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Global Existence and Uniqueness of The Inviscid Velocity-Vorticity Model of the 

𝒈-Navier-Stokes Equations 

Özge KAZAR*1, Meryem KAYA2 

 

Abstract 

In this paper, we prove the global existence and uniqueness of the weak solutions to the inviscid 

velocity-vorticity model of the 𝑔-Navier-Stokes equations. The system is performed by 

entegrating the velocity-pressure system which is involved by using the rotational formulation 

of the nonlinearity and the vorticity equation for the 𝑔-Navier-Stokes equations without 

viscosity term. In this study we particularly interest the inviscid velocity-vorticity system of the 

 𝑔-Navier-Stokes equations over the two dimensional periodic box Ω = (0,1)2 ⊂ 𝑅2. 

Keywords: Existence and uniqueness, 𝑔-Navier-Stokes equations, inviscid velocity-vorticity 

model 

 

1. INTRODUCTION 

Velocity-vorticity formulation have been 

considered extensively by many scientists for 

example [1-4]. In [2] Gardner et al. studied 

continuous data assimilation to a velocity-

vorticity formulation of the 2D Navier-Stokes 

equations. In [1, 3, 4] researchers studied in 

velocity-vorticity formulation of the Navier-

Stokes equations by numerically. In recent years, 

the velocity-vorticity formulation and Voigt 

regularization combined for some fluid dynamical 

models. In [5] Larios et al. suggested the velocity-

vorticity model for the Navier-Stokes-Voigt 

equations and they studied the global well-

posedness of this system. Pei [6] studied velocity-

vorticity-Voigt model for 3D Boussinesq 
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equations and he considered global well-

posedness and also higher order regularity. 

Inviscid form of the models in computational 

fluid dynamics have been attracted and 

extensively studied by many researchers [7-9]. 

Using classical Picard iteration method Cao, 

Lunasin and Titi prove global existence and 

uniqueness of inviscid Bardina model [7].  Larios 

and Titi have studied the inviscid Navier-Stokes-

Voigt equations. They proved the global existence 

and uniqueness of weak solutions and higher 

order regularity of the solutions of this system [8]. 

In this study we are particularly interest the 

following velocity-vorticity system of the 𝑔-

Navier-Stokes (𝑔NS) equations over the two 

dimensional periodic box Ω = (0,1)2 ⊂ 𝑅2: 
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𝜕𝑢

𝜕𝑡
− 𝜈∆𝑔𝑢 + 𝜈

1

𝑔
(∇𝑔. ∇)𝑢 + 𝑤 × 𝑢 + ∇P = f ,(1) 

 

 

 

𝜕𝑤

𝜕𝑡
− 𝜈∆𝑔𝑤 + 𝜈

1

𝑔
(∇𝑔. ∇)𝑤 + (𝑢. ∇)w = ∇ × f +

w (
∇𝑔

𝑔
. 𝑢). (2) 

In this system  𝑃 = 𝑝 +
1

2
|𝑢2|, 𝑢 represent 

velocity, 𝑤 which play the role of vorticity, 𝑓 is 

an external forcing term. We consider this 

problem under the periodic boundary conditions. 

We assume 𝑢, 𝑝 and 𝑤 and the first derivative of 

𝑢, 𝑤 to be spatially periodic. The existence and 

uniqueness of the weak and strong solutions of 

this system with the viscosity term is proved in 

[10]. Now we consider the following inviscid 

form. The inviscid velocity-vorticity model of the 

𝑔-Navier-Stokes is equivalent to the functional 

differential equations 

𝑑𝑢

𝑑𝑡
+ 𝑃𝑔(𝑤 × 𝑢) = 𝑃𝑔𝑓,  (3) 

𝑑𝑤

𝑑𝑡
+ 𝐵𝑔(𝑢, 𝑤) = 𝑃𝑔(∇ × f) + 𝑃𝑔 (w (

∇𝑔

𝑔
. 𝑢)),

 (4) 

∇. (𝑔𝑢) = 0,                   ∇. (𝑔𝑤) = 0,  (5) 

𝑢(𝑥, 0) = 𝑢0,                      𝑤(𝑥, 0) = 𝑤0,  (6) 

where, for simplicity, we assume 𝑓 to be time 

independent. We rewrite 𝐵𝑔 = 𝑃𝑔((𝑢. ∇)𝑤) and 

𝑃𝑔: 𝐿2(Ω, 𝑔) ⟶ 𝐻𝑔 is Helmholtz-Leray 

orthogonal projection. The function 𝑔 =
𝑔(𝑥1, 𝑥2) is positive real-valued smooth function. 

We assume that 𝑔 satisfies the following 

conditions, 

i. 𝑔(𝑥1, 𝑥2) ∈ 𝐶∞(Ω).               

ii. 0 < 𝑚𝑜 ≤ 𝑔(𝑥1, 𝑥2) ≤ Μ𝑜 where 𝑚𝑜 

and Μ𝑜 are positive constants for all 

(𝑥1, 𝑥2) ∈  Ω. 

iii. ‖∇𝑔‖∞ = 𝑠𝑢𝑝
(𝑥1,𝑥2)∈Ω

|∇𝑔(𝑥1, 𝑥2)| < ∞. 

Throughout in this study 𝑐 will denote a generic 

positive constant. It can be different from line to 

line. This study is organized as follows. In section 

2 we give some notations and present the 

mathematical spaces. We also give some 

preliminary results [11, 12]. In section 3, we 

investigate global existence and uniqueness of the 

inviscid velocity-vorticity model of the 𝑔NS 

equations using the classical Picard iteration 

method.  

2. PRELIMINARIES AND FUNCTIONAL 

SETTING 

In this section we introduce the usual notation 

used in the context [11, 12]. 𝐿2(Ω, 𝑔) denotes the 

Hilbert space with the inner product and norm 

(𝑢, 𝑣)𝑔 = ∫ (𝑢, 𝑣)𝑔𝑑𝑥
Ω

  and  

‖𝑢‖
𝐿2(Ω,𝑔)
2 = (𝑢, 𝑢)𝑔, 

respectively. The inner product and norm in 𝐻𝑔 

are the same of 𝐿2(Ω, 𝑔). The norm in 𝐻1(Ω, 𝑔) 

‖𝑢‖
𝐻1(Ω,𝑔)
2 = [(𝑢, 𝑢)𝑔 + ∑ (𝐷𝑖𝑢, 𝐷𝑖𝑢)𝑔

2
İ=1 ]

1

2, 

where  𝐷𝑖 =
𝜕

𝜕𝑥𝑖
. The norm in 𝑉𝑔  are the same of 

𝐻1(Ω, 𝑔). The two spaces 𝐿2(Ω) and 𝐿2(Ω, 𝑔) 

have equivalent norms in the following 

inequalities 

𝑚0‖𝑢‖
𝐿2(Ω)
2 ≤ ‖𝑢‖

𝐿2(Ω,g)
2 ≤ 𝑀0‖𝑢‖

𝐿2(Ω)
2 , 

where 𝑚0 and 𝑀0 positive constants. We define 

spaces in the periodic setting for the 𝑔NS 

equations are 
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𝒱1 = {𝑢 ∈ (𝐶𝑝𝑒𝑟
∞ (Ω))

2

: ∇(𝑔𝑢) = 0, ∫ 𝑢𝑑𝑥 =
Ω

0}, 

𝑯𝒈 = the closure of 𝒱1 in 𝐿2(Ω, 𝑔), 

𝑽𝒈 = the closure of 𝒱1 in  𝐻1(Ω, 𝑔), 

in two dimensions. Vorticity is considered as a 

scalar, we define vorticity space as 

𝒱2 = {𝑢 ∈ 𝐶𝑝𝑒𝑟
∞ (Ω): ∇(𝑔𝑢) = 0, ∫ 𝑢𝑑𝑥 = 0

Ω
}, 

𝐻𝑔 = the closure of 𝒱2 in 𝐿2(Ω, 𝑔), 

𝑉𝑔 = the closure of 𝒱2 in 𝐻1(Ω, 𝑔), 

𝐻𝑔𝑐𝑢𝑟𝑙 = {𝑓 ∈ 𝐻𝑔:  ∇ × 𝑓 ∈ 𝐿2(Ω, 𝑔) }.  

Now we rewrite 𝑔-Laplacian operator and 𝑔-

Stokes operator and some notations in the 

following 

−∆𝑔𝑢 ≔ −
1

𝑔
(∇. 𝑔∇𝑢) = −∆𝑢 −

1

𝑔
(∇g. ∇)𝑢,  

𝐴𝑔𝑢 = 𝑃𝑔 [−
1

𝑔
(∇. 𝑔∇u)], 

respectively. 𝐴𝑔 have countable eigenvalues 

which are satisfying as in the below; 

0 < 𝜆𝑔 ≤ 𝜆1 ≤ 𝜆2 ≤ 𝜆3 ≤ ⋯ 

where 𝜆𝑔 =
4𝜋2𝑚0

𝑀0
. The Poincare inequality 

√𝜆𝑔‖𝜙‖𝐿2 ≤ ‖∇𝜙‖𝐿2, 

satisfy for all 𝜙 ∈ 𝑉𝑔. Since the operators 𝐴𝑔 and 

𝑃𝑔 are self adjoint, using integration by parts we 

have 

〈𝐴𝑔𝑢, 𝑢〉𝑔 = ∫ (∇𝑢, ∇𝑢)𝑔𝑑𝑥
Ω

= 〈∇𝑢, ∇𝑢〉𝑔

= ‖∇𝑢‖𝑔. 

The bilinear operator 𝐵𝑔: 𝑉𝑔 × 𝑉𝑔 → 𝑉𝑔
′ 

𝐵𝑔(𝑢, 𝑣) = 𝑃𝑔(𝑢. ∇)𝑣 

and for this term the inner product of  𝑤 ∈ 𝑉𝑔, we 

get 

〈𝐵𝑔(𝑢, 𝑣), 𝑤〉𝑉𝑔
′ = 𝑏𝑔(𝑢, 𝑣, 𝑤).     

The trilinear form 𝑏𝑔 defined as 

𝑏𝑔(𝑢, 𝑣, 𝑤) = ∑ ∫ 𝑢𝑖

Ω

(𝐷𝑖𝑣𝑗)𝑤𝑗𝑔𝑑𝑥

𝑛

𝑖,𝑗=1

= (𝑃𝑔(𝑢. ∇)𝑣, 𝑤)𝑔. 

We have the following properties 

i. 𝑏𝑔(𝑢, 𝑣, 𝑤) = −𝑏𝑔(𝑢, 𝑤, 𝑣),                                                                         

ii. 𝑏𝑔(𝑢, 𝑣, 𝑣) = 0.  

The function 𝐶𝑢 defined by 

 𝐶𝑢 = 𝑃𝑔 [
1

𝑔
(∇𝑔. ∇)𝑢]     

and the inner product of  𝑣 ∈ 𝑉𝑔 we write                                                                                  

〈𝐶𝑢, 𝑣〉𝑔 = 〈
1

𝑔
(∇𝑔. ∇)𝑢, 𝑣〉𝑔 = 𝑏𝑔 (

∇𝑔

𝑔
, 𝑢, 𝑣).    

It is easy to show this term belong to 𝐿2(0, 𝑇; 𝐻𝑔) 

and hence belong to 𝐿2(0, 𝑇; 𝑉𝑔
′). 

2.1. Lemma  

The bilinear operator 𝐵𝑔 satisfies the following 

inequality; 
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|〈𝐵𝑔(𝑢, 𝑣), 𝑤〉𝑉𝑔
′| 

≤ 𝑐‖𝑢‖
𝐿2
1 2⁄ ‖∇𝑢‖

𝐿2
1 2⁄ ‖∇𝑣‖𝐿2‖𝑤‖

𝐿2
1 2⁄ ‖∇𝑤‖

𝐿2
1 2⁄

 , 

𝑓𝑜𝑟 𝑎𝑙𝑙 u, v, w ∈ 𝑉𝑔 [11,12].                              (7)  

3. GLOBAL EXISTENCE AND 

UNIQUENESS OF THE INVISCID 

VELOCITY-VORTICITY MODEL OF THE 

𝒈-NAVIER-STOKES EQUATIONS 

In this section, we will established the global 

existence and uniqueness of the inviscid velocity-

vorticity model of the 𝑔NS equations using the 

classical Picard iteration method. Note that the 

(3) − (4) equality is understood to hold in the 

sense of  𝑽𝒈
′ × 𝑉𝑔

′. 

3.1. Theorem 

Let 𝑢0 ∈ 𝑽𝒈, 𝑤𝑜 ∈ 𝑉𝑔 and  𝑓 ∈ 𝑽𝑔
′ , ∇ × 𝑓 ∈ 𝑉𝑔

′. 

There exist a short time 𝑇∗ (‖𝑢0‖𝑽𝒈
, ‖𝑤0‖𝑉𝑔

)  

such that the equations  (3) − (6) has a unique 

solution 𝑢, 𝑤 ∈ 𝐶1([−𝑇∗, 𝑇∗], 𝑽𝒈 × 𝑉𝑔). 

Proof 

We will use the classical Picard iteration principle 

to prove the short time existence and uniqueness 

theorem. Namely, it is enough to show that the 

vector field 𝑁(𝑢) = 𝑓 − 𝑤 × 𝑢 and 𝑁(𝑤) =

∇ × 𝑓 +  w (
∇𝑔

𝑔
. 𝑢) − 𝐵𝑔(𝑢, 𝑤) is locally 

Lipschitz in the Hilbert Space 𝑽𝒈 to 𝑽𝑔
′  and 𝑉𝑔 to 

𝑉𝑔
′ respectively. From the classical theory of 

ordinary differential equations we consider the 

equivalent equation for (3) − (4) respectively. 

𝑢(𝑡) = 𝑢0 − ∫ 𝑤(𝑠) × 𝑢(𝑠)𝑑𝑠
𝑡

0
+ 𝑓𝑡,  (8) 

𝑤(𝑡) = 𝑤0 − ∫ 𝐵𝑔(𝑢(𝑠), 𝑤(𝑠))𝑑𝑠
𝑡

0
+

∫ (w(s) (
∇𝑔

𝑔
. 𝑢(𝑠))) 𝑑𝑠

𝑡

0
+ (∇ × 𝑓)𝑡 .  (9) 

Let  𝑢1, 𝑢2 ∈ 𝑽𝒈  and   𝑤1, 𝑤2 ∈ 𝑉𝑔, 𝝓 ∈ 𝑽𝒈 and 

 𝜙 ∈ 𝑉𝑔 

‖𝑁(𝑢1) − 𝑁(𝑢2)‖𝑽𝑔
′ = ‖𝑤1 × 𝑢1 − 𝑤2 ×

𝑢2‖𝑽𝑔
′ = ‖𝑤1 × (𝑢1 − 𝑢2) + (𝑤1 − 𝑤2) ×

𝑢2‖𝑽𝑔
′   = Sup

𝜙∈𝑽𝒈

‖𝝓‖𝑽𝒈=1

|〈𝑤1 × (𝑢1 − 𝑢2) + (𝑤1 −

𝑤2) × 𝑢2, 𝝓〉𝑽𝑔
′ |, (10) 

Applying Poincare inequality and (7) for (10) we 

write 

‖𝑁(𝑢1) − 𝑁(𝑢2)‖𝑽𝑔
′ ≤

𝑐‖𝑤1‖
𝐿2
1 2⁄ ‖∇𝑤1‖

𝐿2
1 2⁄ ‖𝑢1 − 𝑢2‖

𝐿2
1 2⁄ ‖∇(𝑢1 −

𝑢2)‖
𝐿2
1 2⁄

+ 𝑐‖𝑢2‖
𝐿2
1 2⁄ ‖∇𝑢2‖

𝐿2
1 2⁄ ‖𝑤1 −

w2‖
𝐿2
1 2⁄ ‖∇(𝑤1 − w2)‖

𝐿2
1 2⁄

≤

𝑐
1

𝜆𝑔
1 2⁄ ‖∇𝑤1‖𝐿2‖∇(𝑢1 − 𝑢2)‖𝐿2 +

𝑐
1

𝜆𝑔
1 2⁄ ‖∇𝑢2‖𝐿2‖∇(𝑤1 − 𝑤2)‖𝐿2. (11) 

Similar estimates can be obtained for 𝑁(𝑤) as in 

the following 

‖𝑁(𝑤1) − 𝑁(𝑤2)‖𝑉𝑔
′ = ‖w1 (

∇𝑔

𝑔
. 𝑢1) −

𝐵𝑔(𝑢1, 𝑤1) − w2 (
∇𝑔

𝑔
. 𝑢2) + 𝐵𝑔(𝑢2, 𝑤2)‖

𝑉𝑔
′

≤

‖w1 (
∇𝑔

𝑔
. (𝑢1 − 𝑢2)) + (w1 −

w2) (
∇𝑔

𝑔
. 𝑢2)‖

𝑉𝑔
′

+ ‖𝐵𝑔(𝑢1, 𝑤1 − w2) +

𝐵𝑔(𝑢1 − 𝑢2, 𝑤2)‖
𝑉𝑔

′ ≤ Sup
𝜙∈𝑉𝑔

‖𝜙‖𝑉𝑔=1

|〈w1 (
∇𝑔

𝑔
. (𝑢1 −

𝑢2)) + (w1 − w2) (
∇𝑔

𝑔
. 𝑢2) , 𝜙〉𝑉𝑔

′| +

Sup
𝜙∈𝑉𝑔

‖𝜙‖𝑉𝑔=1

|〈𝐵𝑔(𝑢1, 𝑤1 − w2) + 𝐵𝑔(𝑢1 −

𝑢2, 𝑤2), 𝜙〉𝑉𝑔
′|. (12) 

Again using Poincare inequality and (7) for (12) 

we obtained 

‖𝑁(𝑤1) − 𝑁(𝑤2)‖𝑉𝑔
′ ≤

𝑐‖∇𝑔‖∞‖𝑤1‖
𝐿2
1 2⁄ ‖∇𝑤1‖

𝐿2
1 2⁄ ‖𝑢1 −

𝑢2‖
𝐿2
1 2⁄ ‖∇(𝑢1 − 𝑢2)‖

𝐿2
1 2⁄

+ 𝑐‖∇𝑔‖∞‖𝑤1 −

w2‖
𝐿2
1 2⁄ ‖∇(𝑤1 − w2)‖

𝐿2
1 2⁄ ‖𝑢2‖

𝐿2
1 2⁄ ‖∇𝑢2‖

𝐿2
1 2⁄

+

𝑐‖𝑢1‖
𝐿2
1 2⁄ ‖∇𝑢1‖

𝐿2
1 2⁄ ‖𝑤1 − w2‖

𝐿2
1 2⁄ ‖∇(𝑤1 −

Özge KAZAR, Meryem KAYA

Global Existence and Uniqueness of The Inviscid Velocity-Vorticity Model of the g-Navier-Stokes Equat...

Sakarya University Journal of Science 26(4), 695-702, 2022 698



w2)‖
𝐿2
1 2⁄

+ 𝑐‖𝑢1 − 𝑢2‖
𝐿2
1 2⁄ ‖∇(𝑢1 −

𝑢2)‖
𝐿2
1 2⁄ ‖𝑤2‖

𝐿2
1 2⁄ ‖∇𝑤2‖

𝐿2
1 2⁄

  ≤

𝑐‖∇𝑔‖∞  
1

𝜆𝑔
1 2⁄ ‖∇𝑤1‖𝐿2‖∇(𝑢1 − 𝑢2)‖𝐿2 +

𝑐‖∇𝑔‖∞  
1

𝜆𝑔
1 2⁄   ‖∇(𝑤1 − w2)‖𝐿2‖∇𝑢2‖𝐿2 +

𝑐
1

𝜆𝑔
1 2⁄ ‖∇𝑢1‖𝐿2‖∇(𝑤1 − 𝑤2)‖𝐿2  + 𝑐

1

𝜆𝑔
1 2⁄ ‖∇(𝑢1 −

𝑢2)‖𝐿2‖∇𝑤2‖𝐿2. (13) 

Now adding the inequalities (11) and (13), we 

have 

‖𝑁(𝑢1) − 𝑁(𝑢2)‖𝑽𝑔
′ + ‖𝑁(𝑤1) − 𝑁(𝑤2)‖𝑉𝑔

′ ≤

𝑐
1

𝜆𝑔
1 2⁄ ‖∇𝑤1‖𝐿2‖∇(𝑢1 − 𝑢2)‖𝐿2 +

𝑐
1

𝜆𝑔
1 2⁄ ‖∇𝑢2‖𝐿2‖∇(𝑤1 − 𝑤2)‖𝐿2 +

𝑐‖∇𝑔‖∞  
1

𝜆𝑔
1 2⁄ ‖∇𝑤1‖𝐿2‖∇(𝑢1 − 𝑢2)‖𝐿2 +

𝑐‖∇𝑔‖∞  
1

𝜆𝑔
1 2⁄   ‖∇(𝑤1 − w2)‖𝐿2‖∇𝑢2‖𝐿2 +

𝑐
1

𝜆𝑔
1 2⁄ ‖∇𝑢1‖𝐿2‖∇(𝑤1 − 𝑤2)‖𝐿2  + 𝑐

1

𝜆𝑔
1 2⁄ ‖∇(𝑢1 −

𝑢2)‖𝐿2‖∇𝑤2‖𝐿2 . 

Then, after rearranging the right hand side of the 

above inequality, it follows that 

‖𝑁(𝑢1) − 𝑁(𝑢2)‖𝑽𝑔
′ + ‖𝑁(𝑤1) − 𝑁(𝑤2)‖𝑉𝑔

′ ≤

(𝑐
1

𝜆𝑔
1 2⁄ ‖∇𝑤1‖𝐿2 + 𝑐‖∇𝑔‖∞  

1

𝜆𝑔
1 2⁄ ‖∇𝑤1‖𝐿2 +

𝑐
1

𝜆𝑔
1 2⁄ ‖∇𝑤2‖𝐿2) ‖∇(𝑢1 − 𝑢2)‖𝐿2   +

(𝑐
1

𝜆𝑔
1 2⁄ ‖∇𝑢2‖𝐿2 + 𝑐‖∇𝑔‖∞  

1

𝜆𝑔
1 2⁄   ‖∇𝑢2‖𝐿2 +

𝑐
1

𝜆𝑔
1 2⁄ ‖∇𝑢1‖𝐿2) ‖∇(𝑤1 − 𝑤2)‖𝐿2. 

We have 

‖𝑁(𝑢1) − 𝑁(𝑢2)‖𝑽𝑔
′ + ‖𝑁(𝑤1) − 𝑁(𝑤2)‖𝑉𝑔

′ ≤

≤  
2𝑐

𝜆𝑔
1 2⁄  ‖𝑢1 − 𝑢2‖𝑽𝒈

(‖𝑤1‖𝑉𝑔
+ ‖𝑤2‖𝑉𝑔

) +

2𝑐

𝜆𝑔
1 2⁄  ‖𝑤1 − 𝑤2‖𝑉𝑔

(‖𝑢1‖𝑽𝒈
+ ‖𝑢2‖𝑽𝒈

). (14) 

For any large enough 𝑅 such that ‖𝑢1‖𝑽𝒈
,  

‖𝑢2‖𝑽𝒈
,  ‖𝑤1‖𝑉𝑔

,  ‖𝑤2‖𝑉𝑔
≤ 𝑅, we have  

 

‖𝑁(𝑢1) − 𝑁(𝑢2)‖𝑽𝑔
′ + ‖𝑁(𝑤1) − 𝑁(𝑤2)‖𝑉𝑔

′ ≤
4𝑐𝑅

𝜆𝑔
1 2⁄  ‖𝑢1 − 𝑢2‖𝑽𝒈

+
4𝑐𝑅

𝜆𝑔
1 2⁄ ‖𝑤1 − 𝑤2‖𝑉𝑔

≤

4𝑐𝑅

𝜆𝑔
1 2⁄ (‖𝑢1 − 𝑢2‖𝑽𝒈

+ ‖𝑤1 − 𝑤2‖𝑉𝑔
) (15) 

From the inequality (15) we say that 𝑁(𝑢) and 

𝑁(𝑤) is locally Lipschitz continuous function 

from the Hilbert Space 𝑽𝒈 to 𝑽𝒈
′  and 𝑉𝑔 to 𝑉𝑔

′ 

respectively. Therefore by the classical theory of 

ordinary differential equation (8)  − (9) has a 

unique fixed point in a small interval [−𝑇∗, 𝑇∗] 

and 𝑢 ∈ 𝐶([−𝑇∗, 𝑇∗] ; 𝑽𝒈), 𝑤 ∈

𝐶([−𝑇∗, 𝑇∗] ; 𝑉𝑔) (see, e.g., [13]). In particular, 

the forcing term 𝑓 assume to be time independent 

and since the terms under the integral sign to the 

right of (8)  and (9) are continuous functions with 

valued in 𝑽𝒈
′  and 𝑉𝑔

′ so left hand side 𝑢(𝑡) and 

𝑤(𝑡) are differentiable and (3) and (4) satisfied 

with 𝑢(0) = 𝑢0 and 𝑤(0) = 𝑤0. From these 

results give us the local-in-time existence and 

uniqueness of solutions. 

3.2. Theorem 

Let 𝑓 ∈ 𝑽𝒈, ∇ × 𝑓 ∈ 𝑉𝑔 and 𝑢0 ∈ 𝑽𝒈,  𝑤𝑜 ∈ 𝑉𝑔. 

Then the system in (3) − (6) has a unique 

solution 𝑢, 𝑤 ∈ 𝐶1((−∞, ∞), 𝑽𝒈 × 𝑉𝑔). 

Proof 

Let's show that global existence for the 

equations  (3) − (6). To do this we need to show 

that on the maximal interval of existence, 
‖𝑢(𝑡)‖𝑽𝒈

 ve ‖𝑤(𝑡)‖𝑉𝑔
 remain finite. Let 

[0, 𝑇𝑚𝑎𝑥] be the maximal interval of existence. If 

𝑇𝑚𝑎𝑥 = ∞  in this case nothing need to prove. 

Let’s admit 

𝑇𝑚𝑎𝑥 < ∞. (16) 

This implies that 

limsup
𝑡→𝑇𝑚𝑎𝑥

−
‖𝑢(𝑡)‖𝑽𝒈 = ∞  𝑎𝑛𝑑 limsup

𝑡→𝑇𝑚𝑎𝑥
−

‖𝑤(𝑡)‖𝑉𝑔
=

∞. (17) 
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However we will provide a contradiction to the 

result in (17) We take inner product (3) with the 

𝐴𝑔𝑢(𝑡). We get 

𝑑

𝑑𝑡
‖∇𝑢‖

𝐿2
2 ≤ 2 |(𝑃𝑔(𝑤 × 𝑢), 𝐴𝑔𝑢)

𝑔
| +

2 |(𝑃𝑔𝑓, 𝐴𝑔𝑢)
𝑔

|. (18) 

 

Cauchy-Schwarz and Young inequalities are 

applied for each term on the right hand side for 

(18), we write 

𝑑

𝑑𝑡
‖∇𝑢‖

𝐿2
2 ≤

1

2
‖𝐴𝑔𝑢‖

𝐿2

2
+

27

4
𝑐‖w‖

𝐿2
2 ‖∇𝑤‖

𝐿2
2 ‖∇𝑢‖

𝐿2
2 + 4‖f‖𝐿2

2 . (19) 

We take inner product (4) with the 𝐴𝑔𝑤(𝑡), we 

get 

 
1

2

𝑑

𝑑𝑡
‖∇𝑤‖

𝐿2
2 + 𝑏𝑔(𝑢, 𝑤, 𝐴𝑔𝑤)

≤ (𝑃𝑔 (𝑤 (
∇𝑔

𝑔
. 𝑢)) , 𝐴𝑔𝑤)

𝑔

+  (∇ × 𝑃𝑔𝑓, 𝐴𝑔𝑤)
𝑔

.                     

And then we write 

𝑑

𝑑𝑡
‖∇𝑤‖

𝐿2
2 ≤ 2|𝑏𝑔(𝑢, 𝑤, 𝐴𝑔𝑤)| +

2 |(𝑃𝑔 (𝑤 (
∇𝑔

𝑔
. 𝑢)) , 𝐴𝑔𝑤)

𝑔

| +  2 |(∇ ×

𝑃𝑔𝑓, 𝐴𝑔𝑤)
𝑔

|. (20) 

Cauchy-Schwarz and Young inequalities are 

applied for each term on the right hand side for 

(20), we have 

𝑑

𝑑𝑡
‖∇𝑤‖

𝐿2
2 ≤

3

4
‖𝐴𝑔𝑤‖

𝐿2

2
+

27

4
𝑐‖u‖

𝐿2
2 ‖∇𝑢‖

𝐿2
2 ‖∇𝑤‖

𝐿2
2 +

4𝑐‖∇𝑔‖∞
2

𝑚0
2𝜆𝑔

‖∇𝑤‖
𝐿2
2 ‖∇𝑢‖

𝐿2
2 + 4‖∇ × f‖𝐿2

2 . (21) 

Adding the inequalities (19) and (21), we obtain 

𝑑

𝑑𝑡
(‖∇𝑢‖

𝐿2
2 + ‖∇𝑤‖

𝐿2
2 ) ≤

1

2
‖𝐴𝑔𝑢‖

𝐿2

2
+

3

4
‖𝐴𝑔𝑤‖

𝐿2

2
+

27

4
𝑐‖w‖

𝐿2
2 ‖∇𝑤‖

𝐿2
2 ‖∇𝑢‖

𝐿2
2 +

27

4
𝑐‖u‖

𝐿2
2 ‖∇𝑢‖

𝐿2
2 ‖∇𝑤‖

𝐿2
2 +

4𝑐‖∇𝑔‖∞
2

𝑚0
2𝜆𝑔

‖∇𝑤‖
𝐿2
2 ‖∇𝑢‖

𝐿2
2 + 4‖f‖𝐿2

2 + 4‖∇ × f‖𝐿2
2 .

 (22) 

In [10] we proved that 𝑢 ∈ 𝐿∞(0, 𝑇; 𝑯𝒈), 𝑤 ∈

𝐿∞(0, 𝑇; 𝐻𝑔) and 𝑢 ∈ 𝐿∞(0, 𝑇; 𝑽𝒈), 𝑤 ∈

𝐿∞(0, 𝑇; 𝑉𝑔) because of 𝑢 and 𝑤 weak and strong 

solution of the velocity-vorticity model of 𝑔NS 

equations. So we have 

𝑆𝑢𝑝
𝑠∈[0,𝑇]

‖𝑢(𝑠)‖𝑯𝒈

2 ≤ 𝐾1 , 𝑆𝑢𝑝
𝑠∈[0,𝑇]

‖𝑤(𝑠)‖𝐻𝑔

2 ≤ 𝐾2 

and 

𝑆𝑢𝑝
𝑠∈[0,𝑇]

‖∇𝑢(𝑠)‖𝑯𝒈

2 ≤ 𝐾8 , 𝑆𝑢𝑝
𝑠∈[0,𝑇]

‖∇𝑤(𝑠)‖𝐻𝑔

2 ≤ 𝐾9, 

where  𝐾1, 𝐾8 depend on 𝑢0, 𝑓, 𝜈, 𝑇 and 𝐾2, 𝐾9 

depend on 𝑤0, 𝑓, 𝜈, 𝑇. Using the above results in 

(22) we get  

𝑑

𝑑𝑡
(‖∇𝑢‖

𝐿2
2 + ‖∇𝑤‖

𝐿2
2 ) ≤

1

2
‖𝐴𝑔𝑢‖

𝐿2

2
+

3

4
‖𝐴𝑔𝑤‖

𝐿2

2
+ (

27

4
𝑐𝐾2𝐾9 +

27

4
𝑐𝐾1𝐾9) ‖∇𝑢‖

𝐿2
2 +

4𝑐‖∇𝑔‖∞
2

𝑚0
2𝜆𝑔

𝐾8‖∇𝑤‖
𝐿2
2 + 4‖f‖𝐿2

2 + 4‖∇ × f‖𝐿2
2 . (23) 

After some arrangement right hand side of the 

(23) we have the following inequality. 

𝑑

𝑑𝑡
(‖∇𝑢‖

𝐿2
2 + ‖∇𝑤‖

𝐿2
2 ) − 𝛼(‖∇𝑢‖

𝐿2
2 +

‖∇𝑤‖
𝐿2
2 ) ≤

1

2
‖𝐴𝑔𝑢‖

𝐿2

2
+

3

4
‖𝐴𝑔𝑤‖

𝐿2

2
+ 4‖f‖𝐿2

2 +

4‖∇ × f‖𝐿2
2 , (24) 

where 

 𝛼 = 𝑚𝑎𝑥 {
27

4
𝑐𝐾2𝐾9 +

27

4
𝑐𝐾1𝐾9,

4𝑐‖∇𝑔‖∞
2

𝑚0
2𝜆𝑔

𝐾8}. 

Using Gronwall inequality for (24), we get  

‖∇𝑢(𝑡)‖
𝐿2
2 + ‖∇𝑤(𝑡)‖

𝐿2
2 ≤ 𝑒𝛼𝑡[‖∇𝑢(0)‖

𝐿2
2 +

‖∇𝑤(0)‖
𝐿2
2 ] + 𝑒𝛼𝑡 [

1

2
∫ ‖𝐴𝑔𝑢‖

𝐿2

2
𝑑𝑠

𝑡

0
+

3

4
∫ ‖𝐴𝑔𝑤‖

𝐿2

2𝑡

0
𝑑𝑠] + 4𝑡𝑒𝛼𝑡‖f‖𝐿2

2 + 4𝑡𝑒𝛼𝑡‖∇ ×

f‖𝐿2
2 . 
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Since 𝑢 and 𝑤 are strong solutions of the velocity-

vorticity model of 𝑔NS equations in [10], we have 

𝑢 ∈ 𝐿2(0, 𝑇; 𝐷(𝑨𝒈)),  𝑤 ∈ 𝐿2(0, 𝑇; 𝐷(𝐴𝑔)). Thus 

∫‖𝐴𝑔𝑢‖
𝐿2

2
𝑑𝑡

𝑇

0

≤ 𝐾10, ∫‖𝐴𝑔𝑢‖
𝐿2

2
𝑑𝑡

𝑇

0

≤ 𝐾11.  

Using these results, we get 

‖∇𝑢(𝑡)‖
𝐿2
2 + ‖∇𝑤(𝑡)‖

𝐿2
2

≤ 𝑒𝛼𝑡[‖∇𝑢(0)‖
𝐿2
2 + ‖∇𝑤(0)‖

𝐿2
2 ]

+ 𝑒𝛼𝑡 [
1

2
𝐾10 +

3

4
𝐾11 + 4𝑡‖f‖𝐿2

2

+ 4𝑡‖∇ × f‖𝐿2
2 ].   

For all 𝑡 < 𝑇𝑚𝑎𝑥. Hence we obtain  

‖∇𝑢(𝑡)‖
𝐿2
2 + ‖∇𝑤(𝑡)‖

𝐿2
2

≤ 𝑒𝛼𝑇𝑚𝑎𝑥[‖∇𝑢(0)‖
𝐿2
2

+ ‖∇𝑤(0)‖
𝐿2
2 ]

+ 𝑒𝛼𝑇𝑚𝑎𝑥 [
1

2
𝐾10 +

3

4
𝐾11

+ 4𝑇𝑚𝑎𝑥‖f‖𝐿2
2

+ 4𝑇𝑚𝑎𝑥‖∇ × f‖𝐿2
2 ].   

This gives us 

limsup
𝑡→𝑇𝑚𝑎𝑥

−
‖𝑢(𝑡)‖𝑽𝒈

2 + ‖𝑤(𝑡)‖𝑉𝑔

2 ≤ 𝐾 

This is a contradiction to conclusion (17) The 

proof is completed. 
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