). By definition of strongly S-perfect ring and since R is perfect. O

Corollary 2.13. Let R be a ring and S a multiplicative subset of R containing the zero.

Then, R is strongly S-perfect ring if and only if every u-S-absolutely pure R-module is
S-cotorsion.

Proof. (=). Follows from Proposition 2.12.

(«<). Let M be a u-S-flat R-module, for any R-module N, we have Exth(M,N) = 0
since N is a u-S-absolutely pure (since, 0 € S) and so N is a S-cotorsion R-module by
hypothesis. Thus, M is projective which implies that R is strongly S-perfect ring. (|

3. The S-cotorsion dimensions of modules and rings

In this section, we introduce and investigate the S-cotorsion dimensions of modules and
rings and we study its properties and we give its characterization. We begin with the
following definition.

Definition 3.1. Let R be a ring and S a multiplicative subset of R. For any R-module
M, the S-cotorsion dimension of M, denoted by S-cdr(M), is the smallest integer n > 0
such that Ext?;rl(F , M) = 0 for any u-S-flat R-module F'. If no such integer exists, set
S-cd R(M ) = OQ.
The global S-cotorsion dimension of R is defined by:

S-cot.D(R) = sup{S-cdgr(M) : M is an R-module}

Remark 3.2. Then following statements hold.
(1) S-cdr(M) = 0 if and only if M is S-cotorsion.
(2) cd(M) < S-cd(M) <idr(M), where cd(M) is the cotorsion dimension of M. The
equality if R is von Neumann regular ring by [6, Corollary 2.11].

We need the following lemma.

Lemma 3.3. Consider an exact sequence
O—-M—-Cy—-C1—>...-Cph—1—~ K, —0
where Cy, ...,Cp_1 are S-cotorsion, then
Ext&™(F, M) = Ext’y(F, K,,)
for all u-S-flat R-module F' and all integers i > 0.

Proof. We proceed by induction on n > 1. If n = 1, for each u-S-flat R-module F', we
have the exact sequence

0 = Extly(F, Co) — Extly(F, K1) — Extif '(F, M) — Ext'f1(F,Cp) = 0
Hence, Extz(F, K1) = Extt ! (F, M).
Next we assume that n > 1, and set K,,—1 = ker(C,,—1 — K,,). Applying the induction
hypothesis to the exact sequences

0-M—=Ch—C—-—=Cho— K, 1—0

and
0> K,.1—>Ch1— K, —0,
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we have
Extly(F, K,) = Extif 1 (F, K,,—1) = Extd™(F, M).

Hence, we have the desired result. ]
Next, we give a description of the S-cotorsion dimension of modules.

Proposition 3.4. Let R be a ring and S a multiplicative subset of R. For any R-module
M and integer n > 0, the following are equivalent:
(1) S-cd(M) < n.
2) EX%‘*‘%(F, M) =0 for any u-S-flat R-module F'.
; Ext™ (F, M) = 0 for any u-S-flat R-module F and j > 1.

(
(
(

3

4) If the sequence 0 - M — Cy — C1 — -+ = Cph_1 — C, — 0 is exact with
Co,...,Cn_1 S-cotorsion, then C,, is also S-cotorsion.

(5) There exists an exact sequence 0 - M — Cy — C; — -+ = Cph—1 = C,, — 0
where Cy, . ..,Cy are S-cotorsion.

Proof. The implications (3) = (2) = (1) are trivial.

(1) = (4). Set S-cd(M) = m. Hence, by Lemma 3.3 for any u-S-flat R-module F' we
have 0 = Exti ™ (F, M) = Exth(F, K,,) with K,,, = Coker(Cy,—2 — Cy—1). Hence, Ky,
is an S-cotorsion R-module. On the other hand, following Proposition 2.7, the class of all
S-cotorsion modules is injectively resolving. Thus, using the exact sequence

0—-K,—->Cp—-—Ch1 = K,—0

we deduce that K, is an S-cotorsion R-module.
(4) = (5). Consider an exact sequence

O-M—=1Iy—- =11 —-C—=0

where Iy, ..., I,_1 are injective, and so S-cotorsion. Then, C' is an S-cotorsion R-module,
and so we have the desired S-cotorsion resolution of M.

(5) = (3). By Proposition 2.5 and Lemma 3.3, for any u-S-flat R-module F' and any
integer j > 1, we have Ext};" (F, M) = Ext},(F,C,) = 0. O

The proof of the next proposition is standard homological algebra. Thus we omit its
proof.

Proposition 3.5. Let R be a ring and S a multiplicative subset of R, 0 - A — B —
C — 0 an exact sequence of R-modules. If two of S-cdr(A), S-cdr(B), and S-cdr(C) are
finite, so is the third. Moreover

(1) S-cdr(B) < sup{S-cdr(A),S-cdr(C)}.

(2) S-cdr(A) < sup{S-cdr(B),S-cdr(C) + 1}.

(3) S-cdr(C) < sup{S-cdr(B),S-cdr(A) —1}.

Corollary 3.6. Let R be a ring and S a multiplicative subset of R, 0 > A — B — C — 0
an exact sequence of R-modules. If B is S-cotorsion and S-cdr(A) > 0, then S-cdr(A) =
S-cdr(C) + 1.

In the next result, we use the global S-cotorsion dimension to give an upper bound on
the global dimension of rings.

Theorem 3.7. Let R be a ring and S a multiplicative subset of R. We have
S-cot.D(R) = sup{pdr(F) | F is S-flat}
gl.dim(R)

<
< S-cot.D(R) + u-S-w.gl.dim(R)
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In particular:
o If S-cot.D(R) =0 (i.e R is strongly S-perfect), then gl.dim(R) = u-S-w.gl.dim(R).
o Ifu-S-w.gl.dim(R) =0 (i.e R is u-S-von Neumann regular), then gl.dim(R) = S-cot.D(R).

Proof. Assume that sup{pdg(F) | F'is S-flat} = n < oo and let M be an arbitrary R-
module. For any u-S-flat R-module F, we have Ext;t!(F, M) = 0. Hence, S-cd(M) < n.
So, S-cot.D(R) < n. Now, assume that S-cot.D(R) = n < oo and let F' be a u-S-
flat R-module. For any R-module M, we have Ext’;"!(F, M) = 0 since S-cd(M) < n.
Thus, pdp(F) < n. Consequently, sup{pdg(F') | F'is S-flat} < n. Thus, S-cot.D(R) =
sup{pdr(F) | F'is S-flat}.

The inequality sup{pdg(F) | F' is S-flat} < gl.dim(R) is trivial.

To prove the last inequality, we can assume that S-cot.D(R) = n and u-S-w.gl.dim(R) = m
are finite. Let M be an arbitrary R-module. For an R-module N, consider an exact
sequence

0O—+F—=PFPp1— - —=F—-N=0

where P; are projective, and then F' is u-S-flat (by [[11], Proposition 2.3]) since u-S-
fd(N) < m). We have Ext;"™ (N, M) = Exts"(F,M) = 0 since S-cdp(M) < n.
Consequently, idr(M) < n + m. Hence, we have the desired inequality. U

Next, we characterize the rings with global S-cotorsion dimension less than or equal to
one.

Proposition 3.8. Let R be a ring and S a multiplicative subset of R. The following
conditions are equivalent:
(1) S-cot.D(R) <1
(2) Every quotient of an S-cotorsion R-module is S-cotorsion.
(3) Ewvery quotient of an injective R-module is S-cotorsion.
(4) Every u-S-flat R-module is of projective dimension < 1.
(5) For any u-S-pure (u-S)-exact sequence 0 — B — A — C — 0 with A projective
R-module, B is projective.

3
4
)

Proof. (2) = (5). Let 0 » B — A — C — 0 be an u-S-pure (u-S)-exact sequence with
A projective R-module. Then, C' is u-S-flat by [[12], Proposition 2.5]. For any R-module
M, there exists an exact sequence 0 - M — E — N — 0 with E injective. Note that N
is S-cotorsion by (1), and hence Ext%(C, M) = Exth(C, N) = 0. Thus, pdz(C) < 1,s0 B
is projective.

(5) = (4). Let A be any u-S-flat R-module. There exists an exact sequence 0 — B —
P — A — 0 with P projective. Since Tor®(4,M) = B&M - PO M — A M — 0
is exact for any R-module M, this sequence is u-S-pure since Torf(A, M) is u-S-torsion.
Thus, B is projective by (3). It follows that pdp(A4) < 1.

(4) = (2). Let A be any S-cotorsion R-module and C' a submodule of A. For any u-S-flat
R-module B, the exactness of the sequence 0 — C — A — A/C — 0 induces the exact
sequence 0 = Exth(B, A) — Exth(B,A/C) — Ext%(B,C). By (2), Ext%(B,C) = 0, so
Exth(B,A/C) = 0. Hence, A/C is an S-cotorsion module.

(2) = (3). trivial.

(3) = (1). Let M be any R-module. Using the exact sequence 0 — M — E(M)
E(M)/M — 0 where E(M) is the injective envelope of M, it is clear that S-cdr(M) <
Hence, S-cot.D(R) < 1.

(1) & (4). Follows from Theorem 3.7. O

_)
1.

Proposition 3.9. Let Ry and Rs be two rings and My and Ms be Ri-module and Ro-
module, respectively. Set S = S1 x So Then,

S—CdeXR2 (Ml X MQ) = Sup{Sl—Cde (Ml), SQ-CdR2 (MQ)}
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Proof. Let n be a positive integer.
Suppose S-cdr, xr, (M1 x M) < n and consider a u-S-flat Ri-module F'. Then, by [[7],
Theorem 10.75],

Ext’;gl(F, M) & Extgl(ﬂ Homp, x g, (R1, M1 x My)) = Ext’;g; R, (Fy My x My)

Then, Ext’]?jiRz (F, M1 xMs) = 0since S-cdp, x r, (M1 xMsz) < n, then Ext}‘gl(F, M) =0.
Hence, Si-cdg, (M) < n by Proposition 3.4. Similarly, Ss-cdg,(M2) < n. Consequently,
sup{S-cdg, (M1), S-cdp,(M2)} < S-cdp, xR, (M1 x Ma).

Now, Suppose sup{Si-cdg, (M1), Se-cdr,(Ma2)} < n. Let F' be a u-S-flat Ry x Rp-module,
and F; = F® R; for i = 1,2. It is clear that ' = F; x Fy and Fj, Fy are u-Si-flat
Ri-module and u-Ss-flat Ro-module, respectively . On the other hand, by [[7], Theorem
10.75]

Exti (Fy, My) x Exti (Fy, My)

= Ext’;g% Ry (F1, My x My) x Extt (F2, My x M)
= Ext’}zTTRQ(Fl x 0, My x Ma) x BExty ) p (0 % Fo, My x Ma)
= Bxtly g, (F1 X F1, My x Mp)
(

= Ext}r | g, (F, My x My).

On the hand, Extt! (Fy, My) = 0 = Ext};t! (Fy, Ma), then Ext;™) o (F, My x M) = 0.
Thus, S-cdg, xr, (M1 x M) < n by Proposition 3.4. Consequently,

S-cdRr, xR, (My x M) < Sup{Sl-Cde (M), Sa-cdp, (MQ)}
Finally, we have the desired equality. O
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