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Abstract
Let R be a ring, S a multiplicative subset of R. An R-module M is said to be u-S-flat (u-
always abbreviates uniformly) if TorR

1 (M, N) is u-S-torsion R-module for all R-modules
N . In this paper, we introduce and study the concept of S-cotorsion module which is
in some way a generalization of the notion of cotorsion module. An R-module M is
said to be S-cotorsion if Ext1

R(F, M) = 0 for any u-S-flat module F . This new class of
modules will be used to characterize u-S-von Neumann regular rings. Hence, we introduce
the S-cotorsion dimensions of modules and rings. The relations between the introduced
dimensions and other (classical) homological dimensions are discussed. As applications,
we give a new upper bound on the global dimension of rings.
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1. Introduction
Throughout, all rings considered are commutative with unity, all modules are unital

and S always is a multiplicative subset of R, that is, 1 ∈ S and s1s2 ∈ S for any s1 ∈ S,
s2 ∈ S. Let R be a ring and M an R-module. As usual, we use pdR(M), idR(M), and
fdR(M) to denote, respectively, the classical projective dimension, injective dimension,
and flat dimension of M , and wdim(R) and gldim(R) to denote, respectively, the weak
and global homological dimensions of R.

Recall from [1], a ring R is called S-Noetherian if any ideal of R is S-finite. An R-
module M is called S-finite provided that sM ⊆ F for some s ∈ S and some finitely
generated submodule F of M . In [10], X. Zhang defined an R-module M is said to be a
u-S-torsion if sT = 0 for some s ∈ S. So an R-module M is S-finite if and only if M/F is
u-S-torsion for some finitely generated submodule F of M . Also, the author of this paper
introduced the class of u-S-flat modules F for which the functor F ⊗R − preserves u-S-
exact sequences. The class of u-S-flat modules can be seen as a uniform generalization
of that of flat modules, since an R-module F is u-S-flat if and only if TorR

1 (F, M) is
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u-S-torsion for any R-module M . The class of u-S-flat modules owns the following u-S-
hereditary property: let 0 → A → B → C → 0 be a u-S-exact sequence, if B and C are
u-S-flat so is A (see [[10], Proposition 3.4]). So it is worth to study the u-S-analogue of
flat dimensions of R-modules and u-S-analogue of weak global dimension of commutative
rings.

Recall from [10] that an R-sequence 0 → M
f→ N

g→ L → 0 is called u-S-exact (at N)
provided that there is an element s ∈ S such that sKer(g) ⊆ Im(f) and sIm(f) ⊆ Ker(g).
We say a long R-sequence · · · −→ An−1

fn−→ An
fn+1−→ An+1 −→ . . . is u-S-exact, if for any

n there is an element s ∈ S such that sKer(fn+1) ⊆ Im(fn) and sIm(fn) ⊆ Ker(fn+1).
A u-S-exact sequence 0 → A → B → C → 0 is called a short u-S-exact sequence. An
R-homomorphism f : M → N is a u-S-monomorphism (resp., u-S-epimorphism, u-S-
isomorphism) provided 0 → M

f→ N (resp., M
f→ N → 0, 0 → M

f→ N → 0 ) is
u-S-exact. It is easy to verify an R-homomorphism f : M → N is a u-S-monomorphism
(resp., u-S-epimorphism, u-S-isomorphism) if and only if Ker(f) (resp., Coker(f), both
Ker(f) and Coker(f)) is a u-S-torsion module.

In [11], author introduced the u-S-flat dimensions of modules and rings. Let R be a
ring, S a multiplicative subset of R and n be a positive integer. We say that an R-module
has a u-S-flat dimension less than or equal to n, u-S-fdR(M) ≤ n, if TorR

n+1(M, N) is
u-S-torsion R-module for all R-modules N . Hence, the u-S-weak global dimension of R
is defined to be

u-S-w.gl.dim(R) = sup{u-S-fdR(M) | M is an R-module}.
The class X is usually called the right orthogonal complement (relative to the functor
Ext1

R(−, −)) of the class X. Set F the class of all flat R-modules. The modules M with
M ∈ F(R)⊥, called cotorsion modules [5], have been investigated and successfully used
in the progress of settling the “flat cover conjecture ”, which was conjectured by Enochs
in [4]. It is now well known that all R-modules have flat covers for any ring R [2]. The
class of cotorsion modules contains all pure injective (hence, injective) modules. In [3],
Ding and Mao introduced the cotorsion dimensions of modules and rings; the cotorsion
dimension of an R-module M , denoted by cdR(M), is the least positive integer n for
which Extn+1

R (F, M) = 0 for all flat R-modules F , and the global cotorsion dimension
of R, denoted by cot.D(R), is defined as the supremum of the cotorsion dimensions of
R-modules. The global cotorsion dimension of rings measures how far away a ring is from
being perfect. The global cotorsion dimension of rings is also used to give an upper bound
on the global dimension of rings as follows [[3], Theorem 7.2.11]: For any ring R, we have
the inequality

gl.dim(R) ⩽ w.gl.dim(R) + cot.D(R).
In Section 2, we study the elements of the right orthogonal complement of the class of

all u-S-flat modules, called the class of S-cotorsion modules, and prove that this new class
is injectively resolving and it is strictly contained in the class of cotorsion modules. We
also prove that a ring is strongly S-perfect if and only if every module is S-cotorsion if
and only if every u-S-flat module is S-cotorsion. Hence, we give a new description of the
u-S-weak global dimension of rings.

In section 3 we introduce and characterize a dimension, called the S-cotorsion dimension,
for modules and rings. The relations between the S-cotorsion dimension and the other
dimensions are discussed. Moreover, we use the global S-cotorsion dimension to give an
upper bound on the global dimension of rings. Many illustrative examples are given.

2. S-cotorsion modules
In this section, we study the right orthogonal complement relative to the functor

Ext1
R(−, −) of the class of all u-S-flat modules. We begin with the following definition.
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Definition 2.1. Let R be a ring and S a multiplicative subset of R. An R-module M is
called S-cotorsion if Ext1

R(F, M) = 0 for any u-S-flat R-module F .

Since every flat module is u-S-flat, we have the following inclusions:

{injective modules} ⊆ {S-cotorsion modules} ⊆ {cotorsion modules}

If any element in S is a unit, so every cotorsion module is S-cotorsion (since every u-S-flat
module is flat (see [10])). Moreover, using [6, Corollary 2.11], it is easy to see that over a
von Neumann regular ring, the three classes of modules above coincide.

Recall from [8], let S be a multiplicatively closed set of R. An R-module M is said to
be S-torsion-free if sx = 0, for s ∈ S and x ∈ M , implies x = 0.

Proposition 2.2. Let R be a ring and S a multiplicative subset of R. The R-module
HomR(M, E(N)) is S-cotorsion for any R-module M and any S-torsion-free R-module
N . In particular, if R is a domain, HomR(M, Q) is an S-cotorsion R-module for any
R-module M with Q is the quotient field of R.

Proof. By [[8], Theorem 3.4.11], for any u-S-flat R-module F we have the isomorphism

Ext1
R(F, HomR(M, E(N))) ∼= HomR(TorR

1 (F, M), E(N))

On the other hand, by [[8], Exercise 2.34], E(N) is an S-torsion-free R-modul and by
[[10], Theorem 3.2], TorR

1 (F, M) is a u-S-torsion R-module. Thus, by [[10], Proposi-
tion 2.5], HomR(TorR

1 (F, M), E(N)) = 0, and so Ext1
R(F, HomR(M, E(N))) = 0. Hence,

HomR(M, E(N)) is an S-cotorsion R-module. The particular case follows from the facts
that Q is an S-torsion-free R-module (by [[8], Example 1.6.12]) and is an injective R-
module (since R is a domain). □

Recall from [[8], Definition 1.6.10] that an R-module M is called an S-torsion module if
for any m ∈ M , there is an s ∈ S such that sm = 0. It is known (from [[9], Theorem 3.3.2])
that the weak global dimension of a ring R is determined by the injective dimensions of
its cotorsion modules. Next, we give an analogue result for the u-S-weak global dimension
of rings.

Theorem 2.3. Let R be a ring and S a multiplicative subset of R consisting of finite
elements. The following conditions are equivalent for any integer n ≥ 0:

(1) idR(C) ⩽ n for any S-cotorsion R-module C.
(2) idR(HomR(M, E(N))) ⩽ n for any R-module M and any S-torsion-free R-module

N .
(3) u-S-w.gl.dim(R) ⩽ n

Proof. (1) ⇒ (2). Follows from Proposition 2.2.
(2) ⇒ (3). Let K be an R-module. Using [[8], Theorem 3.4.11], for any R-module M and
any S-torsion-free R-module N , we have the isomorphism

0 = Extn+1
R (K, HomR(M, E(N))) ∼= HomR(TorR

n+1(K, M), E(N)).

Now, using the monomorphism

0 → HomR(TorR
n+1(K, M), N) → HomR(TorR

n+1(K, M), E(N))

we deduce that HomR(TorR
n+1(K, M), N) = 0. Hence, TorR

n+1(K, M) is S-torsion, and so
u-S-torsion R-module by [[10], Proposition 2.3]. Thus, u-S-fdR(K) ⩽ n. Consequently,
u-S-w.gl.dim(R) ⩽ n by [[11], Proposition 3.2].
(3) ⇒ (1). Let C be an arbitrary S-cotorsion R-module. For any R-module M , consider
an exact sequence

0 → F → Pn−1 → · · · → P0 → M → 0
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where P0, . . . , Pn−1 are projective and so, by [[11], Proposition 3.2], F is u-S-flat. Then,

Extn+1
R (M, C) = Ext1

R(F, C) = 0
Thus, idR(C) ⩽ n. □

Let R be a ring. Recall that a short exact sequence 0 → A → B → C → 0 of R-modules
is called pure exact if 0 → X ⊗ A → X ⊗ B → X ⊗ C → 0 is exact for every R-module
X. In this case we also say that A is a pure sub-module of B. A module M is called
pure injective if the sequence HomR(B, M) → HomR(A, M) → 0 is exact whenever A is a
pure sub-module of B. It is easily seen that pure injective modules are cotorsion (see [9]
for more details). However, there are pure injective modules which are not S-cotorsion.
Otherwise, kipping in mind [[9], Theorem 3.3.2] and Theorem 2.3 and the fact that u-S-
w.gl.dim(R) ⩽ w.gl.dim(R) for any ring R, we will have u-S-w.gl.dim(R) = w.gl.dim(R)
(for any ring R), which is not true in general (see, [[11], Example 3.11]).

X. Zhang in [10], defined the u-S-von Neumann regular ring as follows: Let R be a ring
and S a multiplicative subset of R. R is called a u-S-von Neumann regular ring provided
there exists an element s ∈ S satisfies that for any a ∈ R there exists r ∈ R such that
sa = ra2. Thus by [[10], Theorem 3.13], R is a u-S-von Neumann regular ring if and only
if every R-module is u-S-flat

Corollary 2.4. Let R be a ring and S a multiplicative subset of R consisting of finite
elements. The following conditions are equivalent for any ring R.

(1) R is a u-S-von Neumann regular ring.
(2) Every S-cotorsion R-module is injective.
(3) For any R-module M and any S-torsion-free R-module N ,

HomR(M, E(N)) is an injective R-module.
(4) u-S-w.gl.dim(R) = 0

Proof. Follows from Theorem 2.3 and [[11], Corollary 3.8]. □
Proposition 2.5. Let R be a ring, S a multiplicative subset of R and M an R-module.
Then, M is S-cotorsion if and only if Exti+1

R (F, M) = 0 for each u-S-flat module F and
for each positive integer i.

Proof. Suppose M is an S-cotorsion R-module and let F be a u-S-flat R-module. For
any positive integer n > 0, consider an exact sequence with the form

0 → F ′ → Pn−1 → · · · → P0 → F → 0
where P0, . . . , Pn−1 are projective, and so necessarily F ′ is u-S-flat. Thus, Extn+1

R (F, M) =
Ext1

R(F ′, M) = 0. The case i = 0 is just the definition of S-cotorsion modules. The other
implication is obvious. □
Proposition 2.6. If B is a submodule of an S-cotorsion module C such that idR(B) ≤ n,
then C/B is S-cotorsion.

Proof. Let 0 → B → C → C/B → 0 be an exact sequence, Let F be a u-S-flat module.
We have the exact sequence

Extn
R(F, C) → Extn

R(F, C/B) → Extn+1
R (F, B).

Then we have Extn
R(F, C) = 0 (since C is S-cotorsion and by Proposition 2.5 ) and

Extn+1
R (F, B) = 0 (since idR(B) ≤ n). Then Extn

R(F, C/B) = 0, which implies that C/B
is S-cotorsion by Proposition 2.5 again. □

Let X be a class of R-modules. X is injectively resolving provided that X contains all
injective modules, and for every short exact sequence 0 → X ′ → X → X ′′ → 0 with
X ′ ∈ X the conditions X ∈ X and X ′′ ∈ X are equivalent.
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Proposition 2.7. The class of all S-cotorsion modules is injectively resolving. Further-
more, it is closed under arbitrary direct products and under direct summands.

Proof. The facts that the class of all S-cotorsion modules is closed under arbitrary direct
products and under direct summands follow easily from [[8], Theorem 3.3.9]. Now, let
0 → C ′ → C → C ′′ → 0 be an exact sequence where C ′ is S-cotorsion. Then, for each
u-S-flat R-module F , we have the exact sequence

0 = Ext1
R(F, C ′) → Ext1

R(F, C) → Ext1
R(F, C ′′) → Ext2

R(F, C ′) = 0

Hence, we deduce that C is S-cotorsion if and only if C ′′ is S-cotorsion. □

Lemma 2.8. Let R be a ring and S a multiplicative subset of R. If A is a flat R-module
and B a u-S-flat R-module. Then, A ⊗R B is u-S-flat R-module.

Proof. Let F be an R-module. Hence, by [[8], Theorem 3.4.10], we have the isomorphism

TorR
1 (F, A ⊗R B) ∼= A ⊗R TorR

1 (F, B).

For some s ∈ S we have

sTorR
1 (F, A ⊗R B) ∼= s(A ⊗R TorR

1 (F, B)) = A ⊗R sTorR
1 (F, B).

Since B is a u-S-flat, TorR
1 (F, B) is a u-S-torsion, so sTorR

1 (F, B) = 0 for some s. Thus,

sTorR
1 (F, A ⊗R B) ∼= A ⊗R 0.

Hence, TorR
1 (F, A ⊗R B) is a u-S-torsion. Then, A ⊗R B is a u-S-flat. □

Next, we give some characterizations of S-cotorsion modules.

Proposition 2.9. Let R be a ring, S a multiplicative subset of R and M an R-module.
The following conditions are equivalent:

(1) M is S-cotorsion.
(2) HomR(F, M) is an S-cotorsion R-module for any flat R-module F .
(3) HomR(P, M) is an S-cotorsion R-module for any projective R-module P .
(4) Every exact sequence of R-modules 0 → M → B → F → 0 with F is u-S-flat is

splits.
Moreover, if the class of S-cotorsion R-modules is closed under direct sums, then
the above conditions are also equivalent to

(5) P ⊗R M is an S-cotorsion R-module for any projective R-module P .

Proof. (1) ⇒ (2). Let F be a flat R-module. For any u-S-flat R-module N , N ⊗R F is
u-S-flat by Lemma 2.8.
Now, there exists an exact sequence 0 → K → P → N → 0 with P projective (and so K
is u-S-flat by [[10], Proposition 3.4]), which yields the exactness of the sequence

0 → K ⊗R F → P ⊗R F → N ⊗R F → 0

We have the following exact sequence

HomR(P ⊗R F, M) → HomR(K ⊗R F, M) → Ext1
R(N ⊗R F, M) = 0

which gives rise to the exactness of the sequence

HomR(P, HomR(F, M)) → HomR(K, HomR(F, M)) → 0

On the other hand, the following sequence

HomR(P, HomR(F, M)) → HomR(K, HomR(F, M))
→ Ext1

R(N, HomR(F, M))
→ Ext1

R(P, HomR(F, M)) = 0
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is exact. Hence, Ext1
R(N, HomR(F, M)) = 0, and (2) follows.

(2) ⇒ (3). Trivial.
(3) ⇒ (1) and (5) ⇒ (1). Follows by letting P = R.
(1) ⇔ (4). Follows from [[8], Theorem 3.3.5].
(1) ⇒ (5). Let F be a u-S-flat R-module and P a projective R-module. As P projective,
there exists a projective module P ′ such that R(I) = P ⊕ P ′ for some index set I. Now we
have Ext1

R(F, M) = 0 so Ext1
R(F, R ⊗ M) = 0. Hence

⊕IExt1
R(F, R ⊗ M) ∼= Ext1

R(F, (P ⊕ P ′) ⊗ M)
∼= Ext1

R(F, (P ⊗ M) ⊕ (P ′ ⊗ M))
∼= Ext1

R(F, P ⊗ M) ⊕ Ext1
R(F, P ′ ⊗ M) = 0

That is Ext1
R(F, P ⊗ M) = 0 and P ⊗ M is S-cotorsion. □

Recall that a ring is called a perfect if every flat module is projective. It is proved in
[[3], Corollary 7.2.7] that a ring is perfect if and only if every module is cotorsion. Next,
we introduce a new class of rings, which is a u-S-version of perfect rings.

Definition 2.10. Let R be a ring and S a multiplicative subset of R. A ring R is called
a strongly S-perfect ring if every u-S-flat is projective.

We have the following inclusions:

{semisimple rings} ⊆ {strongly S-perfect rings} ⊆ {perfect rings}.

If S is composed of units, then perfect rings and strongly S-perfect rings coincide. If
0 ∈ S, then every R-module is u-S-flat, so strongly S-perfect rings and semi-simple rings
coincide. And if R is a von Neumann regular ring, the three classes of rings above coincide.

In the following result, we give a characterization of strongly S-perfect rings by using
S-cotorsion modules.

Proposition 2.11. Let R be a ring and S a multiplicative subset of R. The following
conditions are equivalent:

(1) Every R-module is S-cotorsion.
(2) Every u-S-flat R-module is S-cotorsion.
(3) R is strongly S-perfect.

Proof. (1) ⇒ (2). Obvious.
(2) ⇒ (3). Let M be a u-S-flat R-module and pick a short exact sequence 0 → N → P →
M → 0, where P is projective, and so N is also u-S-flat by [[10], Proposition 3.4]. Thus,
by hypothesis, Ext1

R(M, N) = 0. Hence, M is a direct summand of P , and so projective.
Hence, R is strongly S-perfect.
(3) ⇒ (1). Let M be an R-module. For any u-S-flat R-module F , we have Ext1

R(F, M) = 0
since F is projective by (3). Hence, M is S-cotorsion. □

We know every S-cotorsion module is cotorsion. In the next Proposition, we prove that
every cotorsion module is S-cotorsion if R is strongly S-perfect.

Proposition 2.12. Let R be a ring and S a multiplicative subset of R. The following
conditions are equivalent:

(1) Every cotorsion module is S-cotorsion.
(2) Every u-S-flat module is flat

Moreover, if R is perfect ring, the above conditions are also equivalent to
(3) R is strongly S-perfect.
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Proof. (1) ⇒ (2). Recall that it is proved now that all R-modules have flat covers for
any ring R (see, [2]). Let M be a u-S-flat R-module and let f : F → M be a flat cover of
M which is certainly an epimorphism. Using [[9], Lemma 2.1.1], K = ker(f) is a cotorsion
R-module, and so an S-cotorsion R-module. Thus, Ext1

R(M, K) = 0. Therefore, M is a
direct summand of F , and so it is flat.
(2) ⇒ (1). Let M be a cotorsion R-module. For any u-S-flat R-module F , we have
Ext1

R(F, M) = 0, since F is flat by (2). Hence, M is an S-cotorsion.
(3) ⇔ (2). By definition of strongly S-perfect ring and since R is perfect. □
Corollary 2.13. Let R be a ring and S a multiplicative subset of R containing the zero.
Then, R is strongly S-perfect ring if and only if every u-S-absolutely pure R-module is
S-cotorsion.

Proof. (⇒). Follows from Proposition 2.12.
(⇐). Let M be a u-S-flat R-module, for any R-module N , we have Ext1

R(M, N) = 0
since N is a u-S-absolutely pure (since, 0 ∈ S) and so N is a S-cotorsion R-module by
hypothesis. Thus, M is projective which implies that R is strongly S-perfect ring. □

3. The S-cotorsion dimensions of modules and rings
In this section, we introduce and investigate the S-cotorsion dimensions of modules and

rings and we study its properties and we give its characterization. We begin with the
following definition.

Definition 3.1. Let R be a ring and S a multiplicative subset of R. For any R-module
M , the S-cotorsion dimension of M , denoted by S-cdR(M), is the smallest integer n ≥ 0
such that Extn+1

R (F, M) = 0 for any u-S-flat R-module F . If no such integer exists, set
S-cdR(M) = ∞.
The global S-cotorsion dimension of R is defined by:

S-cot.D(R) = sup{S-cdR(M) : M is an R-module}

Remark 3.2. Then following statements hold.
(1) S-cdR(M) = 0 if and only if M is S-cotorsion.
(2) cd(M) ≤ S-cd(M) ≤ idR(M), where cd(M) is the cotorsion dimension of M . The

equality if R is von Neumann regular ring by [6, Corollary 2.11].

We need the following lemma.

Lemma 3.3. Consider an exact sequence
0 → M → C0 → C1 → . . . → Cn−1 → Kn → 0

where C0, . . . , Cn−1 are S-cotorsion, then
Exti+n

R (F, M) ∼= Exti
R(F, Kn)

for all u-S-flat R-module F and all integers i > 0.

Proof. We proceed by induction on n ≥ 1. If n = 1, for each u-S-flat R-module F , we
have the exact sequence

0 = Exti
R(F, C0) → Exti

R(F, K1) → Exti+1
R (F, M) → Exti+1

R (F, C0) = 0

Hence, Exti
R(F, K1) ∼= Exti+1

R (F, M).
Next we assume that n > 1, and set Kn−1 = ker(Cn−1 → Kn). Applying the induction
hypothesis to the exact sequences

0 → M → C0 → C1 → · · · → Cn−2 → Kn−1 → 0
and

0 → Kn−1 → Cn−1 → Kn → 0,
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we have
Exti

R(F, Kn) ∼= Exti+1
R (F, Kn−1) ∼= Exti+n

R (F, M).
Hence, we have the desired result. □

Next, we give a description of the S-cotorsion dimension of modules.

Proposition 3.4. Let R be a ring and S a multiplicative subset of R. For any R-module
M and integer n ≥ 0, the following are equivalent:

(1) S-cd(M) ⩽ n.
(2) Extn+1

R (F, M) = 0 for any u-S-flat R-module F .
(3) Extn+j

R (F, M) = 0 for any u-S-flat R-module F and j ≥ 1.
(4) If the sequence 0 → M → C0 → C1 → · · · → Cn−1 → Cn → 0 is exact with

C0, . . . , Cn−1 S-cotorsion, then Cn is also S-cotorsion.
(5) There exists an exact sequence 0 → M → C0 → C1 → · · · → Cn−1 → Cn → 0

where C0, . . . , Cn are S-cotorsion.

Proof. The implications (3) ⇒ (2) ⇒ (1) are trivial.
(1) ⇒ (4). Set S-cd(M) = m. Hence, by Lemma 3.3 for any u-S-flat R-module F we
have 0 = Extm+1

R (F, M) = Ext1
R(F, Km) with Km = Coker(Cm−2 → Cm−1). Hence, Km

is an S-cotorsion R-module. On the other hand, following Proposition 2.7, the class of all
S-cotorsion modules is injectively resolving. Thus, using the exact sequence

0 → Km → Cm → · · · → Cn−1 → Kn → 0

we deduce that Kn is an S-cotorsion R-module.
(4) ⇒ (5). Consider an exact sequence

0 → M → I0 → · · · → In−1 → C → 0

where I0, . . . , In−1 are injective, and so S-cotorsion. Then, C is an S-cotorsion R-module,
and so we have the desired S-cotorsion resolution of M .
(5) ⇒ (3). By Proposition 2.5 and Lemma 3.3, for any u-S-flat R-module F and any
integer j ≥ 1, we have Extn+j

R (F, M) = Extj
R(F, Cn) = 0. □

The proof of the next proposition is standard homological algebra. Thus we omit its
proof.

Proposition 3.5. Let R be a ring and S a multiplicative subset of R, 0 → A → B →
C → 0 an exact sequence of R-modules. If two of S-cdR(A), S-cdR(B), and S-cdR(C) are
finite, so is the third. Moreover

(1) S-cdR(B) ⩽ sup{S-cdR(A), S-cdR(C)}.
(2) S-cdR(A) ⩽ sup{S-cdR(B), S-cdR(C) + 1}.
(3) S-cdR(C) ⩽ sup{S-cdR(B), S-cdR(A) − 1}.

Corollary 3.6. Let R be a ring and S a multiplicative subset of R, 0 → A → B → C → 0
an exact sequence of R-modules. If B is S-cotorsion and S-cdR(A) > 0, then S-cdR(A) =
S-cdR(C) + 1.

In the next result, we use the global S-cotorsion dimension to give an upper bound on
the global dimension of rings.

Theorem 3.7. Let R be a ring and S a multiplicative subset of R. We have

S-cot.D(R) = sup{pdR(F ) | F is S-flat}
⩽ gl.dim(R)
⩽ S-cot.D(R) + u-S-w.gl.dim(R)
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In particular:
• If S-cot.D(R) = 0 (i.e R is strongly S-perfect), then gl.dim(R) = u-S-w.gl.dim(R).
• If u-S-w.gl.dim(R) = 0 (i.e R is u-S-von Neumann regular), then gl.dim(R) = S-cot.D(R).

Proof. Assume that sup{pdR(F ) | F is S-flat} = n < ∞ and let M be an arbitrary R-
module. For any u-S-flat R-module F , we have Extn+1

R (F, M) = 0. Hence, S-cd(M) ⩽ n.
So, S-cot.D(R) ⩽ n. Now, assume that S-cot.D(R) = n < ∞ and let F be a u-S-
flat R-module. For any R-module M , we have Extn+1

R (F, M) = 0 since S-cd(M) ⩽ n.
Thus, pdR(F ) ⩽ n. Consequently, sup{pdR(F ) | F is S-flat} ⩽ n. Thus, S-cot.D(R) =
sup{pdR(F ) | F is S-flat}.
The inequality sup{pdR(F ) | F is S-flat} ⩽ gl.dim(R) is trivial.
To prove the last inequality, we can assume that S-cot.D(R) = n and u-S-w.gl.dim(R) = m
are finite. Let M be an arbitrary R-module. For an R-module N , consider an exact
sequence

0 → F → Pm−1 → · · · → P0 → N → 0
where Pi are projective, and then F is u-S-flat (by [[11], Proposition 2.3]) since u-S-
fd(N) ⩽ m). We have Extn+m+1

R (N, M) = Extn+1
R (F, M) = 0 since S-cdR(M) ⩽ n.

Consequently, idR(M) ⩽ n + m. Hence, we have the desired inequality. □

Next, we characterize the rings with global S-cotorsion dimension less than or equal to
one.

Proposition 3.8. Let R be a ring and S a multiplicative subset of R. The following
conditions are equivalent:

(1) S-cot.D(R) ≤ 1
(2) Every quotient of an S-cotorsion R-module is S-cotorsion.
(3) Every quotient of an injective R-module is S-cotorsion.
(4) Every u-S-flat R-module is of projective dimension ≤ 1.
(5) For any u-S-pure (u-S)-exact sequence 0 → B → A → C → 0 with A projective

R-module, B is projective.

Proof. (2) ⇒ (5). Let 0 → B → A → C → 0 be an u-S-pure (u-S)-exact sequence with
A projective R-module. Then, C is u-S-flat by [[12], Proposition 2.5]. For any R-module
M , there exists an exact sequence 0 → M → E → N → 0 with E injective. Note that N
is S-cotorsion by (1), and hence Ext2

R(C, M) ∼= Ext1
R(C, N) = 0. Thus, pdR(C) ≤ 1, so B

is projective.
(5) ⇒ (4). Let A be any u-S-flat R-module. There exists an exact sequence 0 → B →
P → A → 0 with P projective. Since TorR

1 (A, M) → B ⊗ M → P ⊗ M → A ⊗ M → 0
is exact for any R-module M , this sequence is u-S-pure since TorR

1 (A, M) is u-S-torsion.
Thus, B is projective by (3). It follows that pdR(A) ≤ 1.
(4) ⇒ (2). Let A be any S-cotorsion R-module and C a submodule of A. For any u-S-flat
R-module B, the exactness of the sequence 0 → C → A → A/C → 0 induces the exact
sequence 0 = Ext1

R(B, A) → Ext1
R(B, A/C) → Ext2

R(B, C). By (2), Ext2
R(B, C) = 0, so

Ext1
R(B, A/C) = 0. Hence, A/C is an S-cotorsion module.

(2) ⇒ (3). trivial.
(3) ⇒ (1). Let M be any R-module. Using the exact sequence 0 → M ↪→ E(M) →
E(M)/M → 0 where E(M) is the injective envelope of M , it is clear that S-cdR(M) ⩽ 1.
Hence, S-cot.D(R) ≤ 1.
(1) ⇔ (4). Follows from Theorem 3.7. □

Proposition 3.9. Let R1 and R2 be two rings and M1 and M2 be R1-module and R2-
module, respectively. Set S = S1 × S2 Then,

S-cdR1×R2(M1 × M2) = sup{S1-cdR1(M1), S2-cdR2(M2)}
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Proof. Let n be a positive integer.
Suppose S-cdR1×R2(M1 × M2) ≤ n and consider a u-S-flat R1-module F . Then, by [[7],
Theorem 10.75],

Extn+1
R1

(F, M1) ∼= Extn+1
R1

(F, HomR1×R2(R1, M1 × M2)) ∼= Extn+1
R1×R2

(F, M1 × M2)

Then, Extn+1
R1×R2

(F, M1×M2) = 0 since S-cdR1×R2(M1×M2) ≤ n, then Extn+1
R1

(F, M1) = 0.
Hence, S1-cdR1(M1) ≤ n by Proposition 3.4. Similarly, S2-cdR2(M2) ≤ n. Consequently,
sup{S-cdR1(M1), S-cdR2(M2)} ≤ S-cdR1×R2(M1 × M2).
Now, Suppose sup{S1-cdR1(M1), S2-cdR2(M2)} ≤ n. Let F be a u-S-flat R1 × R2-module,
and Fi = F ⊗ Ri for i = 1, 2. It is clear that F ∼= F1 × F2 and F1, F2 are u-S1-flat
R1-module and u-S2-flat R2-module, respectively . On the other hand, by [[7], Theorem
10.75]
Extn+1

R1
(F1, M1) × Extn+1

R2
(F2, M2)

∼= Extn+1
R1×R2

(F1, M1 × M2) × Extn+1
R1×R2

(F2, M1 × M2)
∼= Extn+1

R1×R2
(F1 × 0, M1 × M2) × Extn+1

R1×R2
(0 × F2, M1 × M2)

∼= Extn+1
R1×R2

(F1 × F1, M1 × M2)
∼= Extn+1

R1×R2
(F, M1 × M2).

On the hand, Extn+1
R1

(F1, M1) = 0 = Extn+1
R2

(F2, M2), then Extn+1
R1×R2

(F, M1 × M2) = 0.
Thus, S-cdR1×R2(M1 × M2) ≤ n by Proposition 3.4. Consequently,

S-cdR1×R2(M1 × M2) ≤ sup{S1-cdR1(M1), S2-cdR2(M2)}.

Finally, we have the desired equality. □
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