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A Note On E-Injective Modules 
 

Abuzer GÜNDÜZ *1 , Osama NAJİ1  

 

 

Abstract 

Let 𝑅 be a commutative ring with identity, 𝑀 an 𝑅-module and 𝐸 a torsion-free 𝑅-module. A 

submodule 𝑁 of 𝑀 is said to be essential (large) in 𝑀 if the intersection of 𝑁 with each nonzero 

submodule of 𝑀 is nonzero, that is, 𝑁 ∩ 𝑅𝑚 ≠ 0 for any nonzero element 𝑚 ∈ 𝑀 and we write 

𝑁 ≤𝑒 𝑀. It is clear that the class of 𝑒 − 𝑒𝑥𝑎𝑐𝑡 sequences is larger than the class of 𝑒𝑥𝑎𝑐𝑡 
sequences. In this study we present the concept of e-injective modules as a generalization of 

injective modules. The main goal is to give a characterization of e-injective modules in terms of 

contravariant functor 𝐻𝑜𝑚(−,𝐸). 
 

Keywords: E-injective modules, e-exact sequences, contravariant functor 

 

 

 

 

1. INTRODUCTION 

 

Let 𝑅 be a commutative ring with identity 

and 𝑀 an 𝑅-module. A submodule 𝑁 of 𝑀 is 

said to be essential (large) in 𝑀 if the 

intersection of 𝑁 with each nonzero 

submodule of 𝑀 is nonzero, that is, 𝑁 ∩
𝑅𝑚 ≠ 0 for any nonzero element 𝑚 ∈ 𝑀 

and we write 𝑁 ≤𝑒 𝑀. A sequence of 𝑅-

modules and 𝑅-module homomorphisms 𝑓𝑖 
 

… →  𝑀𝑖−1  
𝑓𝑖−1
→   𝑀𝑖  

𝑓𝑖
→ 𝑀𝑖+1  

𝑓𝑖+1
→   … 

 

 is called 𝑒𝑥𝑎𝑐𝑡 at 𝑀𝑖 if 𝐼𝑚(𝑓𝑖−1) =
𝐾𝑒𝑟(𝑓𝑖). Akray and Zebari in [1] introduced 

the 𝑒 − 𝑒𝑥𝑎𝑐𝑡 sequences as a generalization 

of exact sequences. The above sequence is 

called 𝑒 − 𝑒𝑥𝑎𝑐𝑡 at 𝑀𝑖 if 

𝐼𝑚(𝑓𝑖−1) ≤𝑒 𝐾𝑒𝑟(𝑓𝑖) and it is called 𝑒 −
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𝑒𝑥𝑎𝑐𝑡 if it is 𝑒 − 𝑒𝑥𝑎𝑐𝑡 at each 𝑀𝑖. 
Expectedly, they defined the sequence  

 

0 →  𝐴1  
𝑓1
→ 𝐴2  

𝑓2
→ 𝐴3  →  0 

 

to be short 𝑒 − 𝑒𝑥𝑎𝑐𝑡 if 𝐾𝑒𝑟(𝑓1) = 0,
𝐼𝑚(𝑓1) ≤𝑒 𝐾𝑒𝑟(𝑓2) and 𝐼𝑚(𝑓2) ≤𝑒 𝐴3, 

where 𝑓𝑖: 𝐴𝑖 → 𝐴𝑖+1 is an 𝑅-module 

homomorphism for 𝑖 = 1,2. Recall from [1] 

that an 𝑅-morphism 𝑓: 𝐴1 → 𝐴2 is called 

𝑒𝑝𝑖𝑐 if 𝐼𝑚(𝑓1) ≤𝑒 𝐴2 and essential 𝑚𝑜𝑛𝑖𝑐 if 
𝐾𝑒𝑟𝑓1 = 0. It is clear that the class of 𝑒 −
𝑒𝑥𝑎𝑐𝑡 sequences is larger than the class of 

𝑒𝑥𝑎𝑐𝑡 sequences. For example consider the 

short 𝑒 − 𝑒𝑥𝑎𝑐𝑡 sequence 

 

0 →  8ℤ 
𝑓1
→  ℤ 

𝑓2
→  ℤ ∕ 8ℤ →  0 
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where 𝑓1(8𝑛) = 4𝑛 and 𝑓2(𝑛) = 2𝑛 + 8ℤ. 

Since 𝑓1 and 𝑓2 are epic, the sequence is 𝑒 −
𝑒𝑥𝑎𝑐𝑡. Note that 𝑓2 is not an 𝑒𝑝𝑖𝑚𝑜𝑟𝑝ℎ𝑖𝑠𝑚, 

so the sequence is not 𝑒𝑥𝑎𝑐𝑡. 
 

In the sake of completeness, we recall from 

[2] some basic definitions. An element 𝑚 of 

𝑀 is said to be torsion of 𝑀 if there exists a 

regular element 𝑟 ∈ 𝑅 such that 𝑟𝑚 = 0. 

The set of all torsion elements 𝑇(𝑀) is a 

submodule of 𝑀. Also, an 𝑅-module 𝑀 is 

called 𝑡𝑜𝑟𝑠𝑖𝑜𝑛 if 𝑇(𝑀) = 𝑀, and called 

𝑡𝑜𝑟𝑠𝑖𝑜𝑛 − 𝑓𝑟𝑒𝑒 when 𝑇(𝑀) = {0}.  
 

Let E be an R − module. E is said to be 

injective module if the following condition 

is satisfied: For any monic map f1: A1 → A2 
and any map f2: A1 → E, there exist f3: A2 →
E such that f3f1 = f2. 
 

 
 

Moreover, if  E is injective module, then the 

contravariant functor Hom(−, E) is an exact 
sequence [3].  

 

A group 𝐷 is called 𝑑𝑖𝑣𝑖𝑠𝑖𝑏𝑙𝑒 if for every 

positive integer 𝑛 and every 𝑑 ∈ 𝐷, there 

exists 0 ≠ 𝑥 ∈ 𝐷 such that 𝑛𝑥 = 𝑑. It is 

known that a group 𝐷 is 𝑑𝑖𝑣𝑖𝑠𝑖𝑏𝑙𝑒 if and 

only if it is 𝑖𝑛𝑗𝑒𝑐𝑡𝑖𝑣𝑒 [3]. 
 

Throughout this note, all modules are 

assumed to be torsion-free. In section 2, we 

introduce the definition of 𝑒 − 𝑖𝑛𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝐸. 

It is shown that a module 𝐸 is 𝑒 − 𝑖𝑛𝑗𝑒𝑐𝑡𝑖𝑣𝑒 

if and only if the contravariant functor 

𝐻𝑜𝑚(−,𝐸) is an 𝑒 − 𝑒𝑥𝑎𝑐𝑡 sequence. 

 

2. CHARACTERIZATION OF E-

INJECTIVE MODULE 

 

In this part, we investigate some results 

about e − injective modules such as when 

the contravariant functor Hom(−,M) is an 

e − exact sequence, E = ∏i∈Δ Ei is e −

injective for each Ei be an Ri-module for 

every i ∈ Δ  and short e − exact sequence is 

e − split. 
 

The following theorem shows that the 

contravariant functor 𝐻𝑜𝑚(−,𝑀) is a left 

𝑒 − 𝑒𝑥𝑎𝑐𝑡 functor when 𝑀 is a 𝑡𝑜𝑟𝑠𝑖𝑜𝑛 −
𝑓𝑟𝑒𝑒 𝑅-module. 

 

Theorem 1 [1] Suppose that the following 

sequence of 𝑅-modules and 𝑅-morphism  

 

𝑀1  
𝑓1
→ 𝑀2  

𝑓2
→ 𝑀3  →  0 

 

is 𝑒 − 𝑒𝑥𝑎𝑐𝑡. Then for all 𝑡𝑜𝑟𝑠𝑖𝑜𝑛 − 𝑓𝑟𝑒𝑒 

𝑅-module 𝑀, the sequence 

 

0 →  𝐻𝑜𝑚(𝑀3, 𝑀)  
𝑓2
∗

→  𝐻𝑜𝑚(𝑀2, 𝑀)  
𝑓1
∗

→  𝐻𝑜𝑚(𝑀1,𝑀) 
 

is 𝑒 − 𝑒𝑥𝑎𝑐𝑡. The converse is true if 

𝑀3/𝐼𝑚(𝑓2) and 𝑀2/𝐼𝑚(𝑓1) are 𝑡𝑜𝑟𝑠𝑖𝑜𝑛 −
𝑓𝑟𝑒𝑒 𝑅-modules.   

 

Definition 1 Let 𝑅 be a ring and 𝐸 an 𝑅 − 

module. 𝐸 is said to be 𝑒 − 𝑖𝑛𝑗𝑒𝑐𝑡𝑖𝑣𝑒 if the 

following condition is satisfied: For any 

monic map 𝑓1: 𝐴1 → 𝐴2 and any map 

𝑓2: 𝐴1 → 𝐸, there exist 0 ≠ 𝑟 ∈ 𝑅 and 

𝑓3: 𝐴2 → 𝐸 such that 𝑓3𝑓1 = 𝑟 ⋅ 𝑓2. 
 

 
 

Theorem 2 Let 𝑅 be a ring and 𝐸 an 𝑅-

module. Then the following statements are 

equivalent: 

 

(i)  𝐸 is an 𝑒 − 𝑖𝑛𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑅-module. 

 

(ii) 𝐻𝑜𝑚(−,𝐸) is an 𝑒 − 𝑒𝑥𝑎𝑐𝑡 sequence.  

  

Proof. (i)⇒(ii): Suppose that 𝐸 is an 𝑒 −
𝑖𝑛𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑅-module. Then by Theorem 1, 

𝐻𝑜𝑚(−,𝐸) is left 𝑒 − 𝑒𝑥𝑎𝑐𝑡 functor. It 
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remains to show that 𝐻𝑜𝑚(−,𝐸) is right 𝑒 −
𝑒𝑥𝑎𝑐𝑡 functor. Assume that 

 

0 →  𝐴1  
𝑓1
→ 𝐴2 

 

is an 𝑒 − 𝑒𝑥𝑎𝑐𝑡 sequence and we want to 

show that 

 

𝐻𝑜𝑚(𝐴2, 𝐸)
𝑓1
∗

→  𝐻𝑜𝑚(𝐴1, 𝐸) → 0 

 

is 𝑒 − 𝑒𝑥𝑎𝑐𝑡. Since the contravariant functor 

𝐻𝑜𝑚(−,𝐸) is left 𝑒 − 𝑒𝑥𝑎𝑐𝑡, it is enough to 

prove that 𝐼𝑚(𝑓1
∗) ≤𝑒 𝐻𝑜𝑚(𝐴1, 𝐸). Since 

we have that 𝑓1 is monic and let pick 𝑓2 ∈
𝐻𝑜𝑚(𝐴1, 𝐸), by the definition of 𝑒 −
𝑖𝑛𝑗𝑒𝑐𝑡𝑖𝑣𝑒, we have 𝑓3𝑓1 = 𝑟 ⋅ 𝑓2 for some 

0 ≠ 𝑟 ∈ 𝑅 and 𝑓3: 𝐴2 → 𝐸. This implies that 

𝑓1
∗(𝑓3) = 𝑟 ⋅ 𝑓2. Thus, 𝐼𝑚(𝑓1

∗) ∩ 𝑅𝑓2 ≠ 0 

and we obtian that 𝐼𝑚(𝑓1
∗) ≤𝑒 𝐻𝑜𝑚(𝐴1, 𝐸). 

 

(ii)⇒(i): Assume that 𝐻𝑜𝑚(−,𝐸) is an 𝑒 −
𝑒𝑥𝑎𝑐𝑡 functor. Let 𝑓1:  𝐴1 → 𝐴2 be a monic 

map and 𝑓2: 𝐴1 → 𝐸 any map. Since the 

sequence  

 

0 →  𝐴1  
𝑓1
→ 𝐴2 

 

is 𝑒 − 𝑒𝑥𝑎𝑐𝑡, then by assumption, the 

sequence 

 

𝐻𝑜𝑚(𝐴2, 𝐸)
𝑓1
∗

→  𝐻𝑜𝑚(𝐴1, 𝐸) → 0 

 

is also 𝑒 − 𝑒𝑥𝑎𝑐𝑡. Then we have 

𝐼𝑚(𝑓1
∗) ≤𝑒 𝐻𝑜𝑚(𝐴1, 𝐸). As 𝑓2 ∈

𝐻𝑜𝑚(𝐴1, 𝐸), there exist 0 ≠ 𝑟 ∈ 𝑅 and 𝑓3 ∈
𝐻𝑜𝑚(𝐴2, 𝐸) such that 𝑓1

∗(𝑓3) = 𝑟 ⋅ 𝑓2. This 

implies that 𝑓3𝑓1 = 𝑟𝑓2. Hence 𝐸 is 𝑒 −
𝑖𝑛𝑗𝑒𝑐𝑡𝑖𝑣𝑒.  
 

Theorem 3 Let 𝐸𝑖 be an 𝑅𝑖-module for each 

𝑖 ∈ 𝛥, where 𝛥 is an index set. Assume that 

𝑅 = ∏𝑖∈𝛥 𝑅𝑖 and 𝐸 = ∏𝑖∈𝛥 𝐸𝑖. Then the 

following statements hold: 

 

(i) If 𝐸 is an e-injective 𝑅-module, then 𝐸𝑖 is 

an e-injective 𝑅𝑖-module for some 𝑖 ∈ Δ. 

 

(ii) If 𝐸𝑖 is an e-injective 𝑅𝑖-module for each 

𝑖 ∈ Δ, then 𝐸 is an e-injective 𝑅-module.  

 

Proof. (i): Suppose that 𝑓1: 𝐴1 → 𝐴2 is a 

monic map and 𝑓2: 𝐴1 → 𝐸𝑖. Consider the 

following diagram 

 

 
 

where 𝑖𝑖: 𝐸𝑖 → 𝐸 is the injective map and 

𝑝𝑖: 𝐸 → 𝐸𝑖 is the projective map. Since 

𝑖𝑖𝑓2: 𝐴1 → 𝐸 and 𝐸 is an 𝑒 − 𝑖𝑛𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑅-

module, there exist 0 ≠ 𝑟 = (𝑟𝑖)𝑖∈Δ ∈ 𝑅 and 

𝑓4: 𝐴2 → 𝐸 such that 𝑓4𝑓1 = 𝑟 ⋅ (𝑖𝑖𝑓2). 
Assume that 𝑟𝑘 ≠ 0 for some 𝑘 ∈ Δ and 

define 𝑓3: 𝐴2 → 𝐸𝑘 by 𝑓3 = 𝑝𝑘𝑓4. Since 𝑝𝑘 ∘
𝑖𝑘 = 1𝐸𝑘 , we obtain  

 

𝑓3𝑓1 = 𝑝𝑘𝑓4𝑓1 = 𝑝𝑘(𝑟 ⋅ 𝑖𝑘𝑓2) = 𝑟𝑘𝑝𝑘𝑖𝑘𝑓2
= 𝑟𝑘𝑓2 

 

Therefore, 𝐸𝑘 is an 𝑒 − 𝑖𝑛𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑅𝑘-

module. 

(ii): Assume that 𝑓: 𝐴1 → 𝐴2 is a monic map 

and 𝑔: 𝐴1 → 𝐸. Consider the following 

diagram 

 

 
 

Since 𝐸𝑖 is 𝑒 − 𝑖𝑛𝑗𝑒𝑐𝑡𝑖𝑣𝑒 and 𝑝𝑖𝑔: 𝐴1 → 𝐸𝑖 
for each 𝑖 ∈ Δ, there exist 0 ≠ 𝑟𝑖 ∈ 𝑅𝑖 and 

𝑓𝑖: 𝐴2 → 𝐸𝑖 such that 𝑓𝑖𝑓 = 𝑟𝑖(𝑝𝑖𝑔). Then 
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there exists ℎ: 𝐴2 → 𝐸 such that 𝑓𝑖 = 𝑝𝑖ℎ. 

Let 0 ≠ 𝑟 = (𝑟𝑖) ∈ 𝑅 and note that 𝑝𝑖ℎ𝑓 =
𝑓𝑖𝑓 = 𝑟𝑖𝑝𝑖𝑔 = 𝑝𝑖(𝑟𝑔). Hence, we get ℎ𝑓 =
𝑟𝑔. Therefore, 𝐸 is an e-injective 𝑅-module. 

 

Theorem 4 Let 𝑅 be a ring and 𝐸 be an 𝑒 −
𝑖𝑛𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑅 − module. For any monic map 

 

0 →  𝐸 
𝑓
→  𝐿 

 

there exists an 𝑅-homomorphism 𝛼: 𝐿 → 𝐸 

such that 𝛼𝑓 = 𝑟 ⋅ 1𝐸 for some 0 ≠ 𝑟 ∈ 𝑅. 

 

Proof. It is clear.  

 

Definition 2 [1] Let  

 

0 →  𝐸 
𝑓1
→ 𝐴1  

𝑓2
→ 𝐴2  →  0 

 

be a short 𝑒 − 𝑒𝑥𝑎𝑐𝑡 sequence. If for any 

map 𝑓1: 𝐸 → 𝐴1 there exist 𝑔: 𝐴1 → 𝐸 and 

𝑟 ∈ 𝑅 such that 𝑔𝑓1 = 𝑟 ⋅ 1𝐸 . Then the 

above short 𝑒 − 𝑒𝑥𝑎𝑐𝑡 sequence is called 

𝑒 − 𝑠𝑝𝑙𝑖𝑡. 
 

Theorem 5 An 𝑒 − 𝑒𝑥𝑎𝑐𝑡 sequence 

 

0 →  𝐸 
𝑓1
→ 𝐴1  

𝑓2
→ 𝐴2  →  0 

 

is 𝑒 − 𝑠𝑝𝑙𝑖𝑡 if 𝐸 is an 𝑒 − 𝑖𝑛𝑗𝑒𝑐𝑡𝑖𝑣𝑒 module.  

 

Proof. Suppose that  

 

0 →  𝐸 
𝑓1
→ 𝐴1  

𝑓2
→ 𝐴2  →  0 

 

is an 𝑒 − 𝑒𝑥𝑎𝑐𝑡 sequence and 𝐸 is an 𝑒 −
𝑖𝑛𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑅-module. Then by Theorem 2, 

the sequence 

 

0 
→  𝐻𝑜𝑚(𝐴2, 𝐸)  
𝑓2
∗

→   𝐻𝑜𝑚(𝐴1, 𝐸)  
𝑓1
∗

→   𝐻𝑜𝑚(𝐸, 𝐸)  →  0 

 

is 𝑒 − 𝑒𝑥𝑎𝑐𝑡. Since 𝑓1
∗ is epic, 

𝐼𝑚(𝑓1
∗) ≤𝑒 𝐻𝑜𝑚(𝐸, 𝐸). Note that 1𝐸 ∈

𝐻𝑜𝑚(𝐸, 𝐸), so there exist a map 𝑔: 𝐴1 → 𝐸 

and 𝑟 ∈ 𝑅 such that 𝑓1
∗(𝑔) = 𝑟 ⋅ 1𝐸  and 

hence 𝑔𝑓1 = 𝑟 ⋅ 1𝐸. Therefore the sequence 

is 𝑒 − 𝑠𝑝𝑙𝑖𝑡. 
 

 

 

3. CONCLUSION 

 

As a result, we get the definition of the e −
injective R-module and some results. We 

hope that the results give rise to new results 

in Homological Algebra with regard to e −
exact theory such as e − flat module and 

e − homology, e − functor. 
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