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Abstract
A nonlocal boundary value problem for a system of hyperbolic equations of second order
with generalized integral condition is considered. By method of introduction of functional
parameters the investigated problem is transformed to the inverse problem for the system
of hyperbolic equations with unknown parameters and additional functional relations.
Algorithms of finding solution to the inverse problem for the system of hyperbolic equations
are constructed, and their convergence is proved. The conditions for existence of unique
solution to the inverse problem for the system of hyperbolic equations are obtained in the
terms of initial data. The coefficient conditions for unique solvability of nonlocal boundary
value problem for the system of hyperbolic equations with generalized integral condition
are established. The results are illustrated by numerical examples.
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1. Statement of the problem
Consider on Ω = [0, T ] × [0, ω] the nonlocal boundary value problem for the system of

hyperbolic equations with generalized integral condition
∂2u

∂x∂t
= A(t, x)∂u

∂x
+B(t, x)∂u

∂t
+ C(t, x)u+ f(t, x), (1.1)

m+1∑
i=0

Li(x)u(ti, x) +
m+1∑
j=1

tj∫
tj−1

Kj(τ, x)u(τ, x)dτ = φ(x), x ∈ [0, ω], (1.2)

u(t, 0) = ψ(t), t ∈ [0, T ], (1.3)
where u = col(u1, u2, ..., un) is unknown function, the (n × n) matrices A(t, x), B(t, x),
and C(t, x), the n vector-function f(t, x) are continuous on Ω, the (n×n) matrices Li(x),
i = 0,m+ 1, the n vector-function φ(x) are continuously differentiable on [0, ω], t0 =
0 < t1 < t2 < ... < tm < tm+1 = T , the (n × n) matrices Kj(t, x) are continuous
and continuously differentiable by x on [tj−1, tj ] × [0, ω], the n vector-function ψ(t) is
continuously differentiable on [0, T ], and the following compatibility condition for the
initial data holds:
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L0(0)ψ(0) +
m∑

i=1
Li(0)ψ(ti) + Lm+1(0)ψ(T ) +

m+1∑
j=1

tj∫
tj−1

Kj(τ, 0)ψ(τ)dτ = φ(0).

A solution to problem (1.1)–(1.3) is a function u(t, x), which is continuous on Ω and has

continuous partial derivatives ∂u(t, x)
∂x

,∂u(t, x)
∂t

, ∂
2u(t, x)
∂x∂t

on Ω and satisfies the system of
equations (1.1), boundary conditions (1.2) and (1.3).

In recent years, the nonlocal problems with multi-point and integral conditions for hy-
perbolic equations are of great interest to the specialists. Multi-point boundary value
problems for a system of hyperbolic equations arise while studying the motion of adsorbed
mixtures of substances, consisting of many components through an porous environment
pre-saturated by one or several substances for small or large concentrations of adsorbed
substances at a constant or variable speed filter [8,21,22,25,30]. Boundary value problems
with integral condition for hyperbolic equations describe the mathematical models of pro-
cesses on heat propagation, plasma physics, the metal treatment, and moisture transfer
in capillary-porous environments [3,17,21,23,26,27,31]. The solvability of some classes of
nonlocal boundary value problems with multi-point and integral conditions are studied,
and the methods for their solution are suggested. In the papers [1, 2], there considered
a boundary value problem for system of hyperbolic equations (1.1) with nonlocal condi-
tion in the form of linear combination of desired solution values and its derivatives by t
and x on the characteristics t = 0, t = T and condition (1.3). By introducing the ad-
ditional functional parameters, the considered problem was transformed to an equivalent
problem, consisting of the Goursat problem for a system of hyperbolic equations with
unknown parameters and functional relations. Note, that the resulting equivalent prob-
lem can be seen as the inverse nonlocal problem for the system of hyperbolic equations
[7,10–15,18–20,28,32–35]. Sufficient conditions for existence of unique classical solution to
the investigated problem were established in the terms of initial data, and the algorithms
for finding solutions are constructed under assumption on the continuity of coefficients
of system (1.1). Sufficient and necessary conditions of well-posedness of nonlocal prob-
lem with integral condition on the characteristics t = 0, t = T for system of hyperbolic
equations are obtained in [3].

In the present paper, this approach is developed for nonlocal boundary value problem
with generalized integral condition (1.1)–(1.3). By introduction of additional functions
the problem (1.1)–(1.3) is transformed to the inverse problem for system of hyperbolic
equations with unknown parameters and integral equations. Algorithms for finding a
solution to the resulting problem are constructed, and their convergence is proved. The
conditions for existence of unique solution to the inverse problem for system of hyperbolic
equations with unknown parameters are obtained in the terms of initial data. Sufficient
conditions for the existence of unique classical solution to the nonlocal boundary value
problem for the system of hyperbolic equations with generalized integral condition (1.1)–
(1.3) are set in the terms of coefficients and boundary matrices.

First the idea on reduction of nonlocal problem to the inverse problem was proposed
by Cannon for a heat equation in the work [9]. This approach has been also applied
to a nonlocal problem for one class of differential equations of high order in [21]. In
contrast to those works, the method proposed in the present paper uses a substitution of
desired function and reduction of original problem to an equivalent problem. The domain
is divided into parts by the variable t, then functional parameters are introduced as the
values of the desired function on the partition lines. We introduce some new unknown
functions, which are the differences between the desired function and functional parameter
in the corresponding sub-domains. Examining further the obtained equivalent problem and
setting the conditions for its unique solvability, we go back to the original problem and
then formulate the solvability conditions for it.



A generalized integral problem for a system of hyperbolic equations and its applications 1515

Consider problem (1.1)–(1.3). In Section 2, a scheme of method of functional parameter
introduction without division on domain is provided. Algorithms of finding solution to the
inverse problem for the system of hyperbolic equations with single unknown parameter
are constructed. Conditions for the convergence of proposed algorithms and existence
of unique solution to the inverse problem for hyperbolic equations with parameter are
established.

In Section 3, there provided a general scheme of the method of functional parameters
introduction with division of domain. Algorithms of finding solution to the inverse problem
for the system of hyperbolic equations with many unknown parameters are constructed.
Conditions for the convergence of proposed algorithms and existence of unique solution to
the inverse problem for the system of hyperbolic equations with parameters are established.

In Section 4, the statements on unique solvability of original nonlocal problem for the
system of hyperbolic equations with generalized integral condition (1.1)–(1.3) are formu-
lated. The main condition here is an invertibility of some matrix composed by initial data
of the problem. Auxiliary lemmas on invertibility of this matrix and recurrence formulas
of its block-level elements are provided. In Section 5, we offer a numerical implementation
of the results based on Runge-Kutta method of 4-th order and Simpson’s method.

2. Transformation to the inverse problem for the system of hyperbolic
equations with parameter and the algorithms for finding of its solutions

Denote by µ(x) the value of function u(t, x) at t = 0, and make in the problem(1.1)–(1.3)
the replacement ũ(t, x) = u(t, x) − µ(x):

∂2ũ

∂x∂t
= A(t, x)∂ũ

∂x
+B(t, x)∂ũ

∂t
+ C(t, x)ũ+A(t, x)µ̇(x) + C(t, x)µ(x) + f(t, x), (2.1)

ũ(0, x) = 0, x ∈ [0, ω], (2.2)
ũ(t, 0) = ψ(t) − ψ(0), t ∈ [0, T ], (2.3)

m+1∑
i=0

Li(x)µ(x) +
m+1∑
j=1

tj∫
tj−1

Kj(τ, x)dτµ(x) +
m+1∑
i=1

Li(x)ũ(ti, x)+

+
m+1∑
j=1

tj∫
tj−1

Kj(τ, x)ũ(τ, x)dτ = φ(x), x ∈ [0, ω]. (2.4)

In the relation (2.3) the compatibility condition at the point (0, 0): ψ(0) = µ(0) is taken
into account.

Solution to (2.1)–(2.4) is a pair of functions (ũ(t, x), µ(x)) satisfying the system of equa-
tions (2.1) and conditions (2.2)–(2.4), where the function ũ(t, x) has continuous partial

derivatives ∂ũ(t, x)
∂x

, ∂ũ(t, x)
∂t

, ∂
2ũ(t, x)
∂x∂t

on Ω, the function µ(x) is continuously differen-
tiable on [0, ω].

The problem (2.1)–(2.4) is the inverse problem for the system of hyperbolic equations
(2.1) with unknown functions µ(x), µ̇(x), conditions on characteristics (2.2), (2.3), and
additional condition (2.4) for the determination of parameters introduced. Inverse prob-
lems for equations and systems of hyperbolic type are investigated by many authors, the
bibliography and references can be found in [12,18–20,24,29,32]. Methods for solving some
classes of inverse problems for hyperbolic equations with mixed derivatives are proposed
in [11–15].

For fixed µ(x) and µ̇(x) the function ũ(t, x) is a solution of the Goursat problem (2.1)–
(2.3). For fixed ũ(t, x) the functional parameter is to be determined from the relation
(2.4).
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Introduce the notation ṽ(t, x) = ∂ũ(t, x)
∂x

, w̃(t, x) = ∂ũ(t, x)
∂t

. From (2.2), (2.3) we
obtain ṽ(0, x) = 0 and w̃(t, 0) = ψ̇(t). The Goursat problem is equivalent to the system
of integral equations

w̃(t, x) = ψ̇(t) +
x∫

0

[
A(t, ξ)ṽ(t, ξ) +B(t, ξ)w̃(t, ξ) + C(t, ξ)ũ(t, ξ) + f(t, ξ)

]
dξ+

+
x∫

0

[
A(t, ξ)µ̇(ξ) + C(t, ξ)µ(ξ)

]
dξ, (2.5)

ṽ(t, x) =
t∫

0

[
A(s, x)ṽ(s, x) +B(s, x)w̃(τ, x) + C(s, x)ũ(s, x) + f(s, x)

]
ds+

+
t∫

0

[
A(s, x)µ̇(x) + C(s, x)µ(x)

]
ds, (2.6)

ũ(t, x) = ψ(t)−ψ(0)+
t∫

0

x∫
0

[
A(s, ξ)ṽ(s, ξ)+B(s, ξ)w̃(s, ξ)++C(s, ξ)ũ(s, ξ)+f(s, ξ)

]
dξds+

+
t∫

0

x∫
0

[
A(s, ξ)µ̇(ξ) + C(s, ξ)µ(ξ)

]
dξds. (2.7)

Substitute the corresponding right-hand side of (2.6) instead of ṽ(s, x) and repeating this
process l (l = 1, 2, ...) times, we get

ṽ(t, x) = Gl(t, x, ṽ) +Hl(t, x, ũ, w̃) +Dl(t, x)µ̇(x) + El(t, x)µ(x) + Fl(t, x), (2.8)
where (t, x) ∈ Ω,

Dl(t, x) =
t∫

0

A(s1, x)ds1 + ...+
t∫

0

A(s1, x)
s1∫

0

A(s2, x)...
sl−1∫
0

A(sl, x)dsl...ds2ds1,

Hl(t, x, ũ, w̃) =
t∫

0

[
B(s1, x)w̃(s1, x) + C(s1, x)ũ(s1, x)

]
ds1 + ...+

+
t∫

0

A(s1, x)...
sl−2∫
0

A(sl−1, x)
sl−1∫
0

[
B(sl, x)w̃(sl, x) + C(sl, x)ũ(sl, x)

]
dsl...ds1,

Gl(t, x, ṽ) =
t∫

0

A(s1, x)
s1∫

0

A(s2, x)...
sl−1∫
0

A(sl, x)ṽ(sl, x)dsl...ds2ds1,

El(t, x) =
t∫

0

C(s1, x)ds1 + ...+
t∫

0

A(s1, x)...
sl−2∫
0

A(sl−1, x)
sl−1∫
0

C(sl, x)dsl...ds1,

Fl(t, x) =
t∫

0

f(s1, x)ds1 + ...+
t∫

0

A(s1, x)...
sl−2∫
0

A(sl−1, x)
sl−1∫
0

f(sl, x)dsl...ds1.

Assumptions on initial data allow us to differentiate the relation (2.4) by the variable x:{m+1∑
i=0

L̇i(x) +
m+1∑
j=1

tj∫
tj−1

∂Kj(τ, x)
∂x

dτ

}
µ(x) +

{m+1∑
i=0

Li(x) +
m+1∑
j=1

tj∫
tj−1

Kj(τ, x)dτ
}
µ̇(x)+
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+
m+1∑
i=1

[
L̇i(x)ũ(ti, x) + Li(x)ṽ(ti, x)

]
+

+
m+1∑
j=1

tj∫
tj−1

[
∂Kj(τ, x)

∂x
ũ(τ, x) +Kj(τ, x)ṽ(τ, x)

]
dτ = φ′(x), x ∈ [0, ω]. (2.9)

Relation (2.9) together with compatibility condition are equivalent to condition (2.4).
From the representation (2.8) we find the values of function ṽ(t, x) at t = ti, i = 0,m+ 1,

and t = τ. Substituting these values into (2.9), for unknown vector-function µ(x), we
obtain a system of n ordinary differential equations of first order, unsolved with respect
to derivatives:

Ml(x)µ̇(x) = −Ẽl(x)µ(x) − H̃l(x, ũ, w̃) − G̃l(x, ṽ) − F̃l(x), x ∈ [0, ω], (2.10)
where

Ml(x) = L0(x) +
m+1∑
i=1

Li(x)[I +Dl(ti, x)] +
m+1∑
j=1

tj∫
tj−1

Kj(τ, x)[I +Dl(τ, x)]dτ,

Ẽl(x) =
m+1∑
i=0

L̇i(x)+
m+1∑
i=1

Li(x)El(ti, x)+
m+1∑
j=1

tj∫
tj−1

∂Kj(τ, x)
∂x

dτ+
m+1∑
j=1

tj∫
tj−1

Kj(τ, x)El(τ, x)dτ,

H̃l(x, ũ, w̃) =
m+1∑
i=1

L̇i(x)ũ(ti, x) +
m+1∑
i=1

Li(x)Hl(ti, x, ũ, w̃)+

+
m+1∑
j=1

tj∫
tj−1

∂Kj(τ, x)
∂x

ũ(τ, x)dτ +
m+1∑
j=1

tj∫
tj−1

Kj(τ, x)Hl(τ, x, ũ, w̃)dτ,

G̃l(x, ṽ) =
m+1∑
i=1

Li(x)Gl(ti, x, ṽ) +
m+1∑
j=1

tj∫
tj−1

Kj(τ, x)Gl(τ, x, ṽ)dτ,

F̃l(x) =
m+1∑
i=1

Li(x)Fl(ti, x) +
m+1∑
j=1

tj∫
tj−1

Kj(τ, x)Fl(τ, x)dτ − φ′(x).

Taking into account the compatibility condition
µ(0) = ψ(0), (2.11)

we obtain the Cauchy problem for system (2.10).
Suppose that the (n× n) matrix Ml(x) is invertible for all x ∈ [0, ω].

Introduction of additional functional parameter allows us to divide the process of finding
the unknown functions into next two stages:
1) finding the function µ(x) (µ̇(x)) from system (2.10) under the condition (2.11).
2) finding the unknown functions ṽ(t, x), w̃(t, x), and ũ(t, x) from the system of integral
equations (2.5)–(2.7).

If the functions µ̇(x), and µ(x), are known, then solving the system of integral equations
(2.5)–(2.7), we find the functions ṽ(t, x), w̃(t, x), ũ(t, x). Function µ(x) + ũ(t, x) is the
solution to the initial problem. If the functions ṽ(t, x), w̃(t, x), and ũ(t, x) are known, then
solving the equation (2.10) under condition (2.11), we find µ̇(x), and µ(x). Determining
again the sum of functions µ(x) + ũ(t, x), we define the solution to problem (1.1)–(1.3).

Here the functions µ̇(x) and µ(x) are unknown, as well as the functions ṽ(t, x), w̃(t, x),
and ũ(t, x). Therefore, the inverse problem for the system of hyperbolic equations (2.1)–
(2.4) is to be solved using the iterative method. Solution to system (2.5)–(2.7), (2.10) with
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condition (2.11) is to be found as the limits of sequences {µ̇(k)(x)}, {µ(k)(x)}, {ṽ(k)(t, x)},
{w̃(k)(t, x)}, {ũ(k)(t, x)}, k = 0, 1, 2, ..., defined by the following algorithm:
0th step. Supposing µ(x) = ψ(0), ṽ(t, x) = 0, w̃(t, x) = ψ̇(t) in the right-hand part of
(2.10) ũ(t, x) = ψ(t) − ψ(0), and taking into account the invertibility of matrix Ml(x) for
all x ∈ [0, ω], from equation (2.10) we define µ̇(0)(x). Using the condition (2.11), we find
the function µ(0)(x):

µ(0)(x) = ψ(0) +
x∫

0

µ̇(0)(ξ)dξ.

From the system of integral equations (2.5)–(2.7), where µ(x) = µ(0)(x), µ̇(x) = µ̇(0)(x),
we determine the functions ṽ(0)(t, x), w̃(0)(t, x), ũ(0)(t, x).
1st step. From equation (2.10), where in the right-hand part µ(x) = µ(0)(x), ṽ(t, x) =
ṽ(0)(t, x), w̃(t, x) = w̃(0)(t, x), and ũ(t, x) = ũ(0)(t, x) due to the invertibility of Ml(x) for
x ∈ [0, ω] we determine µ̇(1)(x). Using again condition (2.11), we find µ(1)(x):

µ(1)(x) = ψ(0) +
x∫

0

µ̇(1)(ξ)dξ,

and from the system of integral equations (2.5)–(2.7), where µ(x) = µ(1)(x) and µ̇(x) =
µ̇(1)(x), we determine the functions w̃(1)(t, x), ṽ(1)(t, x), ũ(1)(t, x). And so on.

Introduce the notation
α(x) = max

t∈[0,T ]
||A(t, x)||, β(x) = max

t∈[0,T ]
||B(t, x)||, σ(x) = max

t∈[0,T ]
||C(t, x)||,

θi(x) = sup
t∈[ti−1,ti)

||Ki(t, x)||, ϑi(x) = sup
t∈[ti−1,ti)

∣∣∣∣∂Ki(t,x)
∂x

∣∣∣∣, i = 1,m+ 1,

f0(x) = max
t∈[0,T ]

||f(t, x)||.

Conditions of feasibility and convergence of the proposed algorithm provide the next
assertion

Theorem 2.1. Let for some l, l = 1, 2, ..., the (n × n) matrix Ml(x) is invertible for all
x ∈ [0, ω], and the following inequalities are valid:

a) ||[Ml(x)]−1|| ≤ γl(x), where γl(x) is a function, positive and continuous on
x ∈ [0, ω];

b) ql(x) = γl(x)·
{m+1∑

i=1
||Li(x)||+θi(x)(ti−ti−1)

}[
eα(x)ti −

l∑
j=0

[α(x)ti]j
j!

]
≤ χ < 1, χ-const.

Then there exists a unique solution to inverse problem for the system of hyperbolic equa-
tions (2.1)–(2.4).

Proof. In virtue of the continuity of Li(t, x), i = 0,m+ 1, A(t, x), Kj(t, x), j = 1,m+ 1,
the matrix Ml(x) is continuous by x ∈ [0, ω]. Then in view of theorem conditions and the
inequality

||[Ml(x)]−1 − [Ml(x̄)]−1|| ≤ ||[Ml(x)]−1|| · ||Ml(x) −Ml(x̄)|| · ||[Ml(x̄)]−1||,
where x, x̄ ∈ [0, ω], the matrix [Ml(x)]−1 is also continuous for all x ∈ [0, ω].

The next inequalities are valid:

||Ẽl(x)|| ≤
m+1∑
i=0

||L̇i(x)|| +
m+1∑
j=1

ϑj(x)(tj − tj−1)+

+σ(x)
m+1∑
i=1

(
||Li(x)||ti + θi(x)

(t2i − t2i−1)
2

) l−1∑
j=0

[α(x)ti]j

j!
= a0(x),

||F̃l(x)|| ≤
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≤
{

1 +
m+1∑
i=1

(
||Li(x)||ti + θi(x)

(t2i − t2i−1)
2

) l−1∑
j=0

[α(x)ti]j

j!

}
max

(
||φ′(x)||, f0(x)

)
= ϕ(x),

||H̃l(x, ũ, w̃)|| ≤
{m+1∑

i=1
||L̇i(x)|| +

m+1∑
j=1

ϑj(x)(tj − tj−1) +
m+1∑
i=1

(
||Li(x)||ti+

+θi(x)
(t2i − t2i−1)

2

) l−1∑
j=0

[α(x)ti]j

j!
max(β(x), σ(x))

}
max

t∈[0,T ]

[
||w̃(t, x)|| + ||ũ(t, x)||

]
=

= a1(x) max
t∈[0,T ]

[
||w̃(t, x)|| + ||ũ(t, x)||

]
. (2.12)

In view of conditions a) at fixed µ(x), ṽ(t, x), w̃(t, x), and ũ(t, x), the function µ̇(x) is
defined uniquely from equation (2.10) and

µ̇(x) = −[Ml(x)]−1
{
Ẽl(x)µ(x) + F̃l(x) + H̃l(x, ũ, w̃) + G̃l(x, ṽ)

}
, x ∈ [0, ω].

Taking into account the condition (2.11), we define µ(x). At fixed µ(x) ∈ C([0, ω], Rn)
and µ̇(x) ∈ C([0, ω], Rn) the system of integral equations (2.5)–(2.7) has a unique solution
{ṽ(t, x), w̃(t, x), ũ(t, x)}, where ṽ, w̃, ũ belong to C(Ω̄, Rn), and the following estimations
hold:

||ṽ(t, x)|| ≤
(
eα(x)t − 1

)
||µ̇(x)||+

+Teα(x)t
{
σ(x) · ||µ(x)|| + f0(x) + max {β(x), σ(x)} max

t∈[0,T ]

[
||ũ(t, x)|| + ||w̃(t, x)||

]}
, (2.13)

max
t∈[0,T ]

[
||ũ(t, x)|| + ||w̃(t, x)||

]
≤
{

max
t∈[0,T ]

||ψ(t) − ψ(0)|| + max
t∈[0,T ]

||ψ̇(t)||+

+(1 +T )
x∫

0

α(ξ)Teα(ξ)T ||µ̇(ξ)||dξ+ (1 +T )
x∫

0

[
1 +α(ξ)Teα(ξ)T

](
f0(ξ) +σ(ξ)||µ(ξ)||

)
dξ

}
×

× exp
{ x∫

0

[
1 + α(ξ)Teα(ξ)T

]
max{β(ξ), σ(ξ)}dξ

}
. (2.14)

From the integral equation (2.5) using the inequality Bellman - Gronwall for the difference
of successive approximations ṽ(k)(t, x) − ṽ(k−1)(t, x), we obtain

||ṽ(k)(t, x) − ṽ(k−1)(t, x)|| ≤

≤
(
eα(x)t − 1

)
· ||µ̇(k)(x) − µ̇(k−1)(x)|| + Teα(x)t

(
σ(x)||µ(k)(x) − µ(k−1)(x)||+

+ max
{
β(x), σ(x)

}
max

t∈[0,T ]

[
||w̃(k)(t, x)− w̃(k−1)(t, x)||+ ||ũ(k)(t, x)− ũ(k−1)(t, x)||

])
. (2.15)

For the differences of successive approximations
µ(k)(x) − µ(k−1)(x), w̃(k)(t, x) − w̃(k−1)(t, x), and ũ(k)(t, x) − ũ(k−1)(t, x), k = 1, 2, ...,
in virtue of inequalities (2.13)–(2.15) the next estimates are valid:

||µ(k)(x) − µ(k−1)(x)|| ≤
x∫

0

||µ̇(k)(ξ) − µ̇(k−1)(ξ)||dξ, (2.16)

max
t∈[0,T ]

[
||w̃(k)(t, x) − w̃(k−1)(t, x)|| + ||ũ(k)(t, x) − ũ(k−1)(t, x)||

]
≤

≤
x∫

0

a2(ξ, x)||µ̇(k)(ξ) − µ̇(k−1)(ξ)||dξ, (2.17)

where a2(ξ, x) = ea3(x)(1 + T )[α(ξ)Teα(ξ)T + a4(x)],
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a3(x) =
x∫

0

[1 + α(ξ)Teα(ξ)T ] max {β(ξ), σ(ξ)}dξ, a4(x) =
x∫

0

[1 + α(ξ)Teα(ξ)T ]σ(ξ)dξ.

Then for difference µ̇(k+1)(x) − µ̇(k)(x), taking into account the inequality (2.10), we
have the estimate

||µ̇(k+1)(x) − µ̇(k)(x)|| ≤ γl(x)||Ẽl(x)|| · ||µ(k)(x) − µ(k−1)(x)||+

+γl(x)||H̃l(x, ũ(k) − ũ(k−1), w̃(k) − w̃(k−1))|| + γl(x)||G̃l(x, ṽ(k) − ṽ(k−1))||.
In the last term, using estimates (2.12)–(2.17) and evaluating the repeated integrals, we
get

||µ̇(k+1)(x)−µ̇(k)(x)|| ≤ χ||µ̇(k)(x)−µ̇(k−1)(x)||+
x∫

0

a5(ξ, x)||µ̇(k)(ξ)−µ̇(k−1)(ξ)||dξ, (2.18)

where a5(ξ, x) = γl(x)
[
a0(x) + a1(x)a2(ξ, x) + [σ(x) + max{(β(x), σ(x)}a2(ξ, x)]a6(x)

]
,

a6(x) = T
m+1∑
i=1

(
||Li(x)|| + θi(x)(ti − ti−1)

)[
eα(x)ti −

l−1∑
s=0

[α(x)ti]s

s!

]
.

From the zero and first steps of algorithm there follow the estimates:

||µ̇(0)(x)|| ≤ γl(x)
(
a0(x)||ψ(0)|| + ϕ(x) + a1(x) max

t∈[0,T ]
{||ψ̇(t)|| + ||ψ(t) − ψ(0)||}

)
= d1(x),

||µ(0)(x) − ψ(0)|| ≤
x∫

0

||µ̇(0)(ξ)||dξ ≤
x∫

0

d1(ξ)dξ = d2(x),

||µ̇(1)(x) − µ̇(0)(x)|| ≤ γl(x)a0(x)d2(x)+

+ql(x)d1(x) +
x∫

0

[
γl(x)a1(x)a2(ξ, x) + a6(x)f0(x) + a5(ξ, x)

]
d1(ξ)dξ = d(x). (2.19)

Based on (2.18), (2.19) we set the inequality

∆µk(x) = ||µ̇(k+1)(x) − µ̇(k)(x)|| ≤

≤
k∑

j=0

k! χk−j

(k − j)! · j!
1
j!

{ x∫
0

a5(ξ, x)dξ
}j

max
x∈[0,ω]

d(x) ≤ χk
k∑

j=0

k!
(k − j)!j!

1
j!

{
ã

χ

}j

d̃, (2.20)

where

ã = max
x∈[0,ω]

x∫
0

a5(ξ, x)dξ, d̃ = max
x∈[0,ω]

d(x).

From the theory of limits, using the consequence of the Töplitz theorem, it is easy to
establish that the sequence ∆µk(x) is majorizing by geometric progression. Hence there
follows the uniform convergence of series

∞∑
k=1

∆µk(x) for x ∈ [0, ω], which guarantees the

uniform convergence of sequence µ̇(k)(x) to a function µ̇∗(x), continuous by x ∈ [0, ω].
From inequality (2.16) there follows the uniform convergence of sequence µ(k)(x) to the
function µ∗(x) ∈ C([0, ω], Rn). Based on the estimates (2.15) and (2.17), there follows
the convergence of sequences ṽ(k)(t, x), w̃(k)(t, x), and ũ(k)(t, x), uniform with respect to
(t, x) ∈ Ω̄, to the functions ṽ∗(t, x), w̃∗(t, x), and ũ∗(t, x) belonging C(Ω, Rn), respectively.
It is obvious that the pair (µ∗(x), ũ∗(t, x)) is a solution to problem (2.1)–(2.4). The
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uniqueness of solution to problem (2.1)–(2.4) is proved by contradiction. Theorem 2.1 is
proved. □

Thus, in case of introducing one parameter, the main condition for the solvability of
problem (2.1)–(2.4) is the invertibility of matrix Ml(x) composed by the matrices of
boundary condition Li(x), Kj(t, x) and the sums of repeated integrals of matrix A(t, x)
of dimension coinciding with the dimension of system (2.1). Choosing the number l, the
amount of repeated integrals of matrix A(t, x), we can check the invertibility of matrix
Ml(x), for all x ∈ [0, ω].

3. General scheme of the method of reduction to the inverse problem for
the system of hyperbolic equations

In the case of introduction of single parameter, to check the solvability conditions for the
investigated problem, as a tool to operate we have only l, the number of repeated integrals
of matrix A(t, x). However, for large values of t = ti, i = 1,m+ 1, we have to choose the
number l large enough, what leads to the difficulties with evaluating the repeated integrals
and their sums. In this regard, in the section we propose a general scheme of the method
of functional parameters, where the domain is divided into parts by lines t = ti, i = 0,m,
and on these partition lines, the parameters are introduced as the values of the desired
function. This allows to operate with two quantities while solving the problem (2.1)–(2.4):
the distances ti − ti−1 and l, the number of repeated integrals.

Make a partition on domain Ω: Ω =
m+1⋃
r=1

Ωr, Ωr =
m+1⋃
r=1

[tr−1, tr) × [0, ω]. Denote by

ur(t, x) the restriction of function u(t, x) to Ωr, r = 1, 2, ...,m + 1. Then pass from
problem (1.1)–(1.3) to the boundary value problem

∂2ur

∂x∂t
= A(t, x)∂ur

∂x
+B(t, x)∂ur

∂t
+ C(t, x)ur + f(t, x), (t, x) ∈ Ωr, (3.1)

m∑
i=0

Li(x)ui+1(ti, x) + Lm+1(x) lim
t→T −0

um+1(t, x)+

+
m+1∑
j=1

tj∫
tj−1

Kj(τ, x)uj(τ, x)dτ = φ(x), x ∈ [0, ω], (3.2)

ur(t, 0) = ψ(t), t ∈ [tr−1, tr), r = 1,m+ 1, (3.3)

lim
t→tp−0

∂up(t, x)
∂x

= ∂up+1(tp, x)
∂x

, x ∈ [0, ω], p = 1,m. (3.4)

Here the interrelations (3.4) are the conditions of gluing (continuity) the derivatives of
solutions by x in the internal lines partitioning the domain Ω: t = tp, p = 1,m.

Solution to problem (3.1)–(3.4) is a system of functions u([t], x) = (u1(t, x), u2(t, x), ...,
um+1(t, x))′, where each function ur(t, x) with continuous partial derivatives of first order,
mixed partial derivatives of second order, which is bounded on its definition domain Ωr

together with derivatives and satisfies the system of equations (3.1), boundary conditions
(3.2), (3.3), and continuity condition (3.4). [t] in the notation u([t], x) means that partition
is made by variable t.

Continuity and boundedness of function ur(t, x) together with derivatives on Ωr, r =

1,m+ 1, leads to the existence of left-hand side limits lim
t→tr−0

ur(t, x), lim
t→tr−0

∂ur(t, x)
∂x

, and

lim
t→tr−0

∂ur(t, x)
∂t

. The values u1(0, x), ui+1(ti, x), i = 1,m, and lim
t→T −0

um+1(t, x) satisfy the
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relation (3.3), the values lim
t→tp−0

∂up(t, x)
∂x

, and ∂up+1(tp, x)
∂x

, p = 1,m, satisfy the relations

(3.4).
Denote by µr(x) the values of function ur(t, x) at t = (r− 1)h. Making the replacement

ũr(t, x) = ur(t, x) − µr(x), r = 1, N in problem (3.1) – (3.4), we obtain the equivalent
boundary problem with unknown functions µr(x):

∂2ũr

∂x∂t
= A(t, x)∂ũr

∂x
+B(t, x)∂ũr

∂t
+ C(t, x)ũr + f(t, x)+

+A(t, x)µ̇r(x) + C(t, x)µr(x), (t, x) ∈ Ωr, r = 1,m+ 1, (3.5)
ũr(tr−1, x) = 0, x ∈ [0, ω], r = 1,m+ 1, (3.6)

ũr(t, 0) = ψ(t) − ψ(tr−1), t ∈ [tr−1, tr), r = 1,m+ 1, (3.7)
m∑

i=0
Li(x)µi+1(x) + Lm+1(x)µm+1(x) + Lm+1(x) lim

t→T −0
ũm+1(t, x)+

+
m+1∑
j=1

tj∫
tj−1

Kj(τ, x)dτµj(x) +
m+1∑
j=1

tj∫
tj−1

Kj(τ, x)ũj(τ, x)dτ = φ(x), x ∈ [0, ω], (3.8)

µ̇p(x) + lim
t→tp−0

∂ũp(t, x)
∂x

= µ̇p+1(x), x ∈ [0, ω], p = 1,m. (3.9)

In condition (3.7), the compatibility condition at the points (tr−1, 0) is taken into account:
µr(0) = ψ(tr−1), r = 1,m+ 1. (3.10)

Problems (3.1)–(3.4) is equivalent to problem (3.5)–(3.9) in the following sense: if the
system of functions u([t], x) = (u1(t, x), u2(t, x), ..., um+1(t, x))′ is a solution to (3.1)–(3.4),
the system of pairs (µ(x), ũ([t], x)), where µ(x) = (µ1(x), µ2(x), ..., µm+1(x))′, ũ([t], x) =
(ũ1(t, x), ũ2(t, x), ..., ũm+1(t, x))′, µr(x) = ur(tr−1, x), ũr(t, x) = ur(t, x) − ur(tr−1, x),
r = 1,m+ 1, is a solution to (3.5)–(3.9), and vice versa, if (µr(x), ũr(t, x)), r = 1,m+ 1,
is a solution to (3.5)–(3.9), then (µr(x)+ũr(t, x)), r = 1,m+ 1, is a solution to (3.1)–(3.4).

Problem (3.5)–(3.9) is the inverse problem for the system of hyperbolic equations with
functional parameters, where relations (3.8) and (3.9) allow us to determine the unknown
functions µr(x), r = 1,m+ 1.

Let C(Ω,Ωr, R
n(m+1)) be a space of function systems u([t], x) = (u1(t, x), u2(t, x), ...,

um+1(t, x))′, where the function ur : Ωr −→ Rn is continuous and has a finite left-hand
side limit lim

t→tr−0
ur(t, x), r = 1,m+ 1, uniformly with respect to x ∈ [0, ω], with the norm

||u||1 = max
r=1,m+1

sup
(t,x)∈Ωr

||ur(t, x)||.

At fixed µr(x), µ̇r(x), r = 1,m+ 1, the functions ũr(t, x), r = 1,m+ 1, are the
solutions to Goursat problem on Ωr with conditions (3.6), (3.7).

Introducing notation ṽr(t, x) = ∂ũr(t, x)
∂x

, w̃r(t, x) = ∂ũr(t, x)
∂t

, from (3.6) and (3.7)
we obtain ṽr(tr−1, x) = 0, w̃r(t, 0) = ψ̇(t), and reduce the Goursat problem to the system
of three integral equations

w̃r(t, x) = ψ̇(t) +
x∫

0

[
A(t, ξ)ṽr(t, ξ) +B(t, ξ)w̃r(t, ξ) + C(t, ξ)ũr(t, ξ)+

+f(t, ξ) +A(t, ξ)µ̇r(ξ) + C(t, ξ)µr(ξ)
]
dξ, (3.11)

ṽr(t, x) =
t∫

(r−1)h

[
A(s, x)ṽr(s, x) +B(s, x)w̃r(s, x) + C(s, x)ũr(s, x)+
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+f(s, x) +A(s, x)µ̇r(x) + C(s, x)µr(x)
]
ds, (3.12)

ũr(t, x) = ψ(t) − ψ(tr−1) +
t∫

tr−1

x∫
0

[
A(s, ξ)ṽr(s, ξ) +B(s, ξ)w̃r(s, ξ) + C(s, ξ)ũr(s, ξ)+

+f(s, ξ) +A(s, ξ)µ̇r(ξ) + C(s, ξ)µr(ξ)
]
dξds. (3.13)

Substituting the corresponding right-hand side of (3.12) instead of ṽr(s, x) and repeating
the process l (l = 1, 2, ...) times, we get

ṽr(t, x) = Dl,r(t, x)µ̇r(x) + El,r(t, x)µr(x) +Hl,r(t, x, ũr, w̃r)+

+Gl,r(t, x, ṽr) + Fl,r(t, x), (t, x) ∈ Ωr, r = 1,m+ 1, (3.14)

Dl,r(t, x) =
t∫

tr−1

A(s1, x)ds1 + ...+
t∫

tr−1

A(s1, x)
s1∫

tr−1

A(s2, x)...
sl−1∫

tr−1

A(sl, x)dsl...ds2ds1,

El,r(t, x) =
t∫

tr−1

C(s1, x)ds1 + ...+
t∫

tr−1

A(s1, x)...
sl−2∫

tr−1

A(sl−1, x)
sl−1∫

tr−1

C(sl, x)dsl...ds1,

Hl,r(t, x, ũr, w̃r) =
t∫

tr−1

[
B(s1, x)w̃r(s1, x) + C(s1, x)ũr(s1, x)

]
ds1 + ...+

+
t∫

tr−1

A(s1, x)...
sl−2∫

tr−1

A(sl−1, x)
sl−1∫

tr−1

[
B(sl, x)w̃r(sl, x) + C(sl, x)ũr(sl, x)

]
dsl...ds1,

Gl,r(t, x, ṽr) =
t∫

tr−1

A(s1, x)...
sl−2∫

tr−1

A(sl−1, x)
sl−1∫

tr−1

A(sl, x)ṽr(sl, x)dsl...ds1,

Fl,r(t, x) =
t∫

tr−1

f(s1, x)ds1 + ...+
t∫

tr−1

A(s1, x)...
sl−2∫

tr−1

A(sl−1, x)
sl−1∫

tr−1

f(sl, x)dsl...ds1.

Differentiating the relation (3.8) by x
m∑

i=0
L̇i(x)µi+1(x) +

m∑
i=0

Li(x)µ̇i+1(x) + L̇m+1(x)µm+1(x) + Lm+1(x)µ̇m+1(x)+

+
m+1∑
j=1

tj∫
tj−1

∂Kj(τ, x)
∂x

dτµj(x) +
m+1∑
j=1

tj∫
tj−1

Kj(τ, x)dτµ̇j(x)+

+L̇m+1(x) lim
t→T −0

ũm+1(t, x) + Lm+1(x) lim
t→T −0

ṽm+1(t, x)+

+
m+1∑
j=1

tj∫
tj−1

{
∂Kj(τ, x)

∂x
ũj(τ, x) +Kj(τ, x)ṽj(τ, x)

}
dτ = φ′(x), x ∈ [0, ω], (3.15)

then passing to the limit at t → tr − 0 in right-hand part of (3.14), we find lim
t→tr−0

ṽr(t, x),

r = 1,m+ 1, ṽr(τ, x), x ∈ [0, ω]. Substituting them into (3.9) and (3.15), multiplying both
parts of (3.15) by h = tm+1−tm > 0, for the unknown vector-functions µr(x), r = 1,m+ 1,
we obtain the system of m+ 1 ordinary differential equations of first order unsolved with
respect to derivatives:

Ql(m,x)µ̇(x) = −Ẽl(m,x)µ(x)−
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−H̃l(m,x, ũ, w̃) − G̃l(m,x, ṽ) − F̃l(m,x), x ∈ [0, ω], (3.16)
where

Ql(m,x) =∣∣∣∣∣∣∣∣
hL̃1(x) hL̃2(x) hL̃3(x) .. hL̃m(x) h(L̃m+1(x) + Lm+1(x)[I + Dl,m+1(T, x)])

I + Dl,1(tl, x) −I 0 .. 0 0
0 I + Dl,2(t2, x) −I .. 0 0

. . . . . . . . . .. . . . . . .
0 0 0 .. I + Dl,m(tm, x) −I

∣∣∣∣∣∣∣∣
L̃j(x) = Lj−1(x) +

tj∫
tj−1

Kj(τ, x)[I +Dl,j(τ, x)]dτ,

I is identity matrix on dimension n× n,
Ẽl(m,x) =∣∣∣∣∣∣∣∣

hK̃1(x) hK̃2(x) hK̃3(x) .. hK̃m(x) h(K̃m+1(x) + L̇m+1(x) + Lm+1(x)El,m+1(T, x))
El,1(tl, x) 0 0 .. 0 0

0 El,2(t2, x) 0 .. 0 0
. . . . . . . . . .. . . . . . .
0 0 0 .. El,m(tm, x) 0

∣∣∣∣∣∣∣∣,

K̃j(x) = L̇j−1(x) +
tj∫

tj−1

∂Kj(τ, x)
∂x

dτ +
tj∫

tj−1

Kj(τ, x)El,j(τ, x)dτ, j = 1,m+ 1,

H̃l(m,x, ũ, w̃) =
(
h

m+1∑
j=1

tj∫
tj−1

{∂Kj(τ, x)
∂x

ũj(τ, x) +Kj(τ, x)Hl,j(τ, x, ũj , w̃j)
}
dτ+

+hL̇m+1(x) lim
t→T −0

ũm+1(t, x),Hl,1(m,x, w̃1, ũ1), ..., Hl,m(m,x, w̃m, ũm)
)′
,

G̃l(m,x, ṽ) =
(
h

m+1∑
j=1

tj∫
tj−1

Kj(τ, x)Gl,j(τ, x, ṽj)dτ + hLm+1(x)Gl,m+1(T, x, ṽm+1),

Gl,1(m,x, ṽ1), . . . , Gl,m(m,x, ṽm)
)′
,

F̃l(m,x) =
(

−hφ′(x) + h
m+1∑
j=1

tj∫
tj−1

Kj(τ, x)Fl,j(τ, x)dτ + hLm+1(x)Fl,m+1(T, x),

Fl,1(t1, x), . . . , Fl,m(tm, x)
)′
.

The matrix Ql(m,x) has a special structure, so for any x ∈ [0, ω] it translates the elements
of Rn(m+1) into Rn(m+1), and

||Ql(m,x)|| ≤

≤ 1 + h
m∑

i=0
||Li(x)|| + max

(
h||Lm+1(x)|| + h

m+1∑
j=1

tj∫
tj−1

||Kj(τ, x)||dτ, 1
) l∑

s=0

[α(x)h̃]s

s!
,

where h̃ = max
i=1,m+1

(ti − ti−1). Continuity of matrices A(t, x) on Ω, Kj(t, x) on Ωj , j =

1,m+ 1, and Li(x), i = 0,m+ 1, on [0, ω], respectively, leads to its continuity by x ∈ [0, ω]
for any l ∈ N.
If the functions µ̇(x) ∈ C([0, ω], Rn(m+1)), and µ(x) ∈ C([0, ω], Rn(m+1)) with components
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µ̇r(x), µr(x), r = 1,m+ 1, are known, then solving the system of integral equations (3.11)–
(3.13), we find the functions w̃([t], x) ∈ C(Ω,Ωr, R

n(m+1)), ṽ([t], x) ∈ C(Ω,Ωr, R
n(m+1)),

and ũ([t], x) ∈ C(Ω,Ωr, R
n(m+1)) with components w̃r(t, x), ṽr(t, x), and ũr(t, x). Function

u(t, x) defined by the equalities

u(t, x) = µr(x) + ũr(t, x), (t, x) ∈ Ωr, r = 1,m+ 1,

u(T, x) = µm+1(x) + lim
t→T −0

ũm+1(t, x), x ∈ [0, ω],

is a solution to initial problem (1.1)–(1.3).
If the functions w̃([t], x) ∈ C(Ω,Ωr, R

n(m+1)), ṽ([t], x) ∈ C(Ω,Ωr, R
n(m+1)), and ũ([t], x) ∈

C(Ω,Ωr, R
n(m+1)) with components w̃r(t, x), ṽr(t, x), and ũr(t, x), are known, then solving

the equation (3.16) under condition (3.10), we find µ̇(x) ∈ C([0, ω], Rn(m+1)), and
µ(x) ∈ C([0, ω], Rn(m+1)) with components µ̇r(x), µr(x), r = 1,m+ 1, and defining again
the function u(t, x) by equalities

u(t, x) = µr(x) + ũr(t, x), (t, x) ∈ Ωr, r = 1,m+ 1,
u(T, x) = µm+1(x) + lim

t→T −0
ũm+1(t, x), x ∈ [0, ω],

we find a solution to problem (1.1)–(1.3).
Here the unknowns are the functions µ̇(x), µ(x), as well as the functions w̃([t], x),

ṽ([t], x), and ũ([t], x). Therefore, we apply an iterative method and find the solution of
functional relations (3.11)–(3.13), (3.16) with condition (3.10) as the limits of sequences
{µ̇(k)(x)}, {µ(k)(x)}, {w̃(k)([t], x)}, {ṽ(k)([t], x)}, {ũ(k)([t], x)}, k = 0, 1, 2, ..., defining by
the following algorithm:
0th step. In the right-hand side of (3.16), assuming µr(x) = ψ(tr−1), ṽr(t, x) = 0,
w̃r(t, x) = ψ̇(t), and ũr(t, x) = ψ(t) − ψ(tr−1), r = 1,m+ 1, and taking into account that
under selected ∈ N, the matrix Ql(m,x) is invertible for all x ∈ [0, ω], from the system
of equations (3.16) we determine µ̇(0)(x) ∈ C([0, ω], Rn(m+1)). Using the condition (3.10),
we find the function µ

(0)
r (x):

µ(0)
r (x) = ψ(tr−1) +

x∫
0

µ̇(0)
r (ξ)dξ, r = 1,m+ 1.

From the system of integral equations (3.11)–(3.13), where µr(x) = µ
(0)
r (x),

µ̇r(x) = µ̇
(0)
r (x), r = 1,m+ 1, we find the functions w̃

(0)
r (t, x), ṽ(0)

r (t, x), ũ(0)
r (t, x), (t, x) ∈

Ωr, r = 1,m+ 1.
1st step. From the system of equations (3.16), where we have µ(x) = µ(0)(x),
ṽ(t, x) = ṽ(0)(t, x), w̃(t, x) = w̃(0)(t, x), and ũ(t, x) = ũ(0)(t, x) in the right-hand side, in
virtue of invertibility of Ql(m,x) for x ∈ [0, ω], we determine µ̇(1)(x) ∈ C([0, ω], Rn(m+1)).
Using again the conditions (3.10), we find µ

(1)
r (x) :

µ(1)
r (x) = ψ(tr−1) +

x∫
0

µ̇(1)
r (ξ)dξ, r = 1,m+ 1.

From the system of integral equations (3.11)–(3.13), where µr(x) = µ
(1)
r (x) and µ̇r(x) =

µ̇
(1)
r (x), we determine the functions w̃(1)

r (t, x), ṽ(1)
r (t, x), and ũ

(1)
r (t, x), (t, x) ∈ Ωr, r =

1,m+ 1. And so on.
The process of finding unknown functions is also divided into two parts:

1) finding the introduced parameters µ̇r(x), µr(x) from the system of functional equations
(3.16) with condition (3.10).
2) finding the unknown functions w̃r(t, x), ṽr(t, x), and ũr(t, x), from the Goursat problems
for the system of hyperbolic equations (3.5)–(3.7).
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Sufficient conditions for the feasibility and convergence of the algorithm proposed above,
which provide the unique solvability for inverse problem (3.5)–(3.9), are given by the
following theorem

Theorem 3.1. For some l, l ∈ N, let the matrix Ql(m,x) : Rn(m+1) → Rn(m+1) be
invertible for all x ∈ [0, ω] and the following inequalities be valid:

a) ||[Ql(m,x)]−1|| ≤ γl(m,x);
γl(m,x) is a function, positive and continuous by x ∈ [0, ω];

b) ql(m,x) = γl(m,x) ·
{

max
(
h||Lm+1(x)||, 1

)
+ h

m+1∑
i=1

θi(x)(ti − ti−1)
}

×

×
[
eα(x)h̃ −

l∑
j=0

[α(x)h̃]j
j!

]
≤ χ < 1, χ- const.

Then there exists a unique solution to problem (3.5)–(3.9).

Proof of Theorem 3.1 is analogous to the proof of Theorem 2.1 and is based on the
algorithm provided above.

4. Criteria of unique solvability of problem (1.1)–(1.3)
The proof of Theorem 2.1 yields that the function u∗(t, x), received as the sum µ∗(x) +

ũ∗(t, x), belongs to C(Ω, Rn) and is a classical solution to problem (1.1)–(1.3).
Then the equivalence of problem (1.1)–(1.3) to problem (2.1)–(2.4) leads to the following

assertion

Theorem 4.1. For some l, l = 1, 2, ..., let the (n× n) matrix Ml(x) be invertible for all
x ∈ [0, ω] and the inequalities a), b) of Theorem 3.1 be hold.

Then there exists a unique solution to problem (1.1)–(1.3).

If the system of pairs (µ∗(x), ũ∗([t], x)) is a solution to problem (3.5)–(3.9), found by
the algorithm given in Section 3, then the function u∗(t, x) defined by the equalities

u∗(t, x) = µ∗
r(x) + ũ∗

r(t, x), (t, x) ∈ Ωr, r = 1,m+ 1,

u∗(T, x) = µ∗
m+1(x) + lim

t→T −0
ũ∗

m+1(t, x), x ∈ [0, ω],

where µ∗
r(x), ũ∗

r(t, x) are the components of µ∗(x), ũ∗([t], x), r = 1,m+ 1, respectively, is
a solution to problem (1.1)–(1.3).

Again from the equivalence of problem (1.1)–(1.3) to problem (3.5)–(3.9) we get

Theorem 4.2. For some l, l ∈ N, let the matrix Ql(m,x) : Rn(m+1) → Rn(m+1) be
invertible for all x ∈ [0, ω] and the inequalities a), b) of Theorem 3.1 be hold.

Then there exists a unique solution to problem (1.1)–(1.3).

Existence of number l ∈ N, for which the (n × n) matrix Ml(x) is invertible at all
x ∈ [0, ω], the (n(m+ 1) × n(m+ 1)) matrix Ql(m,x) is invertible at all x ∈ [0, ω], is the
main condition for the unique solvability of investigated problems (2.1)–(2.4) and (3.5)–
(3.9), respectively. Dimension of matrix Ml(x) coincides with dimension of initial system
(1.1). Dimension of matrix Ql(m,x) depends on the numbers of points ti, i = 0,m+ 1.
Since the (n(m + 1) × n(m + 1)) matrix Ql(m,x) has a special structure, then the next
lemmas are valid

Lemma 4.3. The (n(m+ 1) ×n(m+ 1)) matrix Ql(m,x) is invertible for all x ∈ [0, ω] if
only if the (n× n) matrix

M̃l(m,x) = L0(x) +
m+1∑
i=1

Li(x)
1∏

s=i

[I +Dl,s(ts, x)]+



A generalized integral problem for a system of hyperbolic equations and its applications 1527

+
t1∫

t0

K1(τ, x)[I +Dl,1(τ, x)]dτ +
m+1∑
i=2

ti∫
ti−1

Ki(τ, x)[I +Dl,i(τ, x)]dτ
1∏

s=i−1
[I +Dl,s(ts, x)]

is invertible.

Lemma 4.4. If the matrix M̃l(m,x) is invertible, then

[Ql(m,x)]−1 = {νr,j(x)}, r, j = 1,m+ 1,

where
ν1,1(x) = h−1M̃−1

l (m,x);

ν1,j(x) = M̃−1
l (m,x)

{
Lj−1(x) +

m+1∑
i=j

Li(x)
j∏

s=i

[I +Dl,s(ts, x)]+

+
tj∫

tj−1

Kj(τ, x)[I +Dl,j(τ, x)]dτ+

+
m+1∑

r=j+1

tr∫
tr−1

Kr(τ, x)[I +Dl,r(τ, x)]dτ
j∏

s=r−1
[I +Dl,s(ts, x)]

}
, 1 < j ≤ m+ 1;

νr,r(x) =
[
I +Dl,r−1(tr−1, x)

]
νr−1,r(x) − I, r = 2, 3, ...,m+ 1,

νr,j(x) =
[
I +Dl,r−1(tr−1, x)

]
νr−1,j(x), j ̸= r.

Lemma 4.3 demonstrates that the invertibility of matrix Ql(m,x) of dimension (n(m+
1)×n(m+1)) is equivalent to the invertibility of matrix M̃l(m,x) of dimension, coinciding
with the dimension of initial system (1.1). Lemma 4.4 allows us identify block by block
the elements of the inverse matrix [Ql(m,x)]−1.

So, we investigated the nonlocal boundary value problem for the system of hyperbolic
equations of the second order with generalized integral condition. By method of introduc-
tion of functional parameters the considered problem is reduced to the inverse problem
for the system of hyperbolic equations with unknown parameters and additional func-
tional relations. Algorithms of finding solution to the inverse problem for the system of
hyperbolic equations are constructed, and their convergence is proved. The conditions for
existence of unique solution to the inverse problem for the system of hyperbolic equations
are obtained in the terms of initial data. The coefficient conditions for unique solvability of
nonlocal boundary value problem for the system of hyperbolic equations with generalized
integral condition are established. Further, we propose an one numerical approach for
solve this nonlocal problem. Numerical method based on algorithms of parametrization
method [16]. This numerical approach is illustrated by examples.

5. Numerical examples
Consider the following problem with integral condition for system of hyperbolic equa-

tions
∂2u

∂x∂t
= A(t)∂u

∂x
+ f(t), (5.1)

3∑
i=0

Liu(ti, x) +
3∑

j=1

tj∫
tj−1

Kj(τ)u(τ, x)dτ = φ · x, x ∈ [0, ω], (5.2)

u(t, 0) = ψ(t), t ∈ [0, T ]. (5.3)
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Here u = (u1, u2), t0 = 0, t1 = 1
4
, t2 = 1

2
, t3 = T = 1, ω = 1,

A(t) =
(

cos t t2

7 t+ 9

)
, f(t) =

(
et − et cos t+ 6 cos t− t5 − 9t3 + 4t2

−7et − t4 − 9t3 − 6t2 − 77t+ 87

)
,

L0 =
(

1 3
−5 1

)
, L1 =

(
4 −6
8 3

)
, L2 =

(
−1 7
0 −1

)
, L3 =

(
6 8

−5 −1

)
,

Kj(t) = K(t) =
(
t −3
0 12

)
, j = 1, 4, φ =

(
6e− e

1
2 + 4e

1
4 − 399

32
−5e+ 8e

1
4 + 11

64

)
, ψ(t) =

(
t2

t3

)
.

Conditions of Theorem 2.1 are fulfilled for l = 2.
We introduce a new function v(t, x) = ∂u(t,x)

∂x and reduce to an equivalent problem
∂v

∂t
= A(t)v + f(t), (5.4)

L0v(t0, x) +L1v(t1, x) +L2v(t2, x) +L3v(t3, x) +
T∫

0

K(τ)v(τ, x)dτ = φ, x ∈ [0, 1], (5.5)

u(t, x) = ψ(t) +
x∫

0

v(t, ξ)dξ. (5.6)

Here integral relation (5.6) allow us to determine of function u(t, x) for all (t, x) ∈ Ω =
[0, 1] × [0, 1].

From (5.4) and (5.5) it follows that v(t, x) = v(t), i.e. the function v not depends of
x. Then, for for finding of approximate solution to problem (5.4)–(5.5) we we use the
numerical implementation of algorithm of the parametrization method.

Let Φ(t) is fundamental matrix of differential equation ∂v

∂t
= A(t)v.

Consider the system of equations [[16], p. 347]

L0µ1 + L1µ2 + L3µ3 + L4µ4 +
4∑

k=1

tk∫
tk−1

K(t)Φ(t)
t∫

tk−1

Φ−1(τ)A(τ)dτµkdt =

= φ−
4∑

k=1

tk∫
tk−1

K(t)Φ(t)
t∫

tk−1

Φ−1(τ)f(τ)dτdt, (5.7)

µp + Φ(tp)
tp∫

tp−1

Φ−1(τ)A(τ)dτµp −µp+1 = −Φ(tp)
tp∫

tp−1

Φ−1(τ)f(τ)dτ, p = 1, 2, 3. (5.8)

We provide the results of the numerical implementation of algorithm in [16] by parti-
tioning the subintervals [0, 0.25], [0.25, 0.5], [0.5, 1] with step h1 = h2 = h3 = 0.025.

Solving the system of equations (5.7), (5.8) we obtain the numerical values of the pa-
rameters

µh̃
1 =

(
−4.99999905
−4.00000042

)
, µh̃

2 =
(

−4.71597337
−1.73437503

)
, µh̃

3 =
(

−4.35127721
0.62500044

)
,

We find the numerical solutions at the other points of the subintervals using the Runge-
Kutta method of the 4th order to the following Cauchy problems

dṽr

dt
= A(t)ṽr + f(t), t ∈ [tr−1, tr), r = 1, 3,

ṽr(tr−1) = µh̃
r , r = 1, 3,

where ṽr(t) = v(t), t ∈ [tr−1, tr), r = 1, 2, 3.
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Exact solution of the problem (5.4), (5.5) is

v∗(t) =
(

et − 6
t3 + 9t− 4

)
.

Therefore, from integral relation (5.6) we find of exact solution of problem (5.1)–(5.3):

u∗(t, x) = ψ(t) +
x∫

0

v∗(t, ξ)dξ =
(

t2 + (et − 6)x
t3 + (t3 + 9t− 4)x

)
.

The results of calculations of numerical and exact solutions of problem (5.4), (5.5) at
discrete points are presented in the table 1.

For the difference of the corresponding values of the exact and constructed solutions of
problem (5.4), (5.5) the following estimate is true

max
j=0,40

∥v∗(tj) − ṽ(tj)∥ < 0.000002.

Using integral relation (5.6) we find of the difference of the corresponding values of
the exact and constructed solutions of problem (5.1)–(5.3) of an example the following
estimate is true

max
x∈[0,1]

max
j=0,40

∥u∗(tj , x) − ũ(tj , x)∥ < 0.000002.

6. Conclusion
In this paper, we propose a constructive method for solving the generalized integral

problem for the system of hyperbolic equations (1.1)–(1.3). Conditions for the unique
solvability of problem (1.1)–(1.3) are established in terms of solvability of the system of
functional equations and in terms of input data. We develop the algorithms for finding
approximate solutions to problem (1.1)–(1.3) and prove their convergence to the exact so-
lution. Based on the approach proposed, we also construct numerical method for solving
problem (1.1)–(1.3). Further, these results will be developed to problem for partial differ-
ential equations of Sobolev-type [4], nonlocal problems for pseudo-parabolic equations [5]
singular problem for hyperbolic equations [6].
Acknowledgment. This research is funded by the Science Committee of the Ministry
of Education and Science of Republic Kazakhstan (Grant No AP09258829). The author
thanks the referees for his/her careful reading of the manuscript and useful suggestions.
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Table 1. Numerical analysis.

t ṽ1(t) v∗
1(t) ṽ2(t) v∗

2(t)
0 -4.99999905 -5 -4.00000042 -4
0.025 -4.9746839 -4.97468488 -3.77498476 -3.77498437
0.05 -4.9487279 -4.9487289 -3.54987535 -3.549875
0.075 -4.92211482 -4.92211585 -3.32457844 -3.32457812
0.1 -4.89482803 -4.89482908 -3.09900027 -3.099
0.125 -4.86685047 -4.86685155 -2.87304711 -2.87304688
0.15 -4.83816465 -4.83816576 -2.6466252 -2.646625
0.175 -4.80875265 -4.80875378 -2.41964078 -2.41964062
0.2 -4.77859608 -4.77859724 -2.19200012 -2.192
0.225 -4.7476761 -4.74767728 -1.96360945 -1.96360937
0.25 -4.71597337 -4.71597458 -1.73437503 -1.734375
0.275 -4.68346808 -4.68346933 -1.50420312 -1.50420313
0.3 -4.65013992 -4.65014119 -1.27299995 -1.273
0.325 -4.61596805 -4.61596935 -1.04067178 -1.04067187
0.35 -4.58093112 -4.58093245 -0.80712486 -0.807125
0.375 -4.54500722 -4.54500859 -0.57226544 -0.57226563
0.4 -4.50817391 -4.5081753 -0.33599976 -0.336
0.425 -4.47040815 -4.47040958 -0.09823409 -0.09823437
0.45 -4.43168636 -4.43168781 0.14112534 0.141125
0.475 -4.39198432 -4.3919858 0.38217226 0.38217187
0.5 -4.35127721 -4.35127873 0.62500044 0.625
0.525 -4.3095396 -4.30954115 0.86970361 0.86970313
0.55 -4.2667454 -4.26674698 1.11637554 1.116375
0.575 -4.22286787 -4.22286947 1.36510997 1.36510937
0.6 -4.17787956 -4.1778812 1.61600064 1.616
0.625 -4.13175238 -4.13175404 1.86914131 1.86914063
0.65 -4.08445748 -4.08445917 2.12462573 2.124625
0.675 -4.03596531 -4.03596702 2.38254764 2.38254688
0.7 -3.98624555 -3.98624729 2.6430008 2.643
0.725 -3.93526713 -3.9352689 2.90607895 2.90607812
0.75 -3.8829982 -3.88299998 3.17187583 3.171875
0.775 -3.82940607 -3.82940787 3.4404852 3.44048438
0.8 -3.77445725 -3.77445907 3.71200079 3.712
0.825 -3.7181174 -3.71811923 3.98651635 3.98651563
0.85 -3.6603513 -3.66035315 4.26412562 4.264125
0.875 -3.60112286 -3.60112471 4.54492233 4.54492188
0.9 -3.54039505 -3.54039689 4.82900021 4.829
0.925 -3.47812992 -3.47813174 5.116453 5.11645313
0.95 -3.41428855 -3.41429034 5.40737442 5.407375
0.975 -3.34883105 -3.34883279 5.70185816 5.70185938
1 -3.2817165 -3.28171817 5.99999793 6
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