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Abstract
In this work, we consider generating function for generalized Fisher information measure
and use it to develop some results for this measure. Next, we study generalized Fisher
information for the mixing parameter vector of a finite mixture density function and de-
velop some results for this model. Further, we propose a Jensen-type divergence measure,
namely, Jensen-generalized Fisher information (JGFI), and establish some properties for
this measure and its generating function. Finally, for illustrative purposes, we examine a
real example from image processing and provide some numerical results in terms of JGFI
measure.
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1. Introduction
In information theory, several measures have been introduced for capturing the informa-

tion content of a probabilistic model. There are generally two main classes of information
measures, namely, entropy-type and Fisher-type, in the literature. Among these classes,
Shannon entropy and Fisher information are the most important information measures,
and these have been used rather extensively. Shannon entropy originated from the pio-
neering work of [14], based on a study of the behavior of systems described by probability
density (or mass) functions. Nearly two decades earlier, Fisher [6] had proposed another
information measure for describing the interior properties of a probabilistic model, which
has since become vital to likelihood-based inferential methods. Fisher information, as well
as Shannon entropy, have found many key applications including in statistical inference,
physics, thermodynamics and information theory. It is possible for complex systems to be
completely described by means of their behavior (Shannon) and their architecture (Fisher)
information measures. One may refer to [1] and [15] for some discussion in this regard.
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In information theory, generating functions have been defined for probability densities to
determine information quantities such as Shannon information and Kullback-Leibler diver-
gence; see [7, 8]. Recently, through the use of information generating function, Kharazmi
and Balakrishnan [9] have proposed Jensen-information generating (JIG) function and
discussed in detail its connections with other well-known information measures such as
Kullback-Leibler, Jensen-Shannon, Jensen-extropy and Jensen-Taneja information diver-
gences.

Papaioannou et al. [11] proposed generating function for Fisher information of a prob-
ability density function fθ(x) with θ ∈ Θ ⊆ R, whose second derivative, evaluated at 0,
gives the well-known Fisher information measure about parameter θ. Let X be a contin-
uous random variable on the support X with density function fθ(x) and score function
ρθ(x) = ∂ log fθ(x)

∂θ . Then, the Fisher information generating (FIG) function of density fθ(x)
(or parameter θ), for any α > 0, is defined as

GF I(θ, α) = GF I(fθ, α) =
∫
X

eαρθ(x)fθ(x)dx, (1.1)

provided the integral exists. For simplicity in notation, the integration domain will be
omitted through out the paper unless there is a need to explicitly specify it. Papaioannou
et al. [11] then showed the following properties of GF I(θ, α) in (1.1):

(i) GF I(θ, 0) = 1;

(ii) ∂2GF I(θ, α)
∂α2

∣∣∣∣
α=0

= I(θ),

where I(θ) is the Fisher information about parameter θ defined as

I(θ) =
∫ {

ρθ(x)
}2

fθ(x)dx. (1.2)

There is another kind of Fisher information, known as Fisher information of the density
itself. Let X be a continuous random variable with density function f and ρ(x) = ∂ log f(x)

∂x .
Then, the Fisher information of density f itself is defined as

I(f) =
∫ {

ρ(x)
}2

f(x)dx. (1.3)

Incidentally, the Fisher information measures in (1.2) and (1.3) are identical when θ is a
location parameter, or equivalently, when the density f belongs to the location family of
distributions.

Following the work of [6], considerable attention has been paid to providing extensions
of the Fisher information in (1.2) and the Fisher information of density function in (1.3).
Jensen-Fisher (JF) information divergence and generalized Fisher information are two
such important extensions of Fisher information; see [3, 4, 13]. In particular, Bercher
[3] introduced a k-generalized Fisher information (generalized Fisher information) as an
extension of (1.2), for k > 0, in the form

Ik(θ) =
∫ ∣∣ρθ(x)

∣∣kfθ(x)dx. (1.4)

Bercher [3] then showed that this measure fits well in the context of non-extensive thermo-
statistics and provided some results in this connection. Recently, Bobkov [4] considered
the density version of Ik(fθ) in (1.4) of the form

Ik(f) =
∫ ∣∣ρ(x)

∣∣kf(x)dx, (1.5)

where ρ(x) = f ′(x)
f(x) is the score function corresponding to the density f . This is also a gen-

eralization of the Fisher information in (1.3). Bobkov [4] then presented some interesting
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properties of this generalized Fisher information measure Ik(f), and specifically showed
that this measure is convex with respect to the density function f .

The purpose of the present work is first to define generating functions for the two types
of generalized Fisher information and then establish some interesting properties of these
functions, and secondly to study generalized Fisher information for the mixing parameter
of a general finite-mixture density function.

Let f1, ..., fn be n continuous density functions. Then, a finite mixture density, with
mixing parameter vector θ = (θ1, ..., θn−1), for n ≥ 2, is given by

fθ(x) = 1
n − 1

n−1∑
j=1

θjfj(x) +
(

1 −
∑n−1

j=1 θj

n − 1

)
fn(x), (1.6)

where 0 ≤ θi ≤ 1, i = 1, ..., n − 1. In the special cases of n = 2 and n = 3 in (1.6), the
2-component and 3-component mixture densities are deduced with corresponding densities
as

fθ(x) = θf1(x) + (1 − θ)f2(x), 0 ≤ θ ≤ 1 (1.7)

and

fθ(x) = θ1
2

f1(x) + θ2
2

f2(x) +
(

1 − θ1 + θ2
2

)
f3(x), 0 ≤ θi ≤ 1, i = 1, 2, (1.8)

respectively. In the later part of this work, we first propose Jensen-generalized Fisher in-
formation based on Ik(f) in (1.5) and then present generating function of this information
measure. With regard to these Jensen measures and connections between them, some
results are also established.

The rest of this paper is organized as follows. In Section 2, we introduce generating
function of generalized Fisher information about a parameter θ and establish some new
properties for it. We show that this can be expressed in terms of different orders of
generalized Fisher information measures. In Section 3, we consider the finite mixture
density function in (1.6) and establish some results for the generalized Fisher information
measure of the mixing parameter vector. We specifically show that the Fisher information
of the mixing parameter vector is connected to the higher order chi-square divergence,
Pearson-Vajda χk divergence. Next, in Section 4, Jensen-generalized Fisher information
measure and its generating function are discussed. We show that the latter generates
different orders of the Jensen-generalized Fisher information measure. In Section 5, we
consider a real example on image processing and present some numerical results in terms
of the JGFI measure. Finally, we present some concluding remarks in Section 6.

2. Generating function of generalized Fisher information
Inspired by the work of [11], we now introduce the generating function for the gen-

eralized Fisher information measure in (1.4), which assists in defining different orders
of generalized Fisher information. This is achieved through repeated derivatives of the
generating function.

Definition 2.1. Let X be a continuous random variable on the support X with density
function fθ(x) and score function ρθ(x) = ∂ log fθ(x)

∂θ . Then, the generating function of
generalized Fisher information (GFGFI) of density fθ(x) (or parameter θ), for any α > 0,
is defined as

GGF I(θ, α) ≡ GGF I(fθ, α) =
∫
X

eα|ρθ(x)|fθ(x)dx, (2.1)

provided the integral exists.

From Definition 2.1, we obtain the following lemma.
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Lemma 2.2. Suppose the random variable X has density function fθ(x). Then, a series
representation for the GFGFI in (2.1) is given by

GGF I(θ, α) =
∞∑

k=0

αk

k!
Ik(θ), (2.2)

where Ik(θ) is the generalized Fisher information of order k presented in (1.4).

Proof. From the definition of GFGFI measure in (2.1) and by making use of Maclaurin
expansion and Fubini’s theorem, we get

GGF I(θ, α) = E
[
eα|ρθ(X)|]

=
∞∑

k=0

αk

k!

∫ ∣∣ρθ(x)
∣∣kfθ(x)dx

=
∞∑

k=0

αk

k!
Ik(θ),

as required. □

Now, let N be a random variable having Poisson distribution with mean α. Then, from
Lemma 2.2, an alternative representation for the GFGFI is given by

GGF I(θ, α) =
∞∑

k=0

αk

k!
Ik(θ) = eα

∞∑
k=0

e−ααk

k!
Ik(θ) = eαEN

[
IN (θ)

]
,

where IN (θ) is the generalized Fisher information of order N as given in (1.4).

Example 2.3. Let X be an exponential variable with probability density function (PDF)
f(x) = λe−λx, λ > 0, x > 0. From (2.1), for α ≤ λ, the GFGFI does not exist, but for
λ > α, we have

GGF I(λ, α) = λe
α
λ

α + λ

(
1 − e− α+λ

λ
)

+ λe− α
λ

λ − α
e− λ−α

λ .

From this expression, we find

∂

∂α
GGF I(λ, α) =

αe
α
λ + λ

e(
α + λ

)2 + λ

e
(
λ − α

)2 ,

∂2

∂α2 GGF I(λ, α) = e
α
λ

λ2 + α2

λ
(
λ + α

)3 + 4λα
3λ2 + α2

e
(
λ2 − α2)3 .

Thence, we have

∂2

∂α2 GGF I(λ, α)
∣∣
α=0 = 1

λ2 = I(λ).

A 3D-plot of this GGF I(λ, α) measure, for λ ∈ (2, 3.5) and α ∈ (0, 1.5), is presented in
Figure 1.
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Figure 1. 3D-plot of the GFGFI in Example 2.3.

It is seen from Figure 1 that the GFGFI is increasing with respect to both parameters
α and λ.

3. Generalized Fisher information measure for finite mixture distribu-
tions

In this section, we study the generalized Fisher information for parameter θ of a finite
mixture distribution. We then focus on 2-component and 3-component mixture densities
as particular cases. For this purpose, we first consider the definition of a higher-order
chi-square divergence. Let f and g be two density functions on the common support.
Then, the well-known Pearson-Vajda χk divergence between f and g is defined as

χk(f, g) =
∫ ∣∣f(x) − g(x)

∣∣k
fk−1(x)

dx.

In an analogous manner, we can define χk(g, f). For more details, see [10]. Then, the
following theorem gives a representation for the generalized Fisher information in (1.4),
denoted by Ik(θi), i = 1, ..., n − 1, for the n-component finite mixture model in (1.6).

Theorem 3.1. The generalized Fisher information measure of the mixture PDF in (1.6)
about parameter θi, i = 1, ..., n − 1, is given by

Ik(θi) = 1∣∣θi − (n − 1)
∣∣k χk(fθ, fθ−i

), i = 1, ..., n − 1, (3.1)

where χk(fθ, fθ−i
) is the Pearson-Vajda divergence between density functions fθ and fθ−i

,
with

fθ−i
(x) = n − 2

n − 1
fi(x) + 1

n − 1

n−1∑
j=1,j ̸=i

θjfj(x) + 1
n − 1

(
1 −

n−1∑
j=1,j ̸=i

θj

)
fn(x),

and θ−i = (θ1, ..., θi−1, θi+1, ..., θn−1) is the vector obtained by removing the i-th component
of θ.
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Proof. From the definition of the generalized Fisher information in (1.4), for i = 1, ..., n−
1, we have

Ik(θi) = E

∣∣∣∣∂ log fθ(X)
∂θi

∣∣∣∣k

= 1(
n − 1

)k

∫ ∣∣fi(x) − fn(x)
∣∣k

fk
θ (x)

fθ(x)dx

= 1∣∣θi − (n − 2)
∣∣k

∫ ∣∣fθ−i
(x) − fθ(x)

∣∣k
fk−1

θ (x)
dx

= 1∣∣θi − (n − 2)
∣∣k χk(fθ, fθ−i

), (3.2)

where the third equality follows from the fact that, for i = 1, ..., n − 1,

fi(x) − fn(x) = n − 1
θi − (n − 2)

(
fθ(x) − fθ−i

(x)
)
. (3.3)

□

From Theorem 3.1, we can see that the GFGFI measure is related to the Pearson-
Vajda divergence measure as a higher-order chi-square divergence. Let us now consider
the 2-component and 3-component mixture distributions as particular cases of the general
mixture distribution in (1.6). Upon setting n = 2 and n = 3, the GFI measures of these
sub-models are obtained as

Ik(θ) = 1
|θ − 1|k

χk(fθ, f1)

and

Ik(θi) = 1∣∣θi − 2
∣∣k χk(fθ, fθ−i

), i = 1, 2,

respectively, where

fθ−i
(x) = 1

2
fi(x) + 1

2

2∑
j=1,j ̸=i

θjfj(x) + 1
2

(
1 −

2∑
j=1,j ̸=i

θj

)
f3(x), i = 1, 2,

and
θ−i =

{
θ2, i = 1,
θ1, i = 2.

Theorem 3.2. The generating function of the generalized Fisher information measure of
the mixture PDF in (1.6) about parameter θi, i = 1, ..., n − 1, is given by

GGF I(θi, α) =
∞∑

k=0

αk

k!
∣∣θi − (n − 1)

∣∣k χk(fθ, fθ−i
),

where χk(·, ·) is the Pearson-Vajda divergence measure of order k.

Proof. From Lemma 2.2 and Theorem 3.1, we obtain

GGF I(θi, α) =
∞∑

k=0

αk

k!
Ik(θi)

=
∞∑

k=0

αk

k!
1∣∣θi − (n − 1)

∣∣k χk(fθ, fθ−i
),

as required. □
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4. Jensen-generalized Fisher information measure and its generating func-
tion

We first propose the Jensen-generalized Fisher information based on the generalized
Fisher information measure of density itself, and then introduce generating function of this
measure. The connection between these two new information measures is then discussed.

4.1. Jensen-generalized Fisher information
Let X1, ..., Xn be random variables with density functions f1, ..., fn, respectively, and

θ1, ..., θn be non-negative real numbers such that
∑n

i=1 θi = 1. Then, the Jensen-generalized
Fisher information (JGFI) measure of order k is defined as

JGFIk(f1, ..., fn, θ) =
n∑

i=1
θiIk(fi) − Ik

( n∑
i=1

θifi

)
. (4.1)

Due to the convexity property of Ik(f), it is easy to show that the JGFI measure in (4.1)
is non-negative; see [4] about the convexity of Ik(f) measure.
Remark 4.1. From (4.1), in the special case when k = 2, we obtain Jensen-Fisher infor-
mation proposed originally by [13].

4.2. Generating function of Jensen-generalized Fisher information mea-
sure

We now introduce the generating function of the generalized Fisher information, which
is based on the density function. Then, we present the generating function of Jensen-
generalized Fisher information measure and discuss a connection between them.
Definition 4.2. Let X be a continuous random variable with density function f(x) and
score function ρ(x) = ∂ log f(x)

∂x . Then, the generating function of the generalized Fisher
information (GFGFI) of density f(x) itself, for any α > 0, is defined as

GGF I(f, α) =
∫

eα|ρ(x)|f(x)dx, (4.2)

provided the integral exists.
As in Lemma 2.2, the above generating function of the generalized Fisher information

measure can be expressed as

GGF I(f, α) =
∞∑

k=0

αk

k!
Ik(f),

where Ik(f) is the generalized Fisher information of order k in (1.5).
As mentioned earlier, the quantity Ik(f) provides information about the density f

itself; for pertinent details, see Bobkov [4]. It is worthwhile to note that when θ is a
location parameter, that is, fθ(x) = f(x − θ), under some regularity conditions, we have
∂f(x−θ)/∂θ = −∂f(x−θ)/∂x, and so the generalized Fisher information Ik(θ) in (1.4) and
the generalized Fisher information of the density function Ik(f) in (1.5) become identical.

Analogous to Definition 4.2, we now propose the generating function of the Jensen-
generalized Fisher information measure.
Definition 4.3. Let the variables X1, ..., Xn have density functions f1, ..., fn, respectively.
Then, the generating function of Jensen-generalized Fisher information (GFJGFI) is de-
fined as

GJGF I,α(f1, ..., fn; θ) =
n∑

i=1
θiGGF I(fi, α) − GGF I

( n∑
i=1

θifi, α

)
,

where θ = (θ1, ..., θn), with θi ≥ 0 and
∑n

i=1 θi = 1.
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In Corollary 4.5 below, we show that GFJGFI is non-negative, and before that, we
present the following theorem.
Theorem 4.4. Let the variables X1, ..., Xn have density functions f1, ..., fn, respectively.
Then, the GFJGFI is an infinite mixture of scaled JGFIk(f1, ..., fn, θ) measures in (4.1),
given by

GJGF I,α(f1, ..., fn; θ) =
∞∑

k=0
pα(k)Dα

k (f1, ..., fn; θ),

where Dα
k (f1, ..., fn; θ) = JGF Ik(f1,...,fn;θ)

e−α , pα(k) = e−ααk

k! , and θ = (θ1, ..., θn), with
θi ≥ 0,

∑n
i=1 θi = 1.

Proof. Let Dα
k (f1, ..., fn; θ) = JGF Ik(f1,...,fn;θ)

e−α . Then, by the definition of
GJGF I,α(f1, ..., fn; θ) and by using Lemma 2.2, we have

GJGF I,α(f1, ..., fn; θ) =
n∑

i=1
θiGGF I(fi, α) − GGF I

( n∑
i=1

θifi, α

)

=
n∑

i=1
θi

{ ∞∑
k=0

αk

k!
Ik(fi)

}
−

∞∑
k=0

αk

k!
Ik

{ n∑
i=1

θifi

}

=
∞∑

k=0

αk

k!

{ n∑
i=1

θiIk(fi) − Ik

( n∑
i=1

θifi

)}

=
∞∑

k=0
pα(k)Dα

k (f1, ..., fn; θ),

as required. □
Corollary 4.5. The GFJGFI measure is non-negative.
Proof. By Theorem 4.4, the result follows readily. □
Theorem 4.6. Let the variables X1, ..., Xn have density functions f1, ..., fn, respectively,
and GJGF I,α(f1, ..., fn; θ) be the corresponding generating function of the Jensen-generalized
Fisher measure. Then,

∂k

∂αk
GJGF I,α(f1, ..., fn; θ)

∣∣∣∣
α=0

= JGFIk(f1, ..., fn; θ),

where JGFIk(f1, ..., fn; θ) is the Jensen-generalized Fisher information of order k in (4.1).
Proof. Letting ρi(x) = ∂

∂x log fi(x) and ρT (x) = ∂
∂x log

( ∑n
i=1 θifi(x)

)
, and then taking

the kth derivative of GJGF I,α(f1, ..., fn; θ) with respect to α, we obtain
∂k

∂αk
GJGF I,α(f1, ..., fn; θ)|α=0 = ∂k

∂αk

{ n∑
i=1

θiGGF I(fi, α) − GGF I

( n∑
i=1

θifi, α

)}∣∣∣∣
α=0

=
n∑

i=1
θi

∫
∂k

∂αk
eα|ρi(x)|fi(x)dx

∣∣∣∣
α=0

−
∫

∂k

∂αk
eα

∣∣ρT (x)
∣∣ n∑

i=1
θifi(x)dx

∣∣∣∣
α=0

=
n∑

i=1
θi

∫ ∣∣ρi(x)
∣∣kfi(x)dx −

∫ ∣∣ρT (x)
∣∣k n∑

i=1
θifi(x)dx

=
n∑

i=1
θiIk(fi) − Ik

( n∑
i=1

θifi

)
= JGFIk(f1, f2, ..., fn; θ),
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as required. □

5. Application of JGFI measure
We now demonstrate an application of the JGFI measure in (4.1) to image processing.

Let X1, . . . , Xn be a random sample from density f . Then, the kernel estimate of density
f , based on kernel function K with bandwidth h > 0 at a given point x, is given by

f̂(x) = 1
nh

n∑
i=1

K

(
x − Xi

h

)
. (5.1)

Further, the non-parametric estimate of the first derivative of density f , at a given point
x, is given by

f̂ (1)(x) = d

dx

1
nh

n∑
i=1

K

(
x − Xi

h

)
= 1

nh2

n∑
i=1

d

dx
K

(
x − Xi

h

)

= 1
nh2

n∑
i=1

K(1)
(

x − Xi

h

)
. (5.2)

For more details, see [5] and [2]. Upon making use of (5.1) and (5.2), the integrated non-
parametric estimate of the generalized Fisher information associated with variable X with
density f , is given by

Îk(f) =
∫ ∣∣∣∣ f̂ (1)(x)

f̂(x)

∣∣∣∣kf̂(x)dx

= 1
nhk+1

∫ ∣∣∣∣
∑n

i=1 K(1)(x−Xi
h

)∑n
i=1 K

(x−Xi
h

) ∣∣∣∣k n∑
i=1

K

(
x − Xi

h

)
dx. (5.3)

From (5.3) and with the use of Gaussian kernel K(u) = 1√
2π

e− u2
2 , we have

Îk(f) =
∫ ∣∣∣∣ f̂ (1)(x)

f̂(x)

∣∣∣∣kf̂(x)dx

= 1
n(2π)

1
2 hk+1

∫ ∣∣∣∣
∑n

i=1
(x−Xi

h

)
e

−1
2 ( x−Xi

h
)2

∑n
i=1 e

−1
2 ( x−Xi

h
)2

∣∣∣∣k n∑
i=1

e
−1
2 ( x−Xi

h
)2

dx. (5.4)

Now, let X and Y be two continuous random variables with density functions f1 and f2,
respectively. Based on the random samples X = (X1, ..., Xn) and Y = (Y1, ..., Yn) from
densities f1 and f2, respectively, the integrated non-parametric estimate of the Jensen-
generalized Fisher information JGFIk(f1, f2; α = 1

2) can be obtained as

ĴGF Ik(f1, f2) = 1
2 Îk(f1) + 1

2 Îk(f2) − Îk

(
f1 + f2

2

)
= 1

2nhk+1
1

∫ ∣∣∣∣
∑n

i=1 K(1)( x−Xi
h1

)∑n

i=1 K
(

x−Xi
h1

) ∣∣∣∣k n∑
i=1

K

(
x − Xi

h1

)
dx

+ 1
2nhk+1

2

∫ ∣∣∣∣
∑n

i=1 K(1)( x−Yi
h2

)∑n

i=1 K
(

x−Yi
h2

) ∣∣∣∣k n∑
i=1

K

(
x − Yi

h2

)
dx

− 1
2(h1h2)k

∫ {∣∣∣∣h2
2

∑n

i=1 K(1)( x−Xi
h1

)
+ h2

1
∑n

i=1 K(1)( x−Yi
h2

)
h2

∑n

i=1 K
(

x−Xi
h1

)
+ h1

∑n

i=1 K
(

x−Yi
h2

) ∣∣∣∣k{
1

nh1

n∑
i=1

K

(
x − Xi

h1

)
+ 1

nh2

n∑
i=1

K

(
x − Yi

h2

)}}
dx, (5.5)
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where the bandwidths h1 and h2 are determined based on samples X = (X1, ..., Xn) and
Y = (Y1, ..., Yn), respectively. Now, using the Gaussian kernel K(u) = 1√

2π
e− u2

2 and its
corresponding first derivative, the integral non-parametric estimate of ĴGFIk(f1, f2) in
(5.5) is given as well as the estimate of Îk(f) in (5.4). Finally, using the Cavalieri-Simpson
rule for numerical integration, the empirical estimate of the JGFI measure in (5.5) can be
obtained.

We now present an example of image processing and compute the JGFI measure between
the original picture and each of its adjusted versions. Figure 2 shows a sample picture
of two parrots (original picture) labeled as X and three adjusted versions of the original
picture labeled as Y (increasing brightness), Z (increasing contrast), and W (gamma
corrected). The available data of the main picture are 768 × 512 cells and the gray level
of each cell has a value between 0 (black) and 1 (white). We apply JGFI measure in order
to examine the amount of the dissimilarity between the original picture and each of its
noisy versions. For this purpose, we consider three cases of the original image by creating
noise and interference as Y (= X + 0.3), Z(= 2X), and W (=

√
X). For pertinent details,

see EBImage package in R software [12].

Figure 2. Sample picture of two parrots with its adjusted versions.

We have plotted in Figure 3 the extracted histograms, with the corresponding empirical
densities for pictures X, Y , Z, and W . As we can see from Figures 2 and 3, the highest
degree of similarity is first related to W and then to Y , whereas Z has the highest degree of
divergence with respect to the original picture X. We have presented the JGFI measure
(for selected values of k = 2 and 2.5) for all four pictures in Table 1. It is easily seen
that JGFI measure gets increased when the similarity gets decreased with respect to the
original picture. Therefore, the JGFI measure can be considered as an efficient criteria for
comparing the similarity between an original picture and its noisy versions.

Table 1. The JGFI measure between the original picture and each of its noisy
versions.

JGFI(k = 2) JGFI(k = 2.5)
X ↔ Y 0.00204 0.00227
X ↔ Z 0.00236 0.00243
X ↔ W 0.00096 0.00055
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Figure 3. The histograms and the corresponding empirical densities for pictures
X, Y , Z, and W .

6. Concluding remarks
In this work, we have considered generating function for the generalized Fisher infor-

mation measure and established some properties of it. We have also considered a finite
mixture density function and derived the generalized Fisher information for the mixing
parameter vector. We have shown that the generalized Fisher information for the mixing
parameter is connected to the Pearson-Vajda divergence. Further, the Jensen-generalized
Fisher information and its generating function have been discussed. We have shown specifi-
cally that this generating function can be expressed as an infinite mixture of scaled-versions
of Jensen-generalized Fisher information divergence measures. Finally, we have described
an application of the JGFI measure by considering an example in image processing.

Acknowledgment. The authors express their sincere thanks to the Editor and the
anonymous reviewers for their many useful comments and suggestions on an earlier version
of this manuscript which let to this improvement version.
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