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Abstract
In the present study, a mathematical model of non-steady partial differential equation from
the process of oxygen mass transport in the human pulmonary circulation is proposed.
Mathematical modeling of this kind of problems lead to a non-steady partial differential
equation and for its numerical simulation, we have used finite differences. The aim of
the process is the exact numerical analysis of the study, wherein consistency, stability
and convergence is proposed. The necessity of doing the process is that, we would like
to increase the order of numerical solution to a higher order scheme. An increment in
the order of numerical solution makes the numerical simulation more accurate, also makes
the numerical simulation being more complicated. In addition, the process of numerical
analysis of the study in this order of solution needs more research work.

Mathematics Subject Classification (2020). Primary: 35-02, 35B30, 35B35, 35B65,
Secondary: 92B05

Keywords. non-steady partial differential equation, higher order finite difference
scheme, axial diffusion, convergence, consistency, stability

1. Introduction
A brief review literature is given as follows: Wu et al. [39] have presented a numerical

simulation of blood flow in two anarysmal vessels, using mixture theory, the velocity fields
and spatial distribution of the red blood cell(RBC)-induced platelet transport in Saccular
Aneurysms and the plasma are predicted. Bridges et al. [17] have studied the flow of a
shear-thinning, chemically-reacting fluid that could be used to model the flow of the syn-
ovial fluid. They have solved the balance of linear momentum together with a convection-
diffusion equation. Hund and Antaki [21] have proposed an extended convection-diffusion
model based on the diffusive balance of a fictitious field potential, that accounts for the
gradients of both the dilute phase and the local hematocrit. Wu and Massoudi [40] have
studied the effects of dissipation in the couette flow and heat transfer in a drilling fluid,
and explore the effects of concentration and the shear-rate and temperature-dependent
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viscosity, along with a variable thermal conductivity . Massoudi and Antaki [29] have
developed a model for blood using the theory of interacting continua, that is, the mix-
ture theory. They have discussed, a framework for modelling the rheological behavior
of blood. Skorczewski et al. [34] have considered computational simulations using a 2D
lattice-Boltzmann immersed boundary method were conducted to investigate the motion
of platelets near a vessel wall and close to an intravascular thrombus. Zhan and Wang [44]
have studied mathematical modelling of convection enhanced delivery (CED) of chemo-
therapeutic drugs which can successfully bypass the blood-brain barrier. The modelling
demonstrates the advantages of convection enhanced delivery in enhancing the convec-
tive flow of intenstitial fluid and reducing the drug concentration dilution caused by the
fluid loss from blood stream in the tumour region around the infusion site. The delivery
outcomes of the drug in CED treatments are strongly dependent on its physico-chemical
properties. Kaesler et al. [22] computed computational modelling of oxygen transfer in
artificial lungs. Their study introduces an approach to model the oxygen transfer in blood
on a fiber level with CFD. Plasma and RBCs were implemented as two phases and the re-
action of hemoglobin and oxygen to oxyhemoglobin was included in the convection-diffision
equation in form of a source term. Melnik and Jenkins [30] concentrated on computational
control of flow in airblast atomisers for pulmonary drug delivery. In the paper, PDD sys-
tems based on airblast atomisation have been analysed mathematically. Mountrakis et al.
[31] simulated RBCs and platelets to explore their transport behavior in aneurysmal ge-
ometries. They considered two aneurysms with different aspect ratios in presence of fast
and slow blood flows, and examined the distributions of the cells. Whittle et al. [38] sug-
gest that the presence of intra-aneurysmal clot in giant intracranial aneurysms has little
prognostic significance and does not alter the management or outcome after treatment.
Hirabayashi et al. [20] considered a lattice Boltzmann simulation of blood flow in a ves-
sel deformed by the presence of an aneurysm. They propose a stent positioning factor
as characterizing tool for stent pore design in order to describe the flow reduction effect
and reveal the several flow reduction mechanisms using this effect. Weir [37] is reviewed
the pathological, radiological, and clinical information regarding unruptured intracranial
aneurysm. The author concluded that the current state of knowledge about unruptured
aneurysms does not support the use. The largest diameter of the lesion as the sole criterim
on which to base treatment decisions, although it is undoubted importance. In [27], Li
et al. studied existence and Convergence Results for mathematical model of a nonlinear
static frictional contact problem in elasticity under the mixed boundary conditions. In
[28], Liu et al. studied existence, uniqueness, and continuous dependence on the initial
data for a large class of differential variational-hemivariational inequalities. In [42], Zeng
et al. displayed a principle based on the Fan–Knaster–Kuratowski–Mazurkiewicz prin-
ciple to check the nonemptiness and compactness of the solution set for the differential
variational-hemivariational inequality. In [41], Zeng et al. presented the nonlinear quasi-
hemivariational inequality involving a multivalued map by applying a fixed point theorem
combined with the theory of non-smooth analysis and the Minty technique. In [43], Zeng
et al. studied a new class of a dynamic system which couplesa nonstationary incompress-
ible Navier-Stokes equation involving nonmonotone and multivalued boundary, applying
a limiting procedure to approximate the solutions. In [1], Akinyemi et al. studied optical
soliton solutions of a nonlinear Schrödinger equation involving parabolic law of nonlinear-
ity with the presence of nonlinear dispersion by using the generalized auxiliary equation
technique. In [26], Liu et al. investigated a class of non-coercive variationalhemivariational
inequalities on a Banach space. In [4], Ahmad et al. studied a method based on the vari-
ational iteration for solving the linear and nonlinear differential equations of integer and
fractional order. In [2], Ahmad et al. investigated two new modified variational iteration
algorithms to solve the numerical solution of coupled Burgers’ equations. In [3], Akbar et
al. studied the sine-Gordon expansion approach and the generalized Kudryashov scheme
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to establish broad-spectral solutions including unknown parameters and typical analytical
solutions are recovered as a special case.

Now, apart from the above discussion on convective-diffusion equations and in the
remaining short span of the time and pages in this study, we try to examine higher
order finite difference scheme to approximate time-dependent partial differential equation
including axial and radial diffusions with convective effect of the blood. The standard
convection-diffusion model is based on continuum approach wherein we are using here.
Also, our approach want to examine the effect of axial diffusion since normally most of
the models consider only radial diffusion as we did in our previous studies. Here, it
should be mentioned that, to our knowledge this happens for the first time in this order
of magnitude. Further, this kind of equation has application in bio-engineering problems,
e.g., propagation of material [18], boundary layer of fluids, electrical circuits in cables
and the mass transfer problems with respect to the conditions [7–16, 25]. In addition,
our discussion is on the convergence, consistency, and stability [23] of finite differences
equations which describe the model.

2. Mathematical description of the model as a whole
Let us consider at first, the RBC distribution and the blood flow transport. When

we have succeeded, we can add aneurysms wherein it has been described in the different
literature in introduction in our future study.

In the pulmonary capillaries, we have [5]:

∂ci(p, t)
∂t

= −∇.Ji(p, t) + Ri(p, t), (2.1)

where ci(p, t) is the concentration of the i-th species (i.e., oxygen or carbondioxide) at
the position p and the time t. Position p in Cartesian co-ordinate is (x, y, ζ) or in polar
co-ordinate is (r, θ, ζ) with an origin [8]. The quantity Ji(p, t) is equivalent to the sum of
the fluxes of species and Ri(p, t) is the reaction due to non-linearity of the i-th species in
a unit quantity. Flux vector is the sum of two vectors of convection and diffusion and is
according the Fick’s first law of diffusion. Hence, the mass balance in the Equation (1)
for the i-th species is [25]:

∂ci(p, t)
∂t

= −∇.
[
v(p, t)ci(p, t) − Di(p)∇ci(p, t)

]
+ Ri(p, t), (2.2)

even due Equation (2) is in capillaries, it can be written more precisely as:

∂ci(x, r, t)
∂t

= −v(r)∂ci(x, r, t)
∂x

+ Di∇2ci(x, r, t) + Ri(x, r, t), (2.3)

where ∇2 = ∂2

∂r2 + r−1 ∂
∂r + ∂2

∂x2 .
Initial condition ci(x, r, 0) can be taken arbitrary, or with the solution of the steady-state

Equation (3) as a whole. Boundary conditions could be as the following:

(i) concentration in the beginning is zero or finite and for the flux (radial) ∂ci(x,r,t)
∂x at

x = L (at the end of capillary) is constant,
(ii) ∂ci(x,0,t)

∂r = 0 (symmetry at the center of capillary), and
(iii) another condition is at the capillary wall where the derivative of the equations will
be considered, wherein depend on the species. For oxygen which is combined with the
hemoglobin inside RBCs, concentration in Equation (3) is the concentrations of plasma
and RBCs. Hence, the diffusion has two components, first diffusion in plasma and the
second, diffusion of oxygen which is corresponded to the diffusion of oxygen in the RBCs.
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2.1. In the tissues
We have the following:

∂ci(p, t)
∂t

= ∇.
[
Di(p)∇ci(p, t)

]
+ Ri(p, t), (2.4)

hence, in tissue and at polar co-ordinate, we have:
∂c(x, r, t)

∂t
= D∇2c(x, r, t) + R(t). (2.5)

2.2. Transport inside the components
Differential equations is inside the tissues, and if we want the space of the cells, we

should add again boundary conditions. A condition in connection of blood concentration
and tissue condition which is regarding the influence of capillary wall. With continuity
assumption of the capillary wall, we have:

c(x, a, t)|b = c(x, a, t)
α

|t, (2.6)

D
∂c(x, a, t)

∂r
|b = D

∂c(x, a, t)
∂r

|t, (2.7)

where b and t stands for blood and tissue. Equation (6) announce that blood in the
capillary wall is equivalent to that of tissue (with a coefficient of α) and Equation (2.7)
expresses that there is a balance between capillary and the tissue. If the capillary wall has
a permeability, the Equations (6) and (2.7) will be:

−
[
D

∂c(x, a, t)
∂r

]
|b = p(x)

[
cb(x, a, t) − ct(x, a, t)

α

]
=

−
[
D

∂c(x, a, t)
∂r

]
|t. (2.8)

At the end, mathematical models for the description of transport equations in the pul-
monary capillary and surrounding tissue is considered in this section. Equations (1)–(2.7)
show the vector flux of the convection and diffusion which is based on Fick’s first law of
diffusion. These equations are described in Cartesian and polar co-ordinates. For solution
of equation, arbitrary initial condition and boundary conditions of (i) to (iii) is required.
If capillary wall has a permeability, Equation (2.8) can be used [33].

3. Mathematical description of the model in the present study
New, we consider the following time-dependent partial differential equation as a sim-

plification of section 2. Such an equation occurs in the transport of oxygen in a slab of
capillary which depends on the unsteady transport by convection and the unsteady diffu-
sion (axial as well as radial in the directions). The capillary is assumed to be a 2D channel
of thickness 2a and a = 1, respectively. Hence, the equation is:

ct + ucy = D(cxx + cyy), (3.1)
for 0 ≤ x ≤ 1; 0 ≤ y ≤ 1 and t > 0. In the capillary slab, the flow is laminar and is
assumed to be uniform with an average velocity u = 0.4, and the diffusion coefficient of
oxygen is considered as a constant quantity, D = 0.24. The first and second terms on the
left-side are respectively the rate of change of concentration per unit time and the trans-
port due to convection whereas the terms on the right-side indicate the free molecular
diffusion in the radial as well as axial directions. Equation (3.1) is to be solved under the
following boundary, entrance and initial conditions.
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(i) Boundary conditions:
(a) the flux of flow during the line of symmetry is zero, e.g.,

cx(0, y, t) = 0; for ∀t and 0 ≤ y ≤ 1
(b) at the wall of horizontal line, we have:

c(1, y, t) = 1; for ∀t and 0 ≤ y ≤ 1,
(ii) Entrance conditions:

(c) in the start of axial direction, we have:
c(x, 0, t) = 0; for ∀t and 0 ≤ x ≤ 1,

(d) and at the wall of axial direction for the flux, we have:
cy(x, 1, t) = 1; for ∀t and 0 ≤ x ≤ 1,

(iii) Initial condition:
(e) for the initial condition, we have:

c(x, y, 0) = 0; for x ≥ 0 and y ≥ 0.

3.1. Description of the domain using finite difference scheme
For the finite difference method, we divide the domain of interest into different meshes

of net sizes ∆x, ∆y and ∆t in the x, y, and t directions respectively. Any node of the
mesh can be represented as:

xi = i∆x; i = 0, 1, 2, . . . , (I − 1), . . . , n,

yj = j∆y; j = 1, 2, . . . , (J − 1), . . . , m,

tk = k∆t; k = 1, 2, . . . ,

wherein n∆x = 1 and m∆y = 1. In the finite difference approximation, by applying
the central, backward and forward finite differences for each partial derivative in Equa-
tion (3.1), we obtain different difference equations, which are an approximate solution of
Equation (3.1). In this study, with application of some of these difference equations, we
consider the consistency and stability of these equations because there is an important
connection between the consistency of a stable finite difference scheme and the conver-
gence of its solution to that of the partial differential equation it approximates. Lax’s
equivalence theorem [19,24] states that if a finite difference approximation to a well-posed
linear initial value problem is consistent, then stability is a necessary and sufficient condi-
tion for convergence. The two restrictions which apply to this theorem should be carefully
noted. Firstly, the initial value problem must be well-posed; that is, the solution of the
partial differential equation must depend continuously on the initial data. Secondly, the
theorem only applies to linear problems. The important feature of linear equations is the
sum of separate solutions are also a solution of the equation, which leads to the fact that
the error terms themselves satisfy the homogeneous form of the finite difference equa-
tion which approximates the given differential equation. This theorem is of considerable
practical importance. For while, it is relatively easy to show that a finite difference equa-
tion is stable and that it is consistent with a partial differential equation. It is usually
very difficult to show that the solution of a finite difference equation converges to the
solution of the partial differential equation that it approximates. Lax’s equivalence theo-
rem is needed to prove convergence in order to the finite difference approximation to the
unsteady convective-diffusion Equation of (3.1), because the given differential equation
is linear and is well-posed, it is sufficient to prove consistency and stability of the finite
difference approximations of the Equation (3.1).
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3.2. Appearance of difference equation by application of Crank–Nicolson
method

For the partial derivatives in the Equation (3.1), we use central finite differences at the
points (i∆x, j∆y, (k + 1

2)∆t) as follows:

ct = 1
∆t

(ck+1
i,j − ck

i,j) + O{(∆t)2},

cy = 1
2

[ck
i,j+1 − ck

i,j−1
2∆y

+
ck+1

i,j+1 − ck+1
i,j−1

2∆y

]
+ O{(∆y)2},

cxx = 1
2

[ck
i+1,j − 2ck

i,j + ck
i−1,j

(∆x)2 +
ck+1

i+1,j − 2ck+1
i,j + ck+1

i−1,j

(∆x)2
]

+ O{(∆x)2},

and

cyy = 1
2

[ck
i,j+1 − 2ck

i,j + ck
i,j−1

(∆y)2 +
ck+1

i,j+1 − 2ck+1
i,j + ck+1

i,j−1
(∆y)2

]
+ O{(∆y)2},

we put these approximations in Equation (3.1):

ck+1
i,j − ck

i,j

∆t
+ u

2
[ck

i,j+1 − ck
i,j−1

2∆y
+

ck+1
i,j+1 − ck+1

i,j−1
2∆y

]
= D

2
[ck

i+1,j − 2ck
i,j + ck

i−1,j

(∆x)2 +
ck+1

i+1,j − 2ck+1
i,j + ck+1

i−1,j

(∆x)2
]

+ D

2
[ck

i,j+1 − 2ck
i,j + ck

i,j−1
(∆y)2 +

ck+1
i,j+1 − 2ck+1

i,j + ck+1
i,j−1

(∆y)2
]
.

Hence, we have:

ck+1
i,j − ck

i,j

∆t
+ u

4∆y

[
(ck

i,j+1 − ck
i,j−1) + (ck+1

i,j+1 − ck+1
i,j−1)

]
= D

2(∆x)2
[
(ck

i+1,j − 2ck
i,j + ck

i−1,j) + (ck+1
i+1,j − 2ck+1

i,j + ck+1
i−1,j)

]
+ D

2(∆y)2
[
(ck

i,j+1 − 2ck
i,j + ck

i,j−1) + (ck+1
i,j+1 − 2ck+1

i,j + ck+1
i,j−1)

]
,

which is the difference equation of Equation (3.1). By taking, p = (u∆t)
∆y and q = (D∆t)

(∆x)2 =
(D∆t)
(∆y)2 wherein ∆x = ∆y, we have:

ck+1
i,j − ck

i,j + p

4
[
(ck

i,j+1 − ck
i,j−1) + (ck+1

i,j+1 − ck+1
i,j−1)

]
= q

2
[
(ck

i+1,j − 2ck
i,j + ck

i−1,j) + (ck+1
i+1,j − 2ck+1

i,j + ck+1
i−1,j)

]
+ q

2
[
(ck

i,j+1 − 2ck
i,j + ck

i,j−1) + (ck+1
i,j+1 − 2ck+1

i,j + ck+1
i,j−1)

]
,

wherein, we have:

4ck+1
i,j − 4ck

i,j + p
[
(ck

i,j+1 − ck
i,j−1) + (ck+1

i,j+1 − ck+1
i,j−1)

]
= 2q

[
(ck

i+1,j − 2ck
i,j + ck

i−1,j) + (ck+1
i+1,j − 2ck+1

i,j + ck+1
i−1,j)

]
+ 2q

[
(ck

i,j+1 − 2ck
i,j + ck

i,j−1) + (ck+1
i,j+1 − 2ck+1

i,j + ck+1
i,j−1)

]
,
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and

−2qck+1
i−1,j + (4 + 8q)ck+1

i,j − 2qck+1
i+1,j = 2qck

i−1,j + (4 − 8q)ck
i,j + 2qck

i+1,j

+ p(ck
i,j−1 − ck

i,j+1) + 2q(ck
i,j−1 + ck

i,j+1)

+ p(ck+1
i,j−1 − ck+1

i,j+1) + 2q(ck+1
i,j−1 + ck+1

i,j+1), (3.2)

where, i = 0, 1, . . . , n − 1; j = 1, 2, . . . , m and k = 0, 1, 2, . . .. With application of the
boundary and initial conditions, we have: with respect to Equation (3.1b) for each j and
k, we have:

ck
n,j = 1, (3.3)

with respect to Equation (3.1c) for each i and k, we have:

ck
i,0 = 0. (3.4)

Here, for numerical solution, we consider m=10. Therefore, by using central differences
and with respect to Equation (3.1d), for each i and k, we have:

cy = 1
2

[ck
i,j+1 − ck

i,j−1
2∆y

+
ck+1

i,j+1 − ck+1
i,j−1

2∆y

]
+ O{(∆y)2},

and j = m = 10. ⇒ ∆y = 1
m , ⇒ ∆y = 0.1. Thus,

1 = 1
2

[ck
i,11 − ck

i,9
0.2

+
ck+1

i,11 − ck+1
i,9

0.2
]
, (3.5)

and
ck+1

i,11 + ck
i,11 = 0.4 + ck+1

i,9 + ck
i,9; (3.6)

where we use the terms ck+1
i,11 + ck

i,11 from Equation (3.6) in the numerical solution of
Equation (3.1). With respect to Equation (3.1e) for each i and j, we have:

c0
i,j = 0, (3.7)

and with respect to Equation (3.1a) for each j and k, we have:

cx = 1
2

[ck
i+1,j − ck

i−1,j

2∆x
+

ck+1
i+1,j − ck+1

i−1,j

2∆x

]
+ O{(∆x)2},

at i = 0, we have:

0 = 1
2

[ck
1,j − ck

−1,j

2∆x
+

ck+1
1,j − ck+1

−1,j

2∆x

]
,

and therefore,
ck+1

−1,j + ck
−1,j = ck+1

1,j + ck
1,j . (3.8)

Now in Equation(3.2), we have:

− 2qck+1
−1,j + (4 + 8q)ck+1

0,j − 2qck+1
1,j = 2qck

−1,j + (4 − 8q)ck
0,j + 2qck

1,j

+ p(ck
0,j−1 − ck

0,j+1) + 2q(ck
0,j−1 + ck

0,j+1) + p(ck+1
0,j−1 − ck+1

0,j+1) + 2q(ck+1
0,j−1 + ck+1

0,j+1),

with application of Equation (3.8), we have:

−2q(ck+1
1,j + ck

1,j) + (4 + 8q)ck+1
0,j − 2qck+1

1,j = (4 − 8q)ck
0,j + 2qck

1,j + p(ck
0,j−1 − ck

0,j+1)

+ 2q(ck
0,j−1 + ck

0,j+1) + p(ck+1
0,j−1 − ck+1

0,j+1) + 2q(ck+1
0,j−1 + ck+1

0,j+1),

wherein,

(4 + 8q)ck+1
0,j − 4qck+1

1,j = (4 − 8q)ck
0,j + 4qck

1,j + p(ck
0,j−1 − ck

0,j+1)

+ 2q(ck
0,j−1 + ck

0,j+1) + p(ck+1
0,j−1 − ck+1

0,j+1) + 2q(ck+1
0,j−1 + ck+1

0,j+1). (3.9)
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Now by putting i = n − 1, in Equation (3.2), we have:

−2qck+1
n−2,j + (4 + 8q)ck+1

n−1,j − 2qck+1
n,j = 2qck

n−2,j + (4 − 8q)ck
n−1,j + 2qck

n,j

+ p(ck
n−1,j−1 − ck

n−1,j+1) + 2q(ck
n−1,j−1 + ck

n−1,j+1)

+ p(ck+1
n−1,j−1 − ck+1

n−1,j+1) + 2q(ck+1
n−1,j−1 + ck+1

n−1,j+1),

and with application of Equation (3.3), we have:

−2qck+1
n−2,j + (4 + 8q)ck+1

n−1,j − 2q = 2qck
n−2,j + (4 − 8q)ck

n−1,j + 2q

+ p(ck
n−1,j−1 − ck

n−1,j+1) + 2q(ck
n−1,j−1 + ck

n−1,j+1)

+ p(ck+1
n−1,j−1 − ck+1

n−1,j+1) + 2q(ck+1
n−1,j−1 + ck+1

n−1,j+1),

hence, we have:

−2qck+1
n−2,j + (4 + 8q)ck+1

n−1,j = 2qck
n−2,j + (4 − 8q)ck

n−1,j + p(ck
n−1,j−1 − ck

n−1,j+1)

+ 2q(ck
n−1,j−1 + ck

n−1,j+1) + p(ck+1
n−1,j−1 − ck+1

n−1,j+1)

+ 2q(ck+1
n−1,j−1 + ck+1

n−1,j+1) + 4q. (3.10)

Now with application of Equations (3.2), (3.9) and (3.10), the matrix form of Equation
(3.1) can be as follows:

Acj,k+1 = Bcj,k + p[cj−1,k − cj+1,k] + 2q[cj−1,k + cj+1,k]
+ p[cj−1,k+1 − cj+1,k+1] + 2q[cj−1,k+1 + cj+1,k+1] + d, (3.11)

where, A and B are square matrices of tri-diagonal dimensions of order n as follows:

A =



4 + 8q −4q

−2q 4 + 8q −2q

. . . . . . . . .

−2q 4 + 8q −2q

−2q 4 + 8q


,

and

B =



4 − 8q 4q

2q 4 − 8q 2q

. . . . . . . . .

2q 4 − 8q 2q

2q 4 − 8q


,

d and cj,k+1 are column vectors of order n as bellows:

d =
[
0, 0, . . . , 0, 4q

]T

, cj,k+1 =
[
ck+1

0,j , ck+1
1,j , . . . , ck+1

n−1,j

]T

,

wherein with the solution of this system by using Gauss elimination method or Gauss-
Seidel method or Thomas algorithm, the cj,k+1 can be find.
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3.3. The Truncation error and consistency
Difference equation of Equation (3.1) is as follows:

F k
i,j(c) = 1

∆t
(ck+1

i,j − ck
i,j) + u

4∆y

[
(ck

i,j+1 − ck
i,j−1) + (ck+1

i,j+1 − ck+1
i,j−1)

]
− D

2(∆x)2

[
(ck

i+1,j − 2ck
i,j + ck

i−1,j) + (ck+1
i+1,j − 2ck+1

i,j + ck+1
i−1,j)

]
− D

2(∆y)2

[
(ck

i,j+1 − 2ck
i,j + ck

i,j−1) + (ck+1
i,j+1 − 2ck+1

i,j + ck+1
i,j−1)

]
.

Since Γk
i,j = F k

i,j(c); therefore by taking s = ∆t, r = ∆y and h = ∆x and applying Taylor
series [24] about the point (i∆x, j∆y, k∆t), we have:

∗ ck+1
i,j = ck

i,j + s
∂c

∂t
|ki,j + s2

2!
∂2c

∂t2 |ki,j + . . . , (3.12)

∗ ck
i,j+1 = ck

i,j + r
∂c

∂y
|ki,j + r2

2!
∂2c

∂y2 |ki,j + r3

3!
∂3c

∂y3 |ki,j + . . . ,

∗ ck
i,j−1 = ck

i,j − r
∂c

∂y
|ki,j + r2

2!
∂2c

∂y2 |ki,j − r3

3!
∂3c

∂y3 |ki,j + . . . ,

∗ ck
i+1,j = ck

i,j + h
∂c

∂x
|ki,j + h2

2!
∂2c

∂x2 |ki,j + h3

3!
∂3c

∂x3 |ki,j + . . . ,

∗ ck
i−1,j = ck

i,j − h
∂c

∂x
|ki,j + h2

2!
∂2c

∂x2 |ki,j − h3

3!
∂3c

∂x3 |ki,j + . . . ,

∗ck+1
i,j+1 = ck

i,j + s
∂c

∂t
|ki,j + r

∂c

∂y
|ki,j + s2

2!
∂2c

∂t2 |ki,j + 2sr

2!
∂2c

∂t∂y
|ki,j

+ r2

2!
∂2c

∂y2 |ki,j + s3

3!
∂3c

∂t3 |ki,j + 3s2r

3!
∂3c

∂t2∂y
|ki,j + 3sr2

3!
∂3c

∂t∂y2 |ki,j

+ r3

3!
∂3c

∂y3 |ki,j + s4

4!
∂4c

∂t4 |ki,j + r4

4!
∂4c

∂y4 |ki,j + . . . ,

∗ck+1
i,j−1 = ck

i,j + s
∂c

∂t
|ki,j − r

∂c

∂y
|ki,j + s2

2!
∂2c

∂t2 |ki,j − 2sr

2!
∂2c

∂t∂y
|ki,j

+ r2

2!
∂2c

∂y2 |ki,j + s3

3!
∂3c

∂t3 |ki,j − 3s2r

3!
∂3c

∂t2∂y
|ki,j + 3sr2

3!
∂3c

∂t∂y2 |ki,j

− r3

3!
∂3c

∂y3 |ki,j + . . . ,

∗ck+1
i+1,j = ck

i,j + s
∂c

∂t
|ki,j + h

∂c

∂x
|ki,j + s2

2!
∂2c

∂t2 |ki,j + 2sh

2!
∂2c

∂t∂x
|ki,j

+ h2

2!
∂2c

∂x2 |ki,j + s3

3!
∂3c

∂t3 |ki,j + 3s2h

3!
∂3c

∂t2∂x
|ki,j + 3sh2

3!
∂3c

∂t∂x2 |ki,j

+ h3

3!
∂3c

∂x3 |ki,j + . . . ,
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∗ck+1
i−1,j = ck

i,j + s
∂c

∂t
|ki,j − h

∂c

∂x
|ki,j + s2

2!
∂2c

∂t2 |ki,j − 2sh

2!
∂2c

∂t∂x
|ki,j

+ h2

2!
∂2c

∂x2 |ki,j + s3

3!
∂3c

∂t3 |ki,j − 3s2h

3!
∂3c

∂t2∂x
|ki,j + 3sh2

3!
∂3c

∂t∂x2 |ki,j

− h3

3!
∂3c

∂x3 |ki,j + . . . .

In the following expressions, we can find Γk
i,j .

F k
i,j(c) = 1

s

[
ck+1

i,j − ck
i,j

]
+ u

4r

[
(ck

i,j+1 − ck
i,j−1) + (ck+1

i,j+1 − ck+1
i,j−1)

]
− D

2h2

[
(ck

i+1,j − ck
i,j) + (ck

i−1,j − ck
i,j) + (ck+1

i+1,j − ck+1
i,j ) + (ck+1

i−1,j − ck+1
i,j )

]
− D

2r2

[
(ck

i,j+1 − ck
i,j) + (ck

i,j−1 − ck
i,j) + (ck+1

i,j+1 − ck+1
i,j ) + (ck+1

i,j−1 − ck+1
i,j )

]
,

⇒ F k
i,j(c) = 1

s

(
ck

i,j + s
∂c

∂t

∣∣k
i,j

+ s2

2!
∂2c

∂t2
∣∣k
i,j

+ s3

3!
∂3c

∂t3
∣∣k
i,j

+ . . . − ck
i,j

)
+ u

4r

[(
ck

i,j + r
∂c

∂y

∣∣k
i,j

+ r2

2!
∂2c

∂y2
∣∣k
i,j

+ r3

3!
∂3c

∂y3
∣∣k
i,j

+ . . . − ck
i,j

)
−

(
ck

i,j − r
∂c

∂y

∣∣k
i,j

+ r2

2!
∂2c

∂y2
∣∣k
i,j

− r3

3!
∂3c

∂y3
∣∣k
i,j

+ . . . − ck
i,j

)
+

(
ck+1

i,j + r
∂c

∂y

∣∣k+1
i,j

+ r2

2!
∂2c

∂y2
∣∣k+1
i,j

+ r3

3!
∂3c

∂y3
∣∣k+1
i,j

+ . . . − ck+1
i,j

)
−

(
ck+1

i,j − r
∂c

∂y

∣∣k+1
i,j

+ r2

2!
∂2c

∂y2
∣∣k+1
i,j

− r3

3!
∂3c

∂y3
∣∣k+1
i,j

+ . . . − ck+1
i,j

)]
− D

2h2

[(
ck

i,j + h
∂c

∂x

∣∣k
i,j

+ h2

2!
∂2c

∂x2
∣∣k
i,j

+ h3

3!
∂3c

∂x3
∣∣k
i,j

+ . . . − ck
i,j

)
+

(
ck

i,j − h
∂c

∂x

∣∣k
i,j

+ h2

2!
∂2c

∂x2
∣∣k
i,j

− h3

3!
∂3c

∂x3
∣∣k
i,j

+ . . . − ck
i,j

)
+

(
ck+1

i,j + h
∂c

∂x

∣∣k+1
i,j

+ h2

2!
∂2c

∂x2
∣∣k+1
i,j

+ h3

3!
∂3c

∂x3
∣∣k+1
i,j

+ . . . − ck+1
i,j

)
+

(
ck+1

i,j − h
∂c

∂x

∣∣k+1
i,j

+ h2

2!
∂2c

∂x2
∣∣k+1
i,j

− h3

3!
∂3c

∂x3
∣∣k+1
i,j

+ . . . − ck+1
i,j

)]
− D

2r2

[(
ck

i,j + r
∂c

∂y

∣∣k
i,j

+ r2

2!
∂2c

∂y2
∣∣k
i,j

+ r3

3!
∂3c

∂y3
∣∣k
i,j

+ . . . − ck
i,j

)
+

(
ck

i,j − r
∂c

∂y

∣∣k
i,j

+ r2

2!
∂2c

∂y2
∣∣k
i,j

− r3

3!
∂3c

∂y3
∣∣k
i,j

+ . . . − ck
i,j

)
+

(
ck+1

i,j + r
∂c

∂y

∣∣k+1
i,j

+ r2

2!
∂2c

∂y2
∣∣k+1
i,j

+ r3

3!
∂3c

∂y3
∣∣k+1
i,j

+ . . . − ck+1
i,j

)
+

(
ck+1

i,j − r
∂c

∂y

∣∣k+1
i,j

+ r2

2!
∂2c

∂y2
∣∣k+1
i,j

− r3

3!
∂3c

∂y3
∣∣k+1
i,j

+ . . . − ck+1
i,j

)]
,



1668 A. Aminataei, M.H. Derakhshan

⇒ F k
i,j(c) = ∂c

∂t

∣∣k
i,j

+ s

2!
∂2c

∂t2
∣∣k
i,j

+ s2

3!
∂3c

∂t3
∣∣k
i,j

+ . . . + u

4

[
∂c

∂y

∣∣k
i,j

+ r2

3!
∂3c

∂y3
∣∣k
i,j

+ . . . + ∂c

∂y

∣∣k
i,j

+ r2

3!
∂3c

∂y3 |ki,j + . . . + ∂c

∂y

∣∣k+1
i,j

+ r2

3!
∂3c

∂y3 |k+1
i,j + . . . + ∂c

∂y

∣∣k+1
i,j

+ r2

3!
∂3c

∂y3 |k+1
i,j + . . .

]
− D

2

[1
2

∂2c

∂x2 |ki,j + h2

4!
∂4c

∂x4 |ki,j + . . . + 1
2

∂2c

∂x2 |ki,j + h2

4!
∂4c

∂x4 |ki,j + . . . + 1
2

∂2c

∂x2 |k+1
i,j

+ h2

4!
∂4c

∂x4 |k+1
i,j + . . . + 1

2
∂2c

∂x2 |k+1
i,j + h2

4!
∂4c

∂x4 |k+1
i,j + . . .

]
− D

2

[1
2

∂2c

∂y2 |ki,j + r2

4!
∂4c

∂y4 |ki,j + . . . + 1
2

∂2c

∂y2 |ki,j + r2

4!
∂4c

∂y4 |ki,j + . . .

+ 1
2

∂2c

∂y2 |k+1
i,j + r2

4!
∂4c

∂y4 |k+1
i,j + . . . + 1

2
∂2c

∂y2 |k+1
i,j + r2

4!
∂4c

∂y4 |k+1
i,j + . . .

]
,

⇒ F k
i,j(c) = ∂c

∂t

∣∣k
i,j

+ s

2!
∂2c

∂t2
∣∣k
i,j

+ s2

3!
∂3c

∂t3
∣∣k
i,j

+ . . . + u

4

[
∂c

∂y

∣∣k
i,j

+ r2

3!
∂3c

∂y3 |ki,j + . . . + ∂c

∂y

∣∣k
i,j

+ r2

3!
∂3c

∂y3 |ki,j + . . . +
( ∂c

∂y

∣∣k
i,j

+ s
∂2c

∂t∂y

∣∣k
i,j

+ . . .
)

+ r2

3!
( ∂3c

∂y3 |ki,j + s
∂4c

∂t∂y3
∣∣k
i,j

+ . . .
)

+
( ∂c

∂y

∣∣k
i,j

+ s
∂2c

∂t∂y
|ki,j + . . .

)
+ r2

3!
( ∂3c

∂y3 |ki,j + s
∂4c

∂t∂y3 |ki,j + . . .
)]

− D

2

[1
2

∂2c

∂x2 |ki,j + h2

4!
∂4c

∂x4 |ki,j + . . . + 1
2

∂2c

∂x2 |ki,j + h2

4!
∂4c

∂x4 |ki,j + . . .

+ 1
2

( ∂2c

∂x2 |ki,j + s
∂3c

∂t∂x2 |ki,j + . . .
)

+ h2

4!
( ∂4c

∂x4 |ki,j + s
∂5c

∂t∂x4 |ki,j + . . .
))

+ 1
2

( ∂2c

∂x2 |ki,j + s
∂3c

∂t∂x2 |ki,j + . . . + h2

4!
( ∂4c

∂x4 |ki,j + s
∂5c

∂t∂x4 |ki,j + . . .
)]

− D

2

[1
2

∂2c

∂y2 |ki,j + r2

4!
∂4c

∂y4 |ki,j + . . . + 1
2

∂2c

∂y2 |ki,j + r2

4!
∂4c

∂y4 |ki,j + . . .

+ 1
2

( ∂2c

∂y2 |ki,j + s
∂3c

∂t∂y2 |ki,j + . . .
)

+ r2

4!
( ∂4c

∂y4 |ki,j + s
∂5c

∂t∂y4 |ki,j + . . .
)

+ 1
2

( ∂2c

∂y2 |ki,j + s
∂3c

∂t∂y2 |ki,j + . . .
)

+ r2

4!
( ∂4c

∂y4 |ki,j + s
∂5c

∂t∂y4 |ki,j + . . .
)]

,

⇒ F k
i,j(c) = ∂c

∂t

∣∣k
i,j

+ s

2!
∂2c

∂t2
∣∣k
i,j

+ s2

3!
∂3c

∂t3
∣∣k
i,j

+ u

4

{
4 ∂c

∂y

∣∣k
i,j

+ 2s
∂2c

∂t∂y
|ki,j + 4r2

3!
( ∂3c

∂y3
∣∣k
i,j

+ 2r2

3!
(
2s

∂4c

∂t∂y3
∣∣k
i,j

)}
− D

2

{
2 ∂2c

∂x2
∣∣k
i,j

+ s
∂3c

∂t∂x2 |ki,j + h2

3!
∂4c

∂x4
∣∣k
i,j

+ 2h2

4!
s

∂5c

∂t∂x4
∣∣k
i,j

}
− D

2

{
2 ∂2c

∂y2
∣∣k
i,j

+ s
∂3c

∂t∂y2 |ki,j + r2

3!
∂4c

∂y4
∣∣k
i,j

+ 2r2

4!
s

∂5c

∂t∂y4
∣∣k
i,j

}
,
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⇒ F k
i,j(c) = ∂c

∂t

∣∣k
i,j

+ u
∂c

∂y

∣∣k
i,j

− D
∂2c

∂x2
∣∣k
i,j

− D
∂2c

∂y2
∣∣k
i,j

+ s

2
∂2c

∂t2
∣∣k
i,j

+ s

2
u

∂2c

∂t∂y

∣∣k
i,j

− s

2
D

∂3c

∂t∂x2
∣∣k
i,j

− s

2
D

∂3c

∂t∂y2
∣∣k
i,j

+ s2

3!
∂3c

∂t3
∣∣k
i,j

+ u

4
(4r2

3!
∂3c

∂y3
∣∣k
i,j

+ 4r2

4!
s

∂4c

∂t∂y3
∣∣k
i,j

)
− D

2
(h2

3!
∂4c

∂x4
∣∣k
i,j

+ 2h2

4!
s

∂5c

∂t∂x4
∣∣k
i,j

)
− D

2
(r2

3!
∂4c

∂y4
∣∣k
i,j

+ 2r2

4!
s

∂5c

∂t∂y4
∣∣k
i,j

)
,

with respect to Equation (3.1),we have:

∂c

∂t
+ u

∂c

∂y
− D

∂2c

∂x2 − D
∂2c

∂y2 = 0.

And by obtaining derivative with respect to time t, we have:

∂2c

∂t2 + u
∂2c

∂t∂y
− D

∂3c

∂t∂x2 − D
∂3c

∂t∂y2 = 0,

therefore, we have:

F k
i,j(c) = s2

3!
∂3c

∂t3
∣∣k
i,j

+ u
(r2

3!
∂3c

∂y3
∣∣k
i,j

+ r2

3!
s

∂4c

∂t∂y3
∣∣k
i,j

)
− D

(h2

3!
∂4c

∂x4
∣∣k
i,j

+ 2h2

4!
s

∂5c

∂t∂x4
∣∣k
i,j

)
− D

(r2

3!
∂4c

∂y4
∣∣k
i,j

+ 2r2

4!
s

∂5c

∂t∂y4
∣∣k
i,j

)
.

Hence, the introduced difference equation is consistent with the unsteady convective-
diffusion (in both directions) partial differential Equation (3.1) and has the error of order
of O

(
(∆t)2 + (∆x)2 + (∆y)2)

wherein we want to achieve.

3.4. Stability of the mathematical model
With respect to the matrix form of Equation (3.11) and the boundary conditions on y,

we have:

−(−p + 2q)ck+1
j+1 + Ack+1

j − (p + 2q)ck+1
j−1 = (−p + 2q)ck

j+1

+ Bck
j + (p + 2q)ck

j−1 + d, (3.13)

for j = 2, 3, . . . , m − 2; and in j = 1, we have:

−(−p + 2q)ck+1
2 + Ack+1

1 = (−p + 2q)ck
2 + Bck

1 + d, (3.14)

and in j = m − 1, we have:

1
2

(ck+1
m − ck+1

m−2
2∆y

)
+ 1

2
(ck

m − ck
m−2

2∆y

)
= 1.

Hence,

Ack+1
m−1 − 4qck+1

m−2 = Bck
m−1 + 4qck

m−2 + d + (−p + 2q)4∆y. (3.15)

The relations (3.13), (3.14) and (3.15) in matrix form can be written as follows:

Mck+1 = Nck + Q,
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where,

M =



A (p − 2q)I

−(p + 2q)I A (p − 2q)I

. . . . . . . . .

−(p + 2q)I A (p − 2q)I

−4qI A


m2×m2

,

ck+1 =
[
ck+1

1,1 , ck+1
2,1 , . . . , ck+1

m,1 , ck+1
1,2 , ck+1

2,2 , . . . , ck+1
m,2 , . . . , ck+1

m,m

]T

m2×1
,

ck =
[
ck

1,1, ck
2,1, . . . , ck

m,1, ck
1,2, ck

2,2, . . . , ck
m,2, . . . , ck

m,m

]T

m2×1
,

N =



B (−p + 2q)I

(p + 2q)I B (−p + 2q)I

. . . . . . . . .

(p + 2q)I B (−p + 2q)I

(p + 2q)I B


m2×m2

;

Under matrix Q:

Q =


d
d
...

d + f


m2×1

,

and f = 4(−p + 2q)∆yI. With respect to the stability concept by [35], here we pursue the
suitable stability condition for the above difference equation. Suppose at first, for a small
perturbation, we put ck+1

∗ instead of ck+1 and ck
∗ instead of ck. Then, we consider:

M(ck+1 − ck+1
∗ ) = N(ck − ck

∗) + Q − Q;

For, ek+1 = ck+1 − ck+1
∗ , we have: Mek+1 = Nek; therefore, ek+1 = M−1Nek; hence,

∥ek+1∥1 = ∥M−1Nek∥1 ≤ ∥M−1N∥1∥ek∥1 = ∥M−1N∥k+1
1 ∥e0∥1; also, we have: ∥M−1N∥1 ≤

∥M−1∥1∥N∥1 (we take ∥.∥1 [32]). Since matrix M is strictly diagonally dominant, it
is invertible and ∥M−1∥1 ̸= 0. Define T = M

∥M+I∥1
, ∥T∥1 ≤ 1. Obviously, we have:

∥M + I∥1 ̸= 0 (wherein ∥M + I∥1 = p + 2q + 3),[
I − (T − I)T −1][

I + T − I
]

= I,

∥T −1∥1 = ∥I − (T − I)T −1∥1 ≤ ∥I∥1 + ∥T − I∥1∥T −1∥1,

(1 − ∥T − I∥1)∥T −1∥1 ≤ 1; (∥T − I∥1 ≤ 1) −→ ∥T −1∥1 ≤ 1
1 − ∥T − I∥1

.
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Figure 1. The numerical simulation of the proposed approximation method for
equation (3.1) with ∆x = 0.01, ∆t = 0.01, ∆y = 0.01, p = 0.02, q = 0.12, u =
0.4, D = 0.24

Figure 2. The numerical simulation of the proposed approximation method for
equation (3.1) with ∆x = 0.05, ∆t = 0.05, ∆y = 0.05, p = 0.02, q = 0.12, u =
0.4, D = 0.3

Now, by substitution of M
∥M+I∥1

, we have:

∥( M

∥M + I∥1
)−1∥1 = ∥M + I∥1∥M−1∥1 ≤ 1

1 − ∥ M
∥M+I∥ − I∥1

;

⇒ ∥M−1∥1 ≤ 1
∥M + I∥1 − ∥M − ∥M + I∥1I∥1

;

⇒ ∥M−1∥1∥N∥1 ≤ ∥N∥1
∥M + I∥1 − ∥M − ∥M + I∥1I∥1

≤ 4 + 14q + 2p

4 + 18q + 2p
< 1.

Hence, for real and positive values of p and q, the difference scheme is unconditionally
stable. This means that for each ∆t, ∆x and ∆y, the difference scheme is unconditionally
stable.
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Figure 3. The numerical simulation of the proposed approximation method for
equation (3.1) with ∆x = 0.01, ∆t = 0.01, ∆y = 0.01, p = 0.02, q = 0.12, u =
0.4, D = 0.7
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Figure 4. The comparison of the obtained solutions of the proposed approxima-
tion method and exat solution for equation (3.1) with various values of D.

Figure 5. Comparison between exact and approximate solution for equation (3.1)
with various values of D.
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Figure 6. Stability of the approximate solution for equation (3.1) with various
values of D.

4. Numerical investigation of the present study
In the present study, the unsteady convective-diffusion (in the both directions) partial

differential equation (3.1) together with the boundary (3.1a, b), entrance (3.1c, d) and
initial (3.1e) conditions is solved numerically by the finite difference scheme. For this,
the first order derivative in time is approximated by the second order difference formula
and the diffusion terms in axial and radial directions is expressed by the second order
Crank-Nicolson difference operator. On one hand, the approximation of convective term
in the governing equation by central differences provides the non-physical oscillation in
the solution. On the other hand, upwind finite difference scheme gives the solution free
from the oscillation but it reduces the accuracy of the solution. Thus, for retaining the
second order accuracy of the solution for convective term, the Crank-Nicolson second order
accuracy of the finite difference scheme is used to approximate the convective term which
provides the solution free from the oscillations. The finite difference formulation leads to
a system of linear algebraic equations which needs a technique for computing the solution.
It may be noted that the system has the tri-diagonal character [36]. Such a system can
be solved by the point iterative methods. However, the convergence of the point iterative
methods is very slow. In order to achieve faster convergence, we can use the line iterative
method. This method uses the tri-diagonal character of the coefficient matrix of equation,
and is easy to solve by the Thomas algorithm. Further, it may be noted that, by using this
technique, the equation involves an unknown c at every row for a fixed time level which
saves the storage on the computer. According to the Lax’s equivalence theorem, mathe-
matical proofs of the numerical solution technique were obtained. Hence, the consistency
and stability of the equations were investigated which assure the convergences. Compu-
tations have been done for ten intervals with x=0.1 in the positive x direction, the step
size y=0.1 in the positive y direction and the time step t=0.05 in the positive t direction.
The programs were tested even for the smaller step sizes. The technique described here
can be used to solve any linear system of unsteady convective-diffusion partial differential
equation where the axial diffusion term is ignored. Further, we may point out that the
technique works in the equations including axial diffusion term as well wherein we have
done here in the form of the equation(9).

5. Numerical results
In this section, we show the numerical simulation of the proposed approximation method

for various values of D, u, ∆x, ∆y, ∆t, p, q to verify the efficiency of the proposed numerical
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method. The numerical simulation of the proposed approximation method in Figures 1 to
4 are shown. The behaviour of the obtained error for different values of D are presented in
Figure 5. In Figure 6 stability of the approximate solution for equation (3.1) with various
values of D are presented.

6. Conclusions
In the present study, we have considered a mathematical model for studying the non-

steady transport of oxygen in a slab of capillary. The capillary is assumed to be a two-
dimensional channel in dimensionless form. We have found that the difference equation
which is described here, has the same higher order of accuracy, wherein we want to achieve.
We have increased the order of accuracy from our previous study O[(∆t) + (∆y) + (∆x)2]
[6], to the present higher order scheme using the Crank–Nicolson method, i.e., O[(∆t)2 +
(∆x)2 + (∆y)2]. For stability condition, we have seen that, the equations presented in the
previous sections, are all stable and the results converges well. Further, numerical results
show that the axial diffusion does not effect the process of the oxygenation in a slab of
the capillary.
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