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ABSTRACT A fractional-order Leslie-Gower prey-predator-parasite system with delay is proposed in this
article. The existence and uniqueness of the solutions, as well as their non-negativity and boundedness, are
studied. Based on the characteristic equations and the conditions of stability and Hopf bifurcation, the local
asymptotic stability of each equilibrium point and Hopf bifurcation of interior equilibrium point are investigated.
Moreover, a Lyapunov function is constructed to prove the global asymptotic stability of the infection-free
equilibrium point. Lastly, numerical examples are studied to verify the validity of the obtained newly results.
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INTRODUCTION

Ecosystem is an extremely complex dynamics system. Mathemati-
cians have great interest in dynamical characteristics of ecosystem.
Especially, ecology and epidemiology attract more and more math-
ematicians’ attention. Although ecology and epidemiology are
two different fields, they get closer and closer for years(Anderson
and May 1980; Zhou et al. 2010; Mbava et al. 2017; Shaikh et al.
2018; Adak et al. 2020). In 1980, Anderson and May first to study
the eco-epidemiological model with disease in the prey(Anderson
and May 1980). Recently, Zhou et al considered a predator-prey
model with modified Leslie-Gower functional response and stud-
ied the Hopf bifurcation of this model(Zhou et al. 2010). They
found that when the rate of infection exceeds a critical value, the
strictly positive interior equilibrium experiences Hopf bifurcation.
The eco-epidemic predator-prey model exhibits interesting dynam-
ics with infected predators. So, Shaikh et al considered the stability
of a Holling type III response mechanism for predation(Shaikh
et al. 2018). The predator faced enormous competition from super-
predators and even faced extinction. The disease was regarded as

Manuscript received: 31 March 2022,
Revised: 21 May 2022,
Accepted: 5 June 2022.

1 13437617328@163.com
2 liguoy@scau.edu.cn
3 weizhouchao@163.com (Corresponding Author)

a biological control that allowed predator populations to recover
from low numbers. Hence, Mbava et al considered a predator-prey
model with disease in super-predator and studied its dynamic
properties(Mbava et al. 2017). In addition, Adak et al analyzed
the chaos and Hopf bifurcation of the delay-induced Leslie-Gower
predator-prey-parasite model(Adak et al. 2020). It can be seen that
research on eco-epidemiological models is a hot topic.

Fractional calculus is an extension of classical calculus. In re-
cent years, fractional calculus has developed rapidly, which has
gradually penetrated into scientific and engineering application
fields. Furthermore, it also has become an important tool in many
fields(Kilbas et al. 2006; Rajagopal et al. 2020; Li and Chen 2004).
Compared with integer-order derivative, the fractional derivative
has better memory. It can excellently describe long-range tempo-
ral memory(Rihan and Rajivganthi 2020). Since most biological
models have long-range temporal memory, it is significant to con-
sider the fractional derivative into account. Currently, research on
this area has some outstanding results(Yousef et al. 2021; Li et al.
2017a; Boukhouima et al. 2017; Moustafa et al. 2020). Yousef et
al analyzed the influence of fear and fractional-order derivative
on system dynamics(Yousef et al. 2021). Li et al investigated the
stability of a fractional-order predator-prey model, which incor-
porates a prey refuge(Li et al. 2017a). Boukhouima et al studied a
fractional-order model to describe the dynamics of human immun-
odeficiency virus infection(Boukhouima et al. 2017). Mousfata et
al consider a fractional-order eco-epidemiological system of prey
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population with disease. Moreover, the dynamics of this model
was analyzed(Moustafa et al. 2020).

Delay plays an important part in ecosystem and it exists uni-
versally. Different models take different biological delays into
account(Tao et al. 2018; Shi et al. 2022; Chinnathambi and Rihan
2018; Fernández-Carreón et al. 2022; Rihan and Rajivganthi 2020;
Xu and Zhang 2013; Huang et al. 2019; Mahmoud et al. 2017; Pu
2020; Alidousti and Mostafavi Ghahfarokhi 2019; Huang et al. 2020;
Deng et al. 2007; Kashkynbayev and Rihan 2021; Yuan et al. 2013).
Compared with the systems without delay, the systems with de-
lays will show more complex nonlinear dynamic behavior. Delay
may cause the equilibrium points instability. Moreover, spreading
of disease is not happen immediately. In general, infectious disease
has an incubation period. Therefore, it is important to take delay
into account for biological model, and it will describe real life more
accurately.

In (Zhou et al. 2010), Zhou et al formulated the following system

dS(t)
dt

= rS(t)(1 − S(t) + I(t)
K

)− βS(t)I(t),

dI(t)
dt

= βS(t)I(t)− cI(t)− c1 I(t)y(t)
I(t) + K1

,

dy(t)
dt

= y(t)(a2 −
c2y(t)

I(t) + K2
),

(1)

and studied the dynamics of (1). Based on the importance of
delay, Adak et al considered delay into account and formulated
the following system(Adak et al. 2020)

dS(t)
dt

= rS(t)(1 − S(t) + I(t)
K

)− βS(t)I(t),

dI(t)
dt

= βS(t − τ)I(t − τ)− cI(t)− c1 I(t)y(t)
I(t) + K1

,

dy(t)
dt

= y(t)(a2 −
c2y(t)

I(t) + K2
).

(2)

They exhibited the dynamic behavior of system (2), such as chaos
and Hopf bifurcation. However, Zhou and Adak et al did not
take the good memory characteristics of fractional derivative
into account, which can well describe long-range temporal mem-
ory. Hence, we consider the fractional derivative into account
for system (2) and establish a fractional-order Leslie-Gower prey-
predator-parasite system with delay

DαS(t) = rS(t)(1 − S(t) + I(t)
K

)− βS(t)I(t),

Dα I(t) = βS(t − τ)I(t − τ)− cI(t)− c1 I(t)y(t)
I(t) + K1

,

Dαy(t) = y(t)(a2 −
c2y(t)

I(t) + K2
).

(3)

The initial conditions of (3) are as follows:

S(t) = η1(t), I(t) = η2(t), y(t) = η3(t), t ∈ [−τ, 0], (4)

where S(t), I(t), y(t) represent the growth rates of susceptible prey,
infected prey and predator population at time t respectively. r
represents intrinsic growth rate of susceptible prey. K represents
environmental prey carrying capacity. β represents infection rate.
c represents predation-independent death rate of infectious prey.
c1 represents maximum predation rate of predator on an infec-
tious prey. K1 represents half-saturation density. a2 represents
intrinsic growth rate of predator. c2 and K2 are positive constants.
Dα denotes α-order Caputo differential derivative, α ∈ (0, 1], and

r, K, β, c, c1, K1, a2, c2, K2 are all nonnegetive. Label R3
+ as the non-

negative cone, η = (η1(t), η2(t), η3(t)) ∈ C([−τ, 0], R3
+), the Ba-

nach space of continuous real-valued functions on the interval
[−τ, 0] with norm ||η|| = sup−τ≤t≤0 |η(t)|, and η1(t) ≥ 0, η2(t) ≥
0, η3(t) ≥ 0, η1(0) > 0, η2(0) > 0, η3(0) > 0.

We aim to investigate the stability of system (3) and how the
delay affects the dynamics of this system. Firstly, we investigate
the existence and uniqueness of the solutions, as well as their
non-negativity and boundedness. Furthermore, we derive the
local asymptotic stability of every equilibrium point. Then, we
demonstrate the global asymptotic stability of the infection-free
equilibrium point by formulating a Lyapunov function. Moreover,
we choose delay as the bifurcation parameter to show interior
equilibrium point occurs Hopf bifurcation under some conditions.
Lastly, we give the numerical examples to back up our results.

The structure of this article is as follows. We describe basic con-
cepts in section 2. The existence and uniqueness of the solutions,
as well as their non-negativity and boundedness are investigated
in section 3. Besides, we derive equilibrium points and the lo-
cal asymptotic stability corresponding to each equilibrium point.
Then, we analyze the Hopf bifurcation of the interior equilibrium
point. We provide two illustrative examples to back up our find-
ings in section 4. Finally, we close the paper in last section.

MATHEMATICAL PRELIMINARIES

Definition 1. (Kilbas et al. 2006) The Riemann-Liouville’s fractional
integral of order α > 0 for a function f is defined as

D−α f (t) =
1

Γ(α)

∫ t

0
(t − s)α−1 f (s)ds, t > 0,

where Γ(·) is the Gamma function.

Definition 2. (Kilbas et al. 2006) The Caputo’s fractional derivative
of order α for a function f is defined as

Dα f (t) =
1

Γ(m − α)

∫ t

0
(t − s)m−α−1 f (m)(s)ds, t > 0,

where 0 ≤ m − 1 ≤ α < m, m ∈ Z+.

.

Lemma 1. (Wang et al. 2011) Consider the following nonlinear
differential equation with Caputo fractional derivative

DαX(t) = f (X(t)) + g(X(t − τ)),

X(t) = Φ(t), t ∈ [−τ, 0],
(5)

where α ∈ (0, 1], X(t) ∈ Rn, τ ≥ 0, then the characteristic equation
of system is

|sαE − A − Be−sτ | = 0,

where A and B is the Jacobian matrix of the function f (X(t)) and
g(X(t)) at the equilibrium point of the system (5). The zero solu-
tion of system (5) is locally asymptotically stable if all the roots of
the characteristic equation restricted to arg(λ) > πα

2 have negative
real parts.

Lemma 2. (Odibat and Shawagfeh 2007) Suppose that f (t) ∈
C[a, b] and Dα f (t) ∈ C[a, b] for 0 < α ≤ 1. If Dα f (t) ≥ 0, ∀t ∈
[a, b], then f (t) is non-decreasing for each t ∈ [a, b]. If Dα f (t) ≤
0, ∀t ∈ (a, b), then f (t) is non-increasing for each t ∈ [a, b].

72 | Yang et al. CHAOS Theory and Applications



Lemma 3. (Li et al. 2010) Consider the system

Dαx(t) = f (t, x), t > t0, (6)

with initial condition x(t0) , where α ∈ (0, 1], f : [t0, ∞)× Ω →
Rn, Ω ⊆ Rn, if f (t, x) satisfies the locally lipschitz condition with
respect to x, then there exists a unique solution of (6) on [t0, ∞)×Ω.

Lemma 4. (Cruz 2015) Let x(t) ∈ R+ be a continuous and deriva-
tive function. Then, for any time instant t ≥ t0,

t0 Dα
t (x(t)− x∗ − x∗ ln

x(t)
x∗

) ≤ (1 − x∗

x(t)
)t0 Dα

t x(t), (7)

where ∀α ∈ (0, 1), x∗ ∈ R+.

Lemma 5. (Li et al. 2017b) Let u(t) ∈ C([0,+∞)). If u(t) satisfies
Dαu(t) ≤ a − bu(t), u(0) = u0, where α ∈ (0, 1], (a, b) ∈ R2 and
b ̸= 0, then

u(t) ≤ (u0 −
a
b
)Eα(−btα) +

a
b

.

MAIN RESULTS

Existence and Uniqueness of solutions

Theorem 6. For any non-negative initial conditions the fractional-
order system (3) has a unique solution.

Proof. Consider the region Π = {(S, I, y) ∈ R3 :
max{|S|, |I|, |y|} ≤ M}, and denote X = (S, I, y), X̂ = (Ŝ, Î, ŷ),
then define a mapping f (X) = ( f1(X), f2(X), f3(X)), where

f1(X) = rS(t)(1 − S(t) + I(t)
K

)− βS(t)I(t),

f2(X) = βS(t − τ)I(t − τ)− cI(t)− c1 I(t)y(t)
I(t) + K1

,

f3(X) = y(t)(a2 −
c2y(t)

I(t) + K2
).

For X, X̂ ∈ Π, then

∥ f (X)− f (X̂)∥ = | f1(X)− f1(X̂)|+ | f2(X)− f2(X̂)|
+ | f3(X)− f3(X̂)|

= |r(S − Ŝ)− r
K
(S2 − Ŝ2)− (

r
K
+ β)(SI − Ŝ Î)|

+ |βI(t − τ)(S(t − τ)− Ŝ(t − τ)) + βŜ(t − τ)×

(I(t − τ)− Î(t − τ))− c(I − Î)− c1 I Î(y − ŷ)
(I + K1)( Î + K1)

− c1K1 I(y − ŷ) + c1K1ŷ(I − Î)
(I + K1)( Î + K1)

|+ |a2(y − ŷ)

− K2c2(y + ŷ)(y − ŷ) + c2 I(y2 − ŷ2)− c2y2(I − Î)
(I + K2)( Î + K2)

|

≤ (r + 3
Mr
K

+ βM)|S − Ŝ|+ M(
r
K
+ β)|I − Î|

+ βM|S(t − τ)− Ŝ(t − τ)|+ βM|I(t − τ)− Î(t − τ)|

+ (c +
c1K1 M

K2
1

)|I − Î|

+ (
c1 M2 + c1K1 M

K2
1

+ a2 +
2MK2c2 + 2M2c2

K2
2

)|y − ŷ|

+
c2 M2

K2
2

|I − Î|

= (r + 3
Mr
K

+ 2βM)|S − Ŝ|+ (M
r
K
+ 2βM + c

+
c1K1 M

K2
1

+
c2 M2

K2
2

)|I − Î|+ (
c1 M2 + c1K1 M

K2
1

+ a2

+
2MK2c2 + 2M2c2

K2
2

)|y − ŷ|

≤ L∥X − X̂∥,

where L = max{(r + 3 Mr
K + 2βM), ( Mr

K + 2βM + c + c1K1 M
K2

1
+

c2 M2

K2
2
), ( c1 M2+c1K1 M

K2
1

+ a2 +
2MK2c2+2M2c2

K2
2

)}. Hence, Lipschitz con-

dition is satisfied for f (X). There exist a unique solution of system
(3) on the basis of Lemma 3. □

Non-negativity of solutions
Theorem 7. All the solutions of system (3) starting from

D+ = {(S, I, y) ∈ R3 : S, I, y ∈ R+},

are non-negative.

Proof. Above all, we derive that the solution S(t) starting from D+

is non-negative, i.e. S(t) ≥ 0 for t ≥ t0. Suppose that is not true,
then there exist t1 > t0 such that S(t) > 0, t0 ≤ t < t1, S(t1) =
0, S(t1

+) < 0. From the first equation of system (3), we get

DαS(t1)|S(t1)=0 = 0.

Based on the Lemma 2, there exsits S(t1
+) = 0 and it contradicts

with S(t1
+) < 0. Hence, we can get S(t) ≥ 0 for t ≥ t0.

If there exist t2 > t0 such that I(t) > 0, t0 ≤ t < t2, I(t2) =
0, I(t2

+) < 0, then we get

Dα I(t2)|I(t2)=0 = βS(t2 − τ)I(t2 − τ) > 0.

Based on the Lemma 2, there exsits I(t2
+) > 0 and it contradicts

with I(t2
+) < 0. So, we get I(t) ≥ 0 for t ≥ t0.
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If there exist a constant t3 > t0 such that y(t) > 0, t0 ≤ t <
t3, y(t3) = 0, y(t3

+) < 0, then we get

Dαy(t3)|y(t3)=0 = 0.

Similarly, we have y(t3
+) = 0, which contradicts with y(t3

+) <
0. Hence, we obtain y(t) ≥ 0 for t ≥ t0. □

Boundedness of solutions

Theorem 8. All solutions of system (3) starting from R3
+ are

bounded.

Proof. Denote

f (S(t)) = rS(t)(1 − S(t) + I(t)
K

)− βS(t)I(t),

F(S(t)) = rS(t)(1 − S(t)
K

),

and let
DαS(t) = f (S(t)), (8)

DαS(t) = F(S(t)). (9)

Assume h(t) is the solution of (8) and H(t) is the solution of (9).
Since f (S(t)) ≤ F(S(t)), we can derive h(t) ≤ H(t) according
to the comparison theorems of fractional-order differential equa-
tions(Hu et al. 2009). Let z1(t) =

rS(t)
K , then (9) become

Dαz1(t) = z1(t)(r − z1(t)). (10)

Denote H̄(t) is the solution of (10), then H̄(t) = rH(t)
K . Based

on the methods in (Li et al. 2019), we can get lim
t→∞

sup z1(t) ≤ m̂,

thus we can derive lim
t→∞

sup S(t) ≤ Km̂
r , denote m = Km̂

r , then

lim
t→∞

sup S(t) ≤ m. Define a function W(t) = S(t − τ) + I(t). Then

DαW(t) = DαS(t − τ) + Dα I(t)

= rS(t − τ)(1 − S(t − τ) + I(t − τ)

K
)

− cI(t)− c1 I(t)y(t)
I(t) + K1

≤ rS(t − τ)− cI(t)
= 2rS(t − τ)− dW(t)
≤ 2rm − dW(t),

where d = min{r, c}. From Lemma 5, we can get

0 ≤ W(t) ≤ (W(0)− 2rm
d

)Eα(−dtα) +
2rm

d
,

where Eα is the Mittag-Leffler function. Hence, we can obtain
lim
t→∞

sup W(t) ≤ 2rm
d . Then lim

t→∞
sup I(t) ≤ 2rm

d . For the third

equation of system (3), we can obtain

Dαy(t) ≤ y(t)(a2 −
dc2y(t)

2rm + dK2
). (11)

Denote dc2
2rm+dK2

= a1, and let z2(t) = a1y(t), then (11) become

Dαz2(t) = z2(t)(a2 − z2(t)). (12)

Based on the methods in (Li et al. 2019), we also can get
lim
t→∞

sup y(t) ≤ m̂. Hence, the proof is completed and the region

is Ω′ = {(S, I, y) ∈ R3
+ : S(t) ≤ m, I(t) ≤ 2rm

d , y(t) ≤ m̂}, where
d = min{r, c}. □

Equilibrium points

Set

DαS(t) = 0, Dα I(t) = 0, Dαy(t) = 0,

then the equilibrium points can be determined.
(1)The trivial equilibrium point is E0(0, 0, 0).
(2)The infection-free and predator-free equilibrium point is
E1(S1, 0, 0), where S1 = K.
(3)The predator-only equilibrium point is E2(0, 0, y2), where y2 =
a2K2

c2
.

(4)The predator-free equilibrium point is E3(S3, I3, 0), where S3 =
c
β , I3 =

r(βK−c)
β(r+βK) . E3 exists if β > β1, where β1 = c

K .
(5)The infection-free equilibrium point is E4(S4, 0, y4), where S4 =

K, y4 = a2K2
c2

.
(6)The interior equilibrium point is E′(S′, I′, y′), where S′ =

1
β [c +

c1a2
c2

K2+I ′
K1+I ′ ], y′ = a2(I ′+K2)

c2
, I′ = −∆2+

√
∆2

2−4∆1∆3
2∆1

, ∆1, ∆2 and

∆3 are the coefficients of the equation ∆1 I′2 + ∆2 I′ + ∆3 = 0, and
∆1 =

r+βK
K > 0, ∆2 = rc1a2

Kβc2
+

K1(r+βK)
K +

r(c−βK)
βK , ∆3 = r

βK [
c1a2K2

c2
+

(c − βK)K1]. E′ exists if β > β2, where β2 = β1 +
c1a2K2
c2KK1

, β1 = c
K .

Suppose E∗(S∗, I∗, y∗) is arbitrary equilibrium point, we trans-
form E∗ into the origin. Let

U1(t) = S(t)− S∗, U2(t) = I(t)− I∗, U3(t) = y(t)− y∗,

then we can rewrite system (3) as

DαU1(t) = r(U1(t) + S∗)(1 − U1(t) + S∗ + U2(t) + I∗

K
)

− β(U1(t) + S∗)(U2(t) + I∗),
DαU2(t) = β(U1(t − τ) + S∗)(U2(t − τ) + I∗)

− c(U2(t) + I∗)− c1(U2(t) + I∗)(U3(t) + y∗)
U2(t) + I∗ + K1

,

DαU3(t) = (U3(t) + y∗)(a2 −
c2(U3(t) + y∗)

U2(t) + I∗ + K2
).

(13)

Taking advantage of Taylor expansion formula and linearizing the
system (13), we can get

DαU1(t) = (r − 2rS∗

K
− rI∗

K
− βI∗)U1(t)

− (
r
K
+ β)S∗U2(t),

DαU2(t) = −(c +
c1K1y∗

(I∗ + K1)2 )U2(t)−
c1 I∗

I∗ + K1
U3(t)

+ βI∗U1(t − τ) + βS∗U2(t − τ),

DαU3(t) =
c2(y∗)2

(I∗ + K2)2 U2(t) + (a2 −
2c2y∗

I∗ + K2
)U3(t).

(14)

Stability

According to Lemma 1, we obtain

V1 =


m11 m12 0

0 m22 m23

0 m32 m33

 , V2 =


0 0 0

n21 n22 0

0 0 0

 , (15)
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where

m11 = r − 2rS∗

K
− rI∗

K
− βI∗, m12 = −(

r
K
+ β)S∗,

m22 = −(c +
c1K1y∗

(I∗ + K1)2 ), m23 = − c1 I∗

I∗ + K1
,

m32 =
c2(y∗)2

(I∗ + K2)2 , m33 = a2 −
2c2y∗

I∗ + K2
,

n21 = βI∗, n22 = βS∗.

(16)

Denote V = V1 + V2e−sτ , then the Jacobi Matrix of the system (14)
is

V =


m11 m12 0

n21e−sτ m22 + n22e−sτ m23

0 m32 m33

 , (17)

thus the characteristic equation of (14) can be obtained as:

det


sα − m11 −m12 0

−n21e−sτ sα − m22 − n22e−sτ −m23

0 −m32 sα − m33

 = 0, (18)

i.e.(sα − m11)(sα − m22 − n22e−sτ)(sα − m33) − m12n21e−sτ(sα −
m33)− m23m32(sα − m11) = 0.

(i) For equilibrium point E0(0, 0, 0), (18) becomes

(sα − r)(sα + c)(sα − a2) = 0. (19)

Suppose sα = λ, then (19) has eigenvalues λ1 = r > 0, λ2 = −c <
0, λ3 = a2 > 0, thus |arg(λi)| = 0 < πα

2 , i = 1, 3. According to
Lemma 1, equilibrium point E0 is unstable.

(ii) For equilibrium point E1(S1, 0, 0), (18) becomes

(sα + r)(sα + c − βKe−sτ)(sα − a2) = 0. (20)

Let sα = λ, then (20) has a positive eigenvalue λ1 = a2 > 0, thus
|arg(λ1)| = 0 < πα

2 . According to Lemma 1, equilibrium point E1
is unstable.

(iii) For equilibrium point E2(0, 0, y2), (18) reduces to

(sα − r)(sα + (c +
c1a2K2
c2K1

))(sα + a2) = 0. (21)

Let sα = λ, then (21) has a positive eigenvalue λ1 = r > 0, thus
|arg(λ1)| = 0 < πα

2 . According to Lemma 1, equilibrium point E2
is unstable.

(iv) For equilibrium point E3(S3, I3, 0), (18) reduces to

(sα − a2)[(sα −m11)(sα −m22 − n22e−sτ)−m12n21e−sτ ] = 0, (22)

where m11|E3 = r − 2rS3
K − rI3

K − βI3, m12|E3 = −( r
K +

β)S3, m22|E3 = −c, m23|E3 = − c1 I3
I3+K1

, m32|E3 = 0, m33|E3 =

a2, n21|E3 = βI3, n22|E3 = βS3, and S3 = c
β , I3 =

r(βK−c)
β(r+βK) . Let

sα = λ, then (22) has a positive eigenvalue λ1 = a2 > 0, thus
|arg(λ1)| = 0 < πα

2 . According to Lemma 1, equilibrium point E3
is unstable.

We derive the following theorem based on the above analysis.

Theorem 9. E0, E1, E2, E3 are unstable for all τ ≥ 0.

(v) For equilibrium point E4(S4, 0, y4), (18) reduces to

(sα + r)(sα − m22 − n22e−sτ)(sα + a2) = 0. (23)

where m11|E4 = −r, m12|E4 = −( r
K + β)K, m22|E4 = −(c +

c1a2K2
c2K1

), m23|E4 = 0, m32|E4 =
a2

2
c2

, m33|E4 = −a2, n21|E4 =

0, n22|E4 = βK. Let sα = λ, then two eigenvalues of (23) are
λ1 = −r < 0, λ2 = −a2 < 0, thus |arg(λi)| = π > απ

2 , i = 1, 2. By
solving the following equation

sα − m22 − n22e−sτ = 0, (24)

we can gain other eigenvalues.
When τ = 0, the other eigenvalue is λ3 = (βK − c)− c1a2K2

c2K1
.

λ3 < 0 if β < β2 = c
K + c1a2K2

c2KK1
. Then we acquire |arg(λi)| >

απ
2 , i = 1, 2, 3, thus all characteristic roots of (23) have negative real

parts. E4 is locally asymptotically stable on the basic of Lemma 1.
When τ > 0, assume that s = iω = ω(cos π

2 + i sin π
2 )(ω > 0)

is a root of (24). Separating real and imaginary parts

|ω|α cos
π

2
α − n22 cos ωτ − m22 = 0, |ω|α sin

π

2
α + n22 sin ωτ = 0.

(25)
From (25) we can obtain

cos ωτ =
1

n22
|ω|α cos

π

2
α − m22

n22
, sin ωτ = − 1

n22
|ω|α sin

π

2
α.

(26)
Add up the squares of both equations of (26)

|ω|2α − 2m22 cos(
π

2
α)|ω|α + m2

22 − n2
22 = 0, (27)

Let ωα = t, then we can get

t2 − 2m22 cos(
π

2
α)t + m2

22 − n2
22 = 0. (28)

Since α ∈ (0, 1], m22|E4 = −(c + c1a2K2
c2K1

) < 0, n22|E4 = βK,

then −2m22 cos π
2 α > 0, m2

22 − n2
22 = (c + c1a2K2

c2K1
)2 − β2K2 =

(K( c
K + c1a2K1

c2K1K ))2 − β2K2 = K2(β2)
2 −K2β2 = K2(β+ β2)(β2 − β).

We derive m2
22 − n2

22 > 0 if β < β2. According to Routh-Hurwitz
theorem, (28) has no positive real part. Then (24) has no pure
imaginary root. Therefore, equilibrium point E4 is locally asymp-
totically stable. We derive the following theorem based on the
above analysis.

Theorem 10. E4 is locally asymptotically stable for τ ≥ 0 if β <

β2 = c
K + c1a2K2

c2KK1
.

Furthermore, we obtain the globally asymptotically stable of
system (3) at E4. To investigate the globally asymptotically stable
of system (3) at E4, we introduce the following assumption.
(H1) ( r

K + β)S4 − c ≤ 0,
(H2) (c2y4 − K2c1)I + K1c2y4 − K2

2c1 ≤ 0.
Motivated by (Sene 2021), we define a Lyapunov functional as

V(t) = S(t)− S4 − S4 ln
S(t)
S4

+ I(t) + y(t)− y4 − y4 ln
y(t)
y4

.

Taking fractional-order derivative on both sides, according to
Lemma 4, we get
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DαV(t) ≤ (
S(t)− S4

S(t)
)DαS(t) + Dα I(t) +

y(t)− y4
y(t)

Dαy(t)

= (S(t)− S4)(r(1 −
S(t) + I(t)

K
)− βI(t))+

(βS(t − τ)I(t − τ)− cI(t)− c1 I(t)y(t)
I(t) + K1

)+

(y(t)− y4)(a2 −
c2y(t)

I(t) + K2
)

= (S(t)− S4)(−
r
K
(S(t)− S4)− (

r
K
+ β)I(t))

+ (βS(t − τ)I(t − τ)− cI(t)− c1 I(t)y(t)
I(t) + K1

)

+ (y(t)− y4)(
c2y4
K2

− c2y(t)
I(t) + K2

)

= − r
K
(S(t)− S4)

2 − (
r
K
+ β)I(t)(S(t)− S4)

+ βS(t − τ)I(t − τ)− cI(t)− c1 I(t)y(t)
I(t) + K1

+

c2(y(t)− y4)(
y4
K2

− y(t)
I(t) + K2

)

= − r
K
(S(t)− S4)

2 − (
r
K
+ β)S(t)I(t)+

(
r
K
+ β)S4 I(t) + βS(t − τ)I(t − τ)

− cI(t)− c1 I(t)y(t)
I(t) + K1

+ c2(y(t)− y4)×

(− y(t)− y4
I(t) + K2

+
I(t)y4

K2(I(t) + K2)
)

= − r
K
(S(t)− S4)

2 + (−(
r
K
+ β)S(t)I(t)+

βS(t − τ)I(t − τ)) + ((
r
K
+ β)S4 − c)I(t)

− c2
K2 + I(t)

(y(t)− y4)
2 − c2 I(t)(y4)

2

K2(I(t) + K2)

+
c2y4 I(t)y(t)

K2(I(t) + K2)
− c1 I(t)y(t)

I(t) + K1

= − r
K
(S(t)− S4)

2 + (β − (
r
K
+ β))S(t)I(t)

+ ((
r
K
+ β)S4 − c)I(t)− c2

K2 + I(t)
×

(y(t)− y4)
2 − c2 I(t)(y4)

2

K2(I(t) + K2)
+

(c2y4 − K2c1)I(t) + (K1c2y4 − K2
2c1)

K2(I(t) + K2)(I(t) + K1)
I(t)y(t)

= − r
K
(S(t)− S4)

2 − r
K

S(t)I(t)

+ ((
r
K
+ β)S4 − c)I(t)− c2

K2 + I(t)
(y(t)− y4)

2

− c2 I(t)(y4)
2

K2(I(t) + K2)
+

(c2y4 − K2c1)I(t) + (K1c2y4 − K2
2c1)

K2(I(t) + K2)(I(t) + K1)
I(t)y(t).
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Figure 1 Waveform plots of system (49) with τ = 0.4.
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Figure 2 Waveform plots of system (50) with τ = 0 < τ0.

Based on the assumption ( r
K + β)S4 − c ≤ 0 and (c2y4 −

K2c1)I + K1c2y4 − K2
2c1 ≤ 0, we can get DαV(t) ≤ 0. Accord-

ing to (Huo et al. 2015), we can derive the system (3) is globally
asymptotically stable at E4.

Therefore, We derive the following theorem.

Theorem 11. Assume that ( r
K + β)S4 − c ≤ 0 and (c2y4 − K2c1)I +

K1c2y4 − K2
2c1 ≤ 0, then the system (3) is globally asymptotically

stable at E4.

(vi) For equilibrium point E′(S′, I′, y′), the characteristic equa-
tion at E′ is:

s3α + δ2s2α + δ1sα + δ0 + e−sτ(ϑ2s2α + ϑ1sα + ϑ0) = 0, (29)

where

δ2 = −(m11 + m22 + m33),

δ1 = m11m22 + m22m33 + m11m33 − m23m32,

δ0 = m11m23m32 − m11m22m33,

ϑ2 = −n22,

ϑ1 = m11n22 − m12n21 + m33n22,

ϑ0 = m12m33n21 − m11m33n22.

When τ = 0, (29) can be expressed as

s3α + (δ2 + ϑ2)s2α + (δ1 + ϑ1)sα + δ0 + ϑ0 = 0, (30)

Let z = sα, then

z3 + (δ2 + ϑ2)z2 + (δ1 + ϑ1)z + δ0 + ϑ0 = 0. (31)

According to the Routh-Hurwitz theorem, (30) has no positive real
part if δ2 + ϑ2 > 0 and (δ2 + ϑ2)(δ1 + ϑ1)− δ0 + ϑ0 > 0. Thus (29)
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has no pure imaginary root. Hence, E′ is locally asymptotically
stable.

We obtain the following theorem on the basic of our analysis.

Theorem 12. The equilibrium point E′ is locally asymptotically
stable for τ = 0 if δ2 + ϑ2 > 0 and (δ2 + ϑ2)(δ1 + ϑ1)− δ0 + ϑ0 > 0.

Assume that s = iξ = ξ(cos π
2 + i sin π

2 )(ξ > 0) is a root of (29).
Separating real and imaginary parts,

Ψ cos ξτ + Ω sin ξτ = Φ1, (32)

Ω cos ξτ − Ψ sin ξτ = Φ2, (33)

where

Ψ = ϑ0 + ϑ1ξα cos(α
π

2
) + ϑ2ξ2α cos(2α

π

2
),

Ω = ϑ1ξα sin(α
π

2
) + ϑ2ξ2α sin(2α

π

2
),

Φ1 = −(δ0 + δ1ξα cos(α
π

2
) + δ2ξ2α cos(2α

π

2
)+

ξ3α cos(3α
π

2
)),

Φ2 = −(δ1ξα sin(α
π

2
) + δ2ξ2α sin(2α

π

2
)+

ξ3α sin(3α
π

2
)).

Add up the squares of both equations (32) and (33),

G(ξα) = ξ6α + H5ξ5α + H4ξ4α + H3ξ3α

+ H2ξ2α + H1ξα + H0

= 0,

(34)

where

H5 = 2δ2 cos(α
π

2
),

H4 = δ2
2 − ϑ2

2 + 2δ1 cos(2α
π

2
),

H3 = (2δ1δ2 − 2ϑ1ϑ2) cos(α
π

2
) + 2δ0 cos(3α

π

2
),

H2 = δ2
1 − ϑ2

1 + (2δ0δ2 − 2ϑ0ϑ2) cos(2α
π

2
),

H1 = (2δ0δ1 − 2ϑ0ϑ1) cos(α
π

2
),

H0 = δ2
0 − ϑ2

0 .

According to the Routh-Hurwitz theorem, we can get the routh list

1 H4 H2 H0

H5 H3 H1 0

b5 b3 b1 0

d5 d3 0 0

u5 u3 0 0

v5 0 0 0

h5

(35)

where b5 = − H3−H4 H5
H5

, b3 = − H1−H2 H5
H5

, b1 = H0, d5 =

− H5b3−H3b5
b5

, d3 = − H5b1−H1b5
b5

, u5 = − b5d3−b3d5
d5

, u3 = b1, v5 =

− d5u3−d3u5
u5

, h5 = u3.
When (35) satisfies some conditions(Li et al. 2021), there will be a
change of sign, then (34) at least has one positive root. Thus, there
exists a pair of purely imaginary roots of (29), which satisfy one of
the conditions of Hopf bifurcation.
From (32) and (33), we can derive

cos ξτ =
ΨΦ1 + ΩΦ2

Ω2 + Ψ2 ,

sin ξτ =
ΩΦ1 − ΨΦ2

Ω2 + Ψ2 .
(36)

According to (36), we can get

τ(k) =
1
ξ
(arctan

ΩΦ1 − ΨΦ2
ΨΦ1 + ΩΦ2

+ kπ), k = 0, 1, 2, . . . , (37)

then we define the bifurcation point

τ0 = min τ(k), k = 0, 1, 2, . . . (38)

We introduce the following assumption to obtain the conditions
of Hopf bifurcation.
(H3) A1 N1+A2 N2

N2
1+N2

2
̸= 0,

where A1, A2 are defined by (43), and N1, N2 are defined by (48).

Lemma 13. Let s(τ) = γ(τ) + iω(τ) be the root of (29) near τ = τj
meeting γ(τj) = 0 and ω(τj) = ω0, then the following transversal-
ity condition meets

Re[
ds
dτ

]|τ=τ0,ω=ω0 ̸= 0. (39)

Proof. Let P1(s) = s3α + δ2s2α + δ1sα + δ0, P2(s) = ϑ2s2α + ϑ1sα +
ϑ0, then (29) can be rewritten as

P1(s) + P2(s)e−sτ = 0. (40)

Derivation on both sides of (40) respect to τ,

P′
1(s)

ds
dτ

+ P′
2(s)e

−sτ ds
dτ

+ P2(s)e−sτ(−τ
ds
dτ

− s) = 0, (41)

where P′
i (s) are the derivatives of Pi(s)(i = 1, 2).

Then,
ds
dτ

=
M(s)
N(s)

, (42)

where

M(s) = s(ϑ2s2α + ϑ1sα + ϑ0)e−sτ ,

N(s) = 3αs3α−1 + 2αδ2s2α−1 + αδ1sα−1

− τe−sτ(ϑ2s2α + ϑ1sα + ϑ0)

+ e−sτ(2αϑ2s2α−1 + αϑ1sα−1).

By straightforward computation,

[
ds
dτ

]|τ=τ0,ω=ω0 =
A1 + iA2

(B1 + C1 + D1) + i(B2 + C2 + D2)
,

where

A1 = (−ϑ2ω2α+1
0 sin(

π

2
2α)− ϑ1ωα+1

0 sin(
π

2
α))×

cos(ω0τ0) + (ϑ2ω2α+1
0 cos(

π

2
2α)+

ϑ1ωα+1
0 cos(

π

2
α) + ω0ϑ0) sin(ω0τ0),

A2 = (ϑ2ω2α+1
0 sin(

π

2
2α) + ϑ1ωα+1

0 sin(
π

2
α))×

sin(ω0τ0) + (ϑ2ω2α+1
0 cos(

π

2
2α)+

ϑ1ωα+1
0 cos(

π

2
α) + ω0ϑ0) cos(ω0τ0),

(43)
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B1 = 3αω3α−1
0 cos(

(3α − 1)π
2

) + 2αδ2ω2α−1
0 ×

cos(
(2α − 1)π

2
) + αδ1ωα−1

0 cos(
(α − 1)π

2
),

B2 = 3αω3α−1
0 sin(

(3α − 1)π
2

) + 2αδ2ω2α−1
0 ×

sin(
(2α − 1)π

2
) + αδ1ωα−1

0 sin(
(α − 1)π

2
),

(44)

C1 = −τsinω0τ0(ϑ2ω2α
0 sin(

π

2
2α) + ϑ1ωα

0 sin(
π

2
α))

− τ cos ω0τ0(ϑ2ω2α
0 cos(

π

2
2α) + ϑ1ωα

0 cos(
π

2
α)

+ ϑ0),

C2 = −τ cos ω0τ0(ϑ2ω2α
0 sin(

π

2
2α) + ϑ1ωα

0 sin(
π

2
α))

+ τsinω0τ0(ϑ2ω2α
0 cos(

π

2
2α) + ϑ1ωα

0 cos(
π

2
α)

+ ϑ0),

(45)

D1 = cos(ω0τ0)(2αϑ2ω2α−1
0 ×

cos
(2α − 1)π

2
+ αϑ1ωα−1

0 cos
(α − 1)π

2
)+

sin(ω0τ0)(2αϑ2ω2α−1
0 sin

(2α − 1)π
2

+

αϑ1ωα−1
0 sin

(α − 1)π
2

),

D2 = − sin(ω0τ0)(2αϑ2ω2α−1
0 cos

(2α − 1)π
2

+

αϑ1ωα−1
0 cos

(α − 1)π
2

) + cos(ω0τ0)×

(2αϑ2ω2α−1
0 sin

(2α − 1)π
2

+

αϑ1ωα−1
0 sin

(α − 1)π
2

).

(46)

Hence,

Re[
ds
dτ

]|τ=τ0,ω=ω0 =
A1N1 + A2N2

N2
1 + N2

2
, (47)

where
N1 = B1 + C1 + D1, N2 = B2 + C2 + D2. (48)

The proof is completed. □
Hence, we obtain the following theorem.

Theorem 14. Suppose that (H3) holds, we can gain the following
results:
(i) E′ is locally asymptotically stable for τ ∈ [0, τ0).
(ii) System (3) undergoes a Hopf bifurcation at E′ when τ = τ0.
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Figure 3 Waveform plots of system (50) with τ = 0.1 < τ0.

NUMERICAL SIMULATIONS

Diethem et al proposed the Adams-Bashforth-Moulton prediction-
correction numerical algorithm of fractional differential equa-
tions defined by Caputo(Kai et al. 2002), and Bhalekar et al ex-
tended it to fractional differential equations with delay(Bhalekar
and Daftardar-Gejji 2011). Here, the modified Adams-Bashforth-
Moulton prediction-correction numerical algorithm is used to ver-
ify our theoretical analysis(Bhalekar and Daftardar-Gejji 2011).

Example 1
According to the numerical simulations of (Zhou et al. 2010) and
(Adak et al. 2020), we make two examples and set the following
values for the parameters. When the order is close to 1, the dynamic
properties of fractional-order system will be close to the dynamic
properties of integer-order system. Hence, we choose the order
α = 0.96 and the other parameters are taken from (Zhou et al.
2010),r = 2, a2 = 1, c = 0.3, c1 = 1, c2 = 1, K = 3, K1 = 0.6, K2 =
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0.5. Then, we choose β = 0.37 < β2, which satisfy the Theorem 10,
then system (3) is

D0.96S(t) = 2S(t)(1 − S(t) + I(t)
3

)− 0.37S(t)I(t),

D0.96 I(t) = 0.37S(t − τ)I(t − τ)− 0.3I(t)− I(t)y(t)
I(t) + 0.6

,

D0.96y(t) = y(t)(1 − y(t)
I(t) + 0.5

).

(49)

It is not difficult to get equilibrium point E4(S4, I4, y4) = (3, 0, 0.5).
Fig. 1 exhibits that E4 is locally asymptotically stable.
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Figure 4 Waveform plots of system (50) with τ = 0.1 for α =
0.92, α = 0.94, α = 0.96.

Example 2
Choose β = 2.1 > β2, thus E′ exists. The system (3) is

D0.96S(t) = 2S(t)(1 − S(t) + I(t)
3

)− 2.1S(t)I(t),

D0.96 I(t) = 2.1S(t − τ)I(t − τ)− 0.3I(t)− I(t)y(t)
I(t) + 0.6

,

D0.96y(t) = y(t)(1 − y(t)
I(t) + 0.5

).

(50)

We acquire E′(S′, I′, y′) = (0.5788, 0.5834, 1.0834). It is not difficult
to check system (50) satisfys δ2 + ϑ2 = 0.9345 > 0 and (δ2 +
ϑ2)(δ1 + ϑ1)− (δ0 + ϑ0) = 0.0923 > 0. Thus, system (50) at E′ is
locally asymptotically stable for τ = 0. We calculate that ω0 =
1.3490, τ0 = 0.1689. Fig. 2 and Fig. 3 show that E′ is locally
asymptotically stable when τ = 0 < τ0 and τ = 0.1 < τ0. For Fig.
3, we draw waveform plots every 20 points as a point. Motivated
by the investigation on the different orders in (Sene 2019) and
(Sene 2022), we show that the waveform plots of system (50) with
τ = 0.1 for different orders α in Fig. 4. The numerical simulation
results implies that the lower values of α, the oscillating behavior
is suppressed. E′ is unstable of system (50) when τ = 0.2 > τ0,
which is shown in Fig. 5. Here, we give the waveform plot of S(t).
The waveform plots of I(t) and y(t) are omitted. Furthermore, we
give the phase portraits in I-y plane for τ = 1, τ = 3 and τ = 6.
Fig. 6 exhibits the development of chaos.

Remark. In system (3), the order is 0 < α ≤ 1. When α = 1, this
system is reduced to system (2). Therefore, our research extends
the results of system (2).

Remark. The difference between the integer-order system (2) and
the fractional-order system (3) are as follows. E0, E1, E2, E3 of sys-
tem (3) are unstable for all τ ≥ 0, and if β ≤ β2, equilibrium
point E4 is locally asymptotically stable for τ ≥ 0. In integer-order
system (2), it also has the same results. However, the conditions
of the global asymptotically stability for equilibrium point E4 is
different from system (2). And the conditions of the occurrence of
Hopf bifurcation of equilibrium point E′ are related to the order α,
which is different from integer-order system (2). Besides, the nu-
merical results indicate that the oscillation behavior is suppressed
when the order α is lower. And the chaos gradually arise when the
delay τ increases. These results are not shown in the integer-order
system (2).
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Figure 5 Waveform plots of system (50) with τ = 0.2 > τ0.
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Figure 6 Phase portraits of system (50) in I-y plane for τ = 1, τ =
3, τ = 6 respectively.

CONCLUSION

A fractional-order Leslie-Gower prey-predator-parasite system
with delay is considered in this article. We investigate the existence
and uniqueness of the solutions, as well as non-negativity and
boundedness. We also show E0, E1, E2, E3 are unstable for τ ≥ 0
and if β < β2, E4 is locally asymptotically stable for τ ≥ 0. If
the conditions of Theorem 10 are meeted, the system (3) at E4 is
globally asymptotically stable. If the conditions of Theorem 12 are
satisfied, E′ is locally asymptotically stable for τ = 0 by Routh-
Hurwitz theorem. In addition, E′ occurs Hopf bifurcation when the
conditions of Theorem 14 are meeted. We can change the critical
value τ0 to control the stability of system. Moreover, the system
exhibits different results for different order α. The numerical results
indicate that the oscillation behavior is suppressed for τ = 0.1
when the order α is lower. The chaos gradually arise when the
delay τ increases. Finally, we hope to explore chaos of this system.
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