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Abstract
The study of random variables and their distributions have been a great area of interest
for many researchers. Recently the study of neutrosophic random variables have been
introduced, that is why, in this paper, we apply discrete random distribution such as
the uniform discrete distribution, Bernoulli distribution, binomial distribution, geomet-
ric distribution, negative binomial distribution, hypergeometric distribution and Poisson
distribution by using neutrosophic random variables. This study opens a new way for
dealing with issues that follow the classical distributions which appear in classical random
variables and at the same time contain data not specified accurately.
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1. Introduction
The notion of neutrosophic probability measure as a function NP : Y → [0, 1]3 was

introduced by F. Smarandache where U is a neutrosophic sample space, and defined the
probability mapping to take the form NP(S) = (ch(S), ch(neutS), ch(antiS)) = (α, β, γ)
where 0 ≤ α, β, γ ≤ 1 and 0 ≤ α + β + γ ≤ 3 [30]. Besides, many researchers have inves-
tigated many neutrosophic probability distributions like Poisson, exponential, binomial,
normal, uniform, Weibull, etc. (see [2, 4, 22]). Additionally, researchers have investigated
the notion of neutrosophic queueing theory in [33, 34], this is one branch of neutrosophic
stochastic modelling. Furthermore, researchers have also studied neutrosophic time series
prediction and modelling in many cases like neutrosophic moving averages, neutrosophic
logarithmic models, neutrosophic linear models and so on [3, 8].

Recently, researchers have started to study the notion of neutrosophic random variable
(see Definition 2.5). Bisher and Hatip [6] presented the first notion of neutrosophic random
variables in which they presented some basics notions. later on, Granados [14] showed new
notions on neutrosophic random variables and then Granados and Sanabria [17] studied
independence neutrosophic random variables.

On the other hand, neutrosophic logic is an extension of intuitionistic fuzzy logic by
adding indeterminacy component (I) where I2 = I, ..., In = I, 0.I = 0; n ∈ N and I−1 is
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undefined (see [30]). Neutrosophic logic has a huge brand of applications in many fields
including decision making [18,21,26], machine learning [24,31], intelligent disease diagnosis
[11, 28], communication services [7], pattern recognition [23], social network analysis and
e-learning systems [25], physics [32], sequences spaces [15] and so on. Neutrosophic logic
has solved many decision-making problems efficiently like evaluating green credit rating,
personnel selection, etc. [1, 19, 20]. For more notions related to neutrosophic theory, we
refer the reader to [9, 10,12,13,15,16].

In this paper, we highlight the use of neutrosophic random variable theory [6] with
the classical probability distributions, particularly uniform discrete distribution, Bernoulli
distribution, binomial distribution, geometric distribution, negative binomial distribution,
hypergeometric distribution and Poisson distribution, which opens the way for dealing with
issues that follow the classical distributions and at the same time contain data not specified
accurately. In this paper, we discuss discrete random distributions such as the uniform
discrete distribution, Bernoulli distribution, binomial distribution, geometric distribution,
negative binomial distribution, hypergeometric distribution and Poisson distribution by
using neutrosophic random variables. Further, we show some examples and properties of
each distribution defined in this paper.

2. Preliminaries
In this section, we procure some well-known notions which will be useful for the devel-

opment of this paper. Throughout this paper, the set of real number is denoted by R, Ω
denotes the set of sample space and ω denotes an event of the sample space, XN and YN

denote neutrosophic random variables.
Next, we show some well-known definitions and properties of neutrosophic logic and

neutrosophic probability which are useful for the development of this paper.

Definition 2.1. (see [29]) Let X be a non-empty fixed set. A neutrosophic set A is
an object having the form {x, (µA(x), δA(x), γA(x)) : x ∈ X}, where µA(x), δA(x) and
γA(x) represent the degree of membership, the degree of indeterminacy, and the degree
of non-membership respectively of each element x ∈ Xto the set A.

Definition 2.2. (see [5]) Let K be a field, the neutrosophic filed generated by K and I is
denoted by ⟨K ∪ I⟩ under the operations of K, where I is the neutrosophic element with
the property I2 = I.

Definition 2.3. (see [30]) Classical neutrosophic number has the form a + bI where a, b
are real or complex numbers and I is the indeterminacy such that 0.I = 0 and I2 = I
which results that In = I for all positive integers n.

Definition 2.4. (see [30]) The neutrosophic probability of event A occurrence is
NP (A) = (ch(A), ch(neutA), ch(antiA)) = (T, I, F ) where T, I, F are standard or non-
standard subsets of the non-standard unitary interval ]−0, 1+[.

Recently, Bisher and Hatip [6] introduced and studied the notions of neutrosophic ran-
dom variables by using the concepts presented by [30], these notions were defined as
follows:

Definition 2.5. Consider the real valued crisp random variable X which is defined as
follows:

X : Ω→ R,

where Ω is the events space. Now, they defined a neutrosophic random variable XN as
follows:

XN : Ω→ R(I)
and
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XN = X + I,

where I is indeterminacy.

Theorem 2.6. Consider the neutrosophic random variable XN = X +I where cumulative
distribution function of X is FX(x) = P (X ≤ x). Then, the following statements hold:

(1) FXN
(x) = FX(x− I),

(2) fXN
(x) = fX(x− I),

where FXN
and fXN

are cumulative distribution function and probability density function
of XN , respectively.

Theorem 2.7. Consider the neutrosophic random variable XN = X + I, expected value
can be found as follows:

E(XN ) = E(X) + I.

Proposition 2.8 (Properties of expected value of a neutrosophic random variable). Let
XN and YN be neutrosophic random variables, then the following properties holds:

(1) E(aXN + b + cI) = aE(XN ) + b + cI; a, b, c ∈ R.
(2) If XN and YN are neutrosophic random variables, then E(XN±E(YN ) = E(XN )±

E(YN ).
(3) E[(a + bI)XN ] = aE(XN ) + bIE(XN ); a, b ∈ R.
(4) |E(XN )| ≤ E|XN |.

Theorem 2.9. Consider the neutrosophic random variable XN = X + I, variance of XN

is equal to variance of X, i.e. V (XN ) = V (X).

3. Main results
In this section, we define new neutrosophic discrete distribution by using the notion

of neutrosophic random variable. Also, we present some examples and properties of each
neutrosophic discrete distribution.

3.1. Neutrosophic uniform discrete distribution(NUDD)
Let XN be a neutrosophic random variable. We say that XN has neutrosophic uniform

discrete distribution denoted by XN ∼ unif{x1, ..., xn} or X ∼ unif{x1 + I, ..., xn + I} if
the probability that XN takes any value in constant i.e., it is 1

n+I . Nuetorsophic probability
function is given by

fX(x− I) =


1

n + I
, if x = x1 + I, x2 + I, ..., xn + I.

0, otherwise.

Proof.
n+I∑
x=I

1
n + I

= 1
n + I

(n + I) = 1.

□
It can be easily shown that expected and variance of neutrosophic uniform discrete distri-
bution are given by

E(XN ) = µ,

V ar(XN ) = 1
m

m∑
i=1

(xi − µ),

where µ = 1
m

∑m
i=1 xi and m = n + I.
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Example 3.1. in the manufacture of a certain product occurs with failures, assuming
that the number of failures follows a neutrosophic uniform discrete distribution,

fX(x− I) =


1

3 + I
, if x = 2 + I, 4 + I, ..., 5 + I.

0, otherwise.

Determine the probability that more than three faults are found in a certain product in
this has a grade of indeterminacy between [0,0.5].

Solution:
P (XN > 3) = fXN

(4) + fXN
(5) + fXN

(6) + ...

= 1
3 + [0, 0.5]

+ 1
3 + [0, 0.5]

+ 0 + 0 + 0 + ...

= 2
3 + [0, 0.5]

= 2
[3, 3.5]

= [0.57, 0.66].
Therefore, the probability that more than three faults are found in a certain product is
[0.57,0.66]. If we make this exercise in classical way, we obtain that P (X > 3) = 0.66 ∈
[0.57, 0.66] = P (XN > 3).

By using computational software R, we can randomly obtain the neutrosophic distri-
bution uniform discrete by using the following command:
# 15 randomly va lues o f the d i s t r i b u t i o n u n i f { 2 , 3 , 4 , 5 , . . . , 9 , 1 0 , 1 1 } where I=1 .
> sample ( 0 : 1 0 , 1 5 )
[ 1 ] 1 7 3 4 1 1 3 2 1 6 5 3 8 2 9 1

3.2. Neutrosophic Bernoulli distribution (NBD)
Let XN be a neutrosophic random variable. We say that XN has neutrosophic Bernoulli

distribution denoted by XN ∼ Ber(pN ) where pN is set with one or more elements (may
pN be an interval). Nuetorsophic probability function is given by

fX(x− I) =


px−I

N (1− pN )1−x+I , if x = I, 1 + I.

0, otherwise.

Proof.
1+I∑
x=I

px−I
N (1− pN )1−x+I = [p0

N (1− pN )] + [pN (1− pN )0]

= 1− pN + pN

= 1. (3.1)
□

By Theorems (2.7) and (2.9), we can see that
E(XN ) = pN + I,

V ar(XN ) = pN (1− pN ).
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Example 3.2. A machine is known to produce [2%,4%] defective parts. We choose a
piece at random to check if it has no defects with an indeterminacy of [0,0.2]. How is the
neutrosophic random variableXN distributed, which is 1 + I if the part is not defective
and I if is it defective? What is its expected?

Solution:
XN has a neutrosophic Bernoulli distribution wit parameters pN = [0.96, 0.98] and its

expected is gived by E(XN ) = [0.96, 0.98] + [0.0.2] = [0.96, 1].
If we make this exercise in classical way with parameter p = 0.97 ∈ pN , then E(X) ∈

E(XN ) and produce defective parts will be followed by 3% ∈ [2%, 4%].

By using computational software R, we can randomly obtain the neutrosophic Bernoulli
distribution by using the following command:
# rbinom ( j , 1 , p ) takes j randomly va lue s for the neutrosoph ic d i s t r i b u t i o n Ber (p)
> rbinom ( 1 1 , 1 , 0 . 3 )
[ 1 ] 1+I I 1+I I I I I 1+I I 1+I 1+I

Theorem 3.3. Let XN be a neutrosophic random variable with neutrosophic Bernoulli
distribution and let a, b ∈ R with a ̸= 0. Taking YN = aXN + b, then

(1) The neutrosophic density function of YN is given by

fY (y − I) =


p

(y−b−I)/a
N (1− pN )1−[(y−b−I)/a], if y = b + I, a + b + I.

0, otherwise.

(2) E(YN ) = ap + b + I.

Proof.
(1) It follows from Equation (3.1).
(2) Since E(Y ) = ap + b + I, then by Theorem 2.7, E(YN ) = ap + b + I.

□
Theorem 3.4. Let XN1 , XN2 , ..., XNn be neutrosophic random variables independence and
identically distributed with neutrosophic Bernoulli distribution XNn ∼ Ber(pN ). Then,
the neutrosophic Bernoulli distribution of XN1XN2 ...XNn is given by XN1XN2 ...XNn ∼
Ber(pn

N )

Proof. The neutrosophic random variable XN1XN2 ...XNn takes values in 1 and 0. Thus,
its probabilities are P (XN1XN2 ...XNn) = 1 = P (XN1 = 1)...P (XNn) = 1 = P (X1 =
1− I)...P (Xn) = 1− I = pn

N , and for its complement, P (XN1XN2 ...XNn) = 0 = P (XN1 =
0)...P (XNn) = 0 = 1− pn

N . Therefore, XN1XN2 ...XNn ∼ Ber(pn
N ). □

3.3. Neutrosophic binomial distribution (NbD)
Let XN be a neutrosophic random variable. We say that XN has neutrosophic binomial

distribution denoted by XN ∼ bin(n, pN ) where pN is set with one or more elements (may
pN be an interval). Nuetorsophic probability function is given by

fX(x− I) =


( n

x−I

)
px−I

N (1− pN )n−x+I , if x = I, 1 + I, 2 + I, ..., n + I.

0, otherwise.

Proof.
∞∑

x=I

(
n

x− I

)
px−I

N (1− pN )n−x+I = (pN + (1− pN ))n+I = 1.

□
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By Theorems (2.7) and (2.9), we can see that

E(XN ) = npN + I,

V ar(XN ) = npN (1− pN ).

Example 3.5. If X denotes the number of questions answered correctly, then X has
distribution bin(n, pN ) with n = 10 and pN = 1/3. Assuming that the minimum passing
grade is 6, then what is the probability of passing the exam if there is an indeterminacy
of 0.3?

Solution:

P (XN ≥ 6) = P (X ≥ 5.7) =
10∑

x=5.7

(
10
x

)
(1/3)x(2/3)10−x

= 0.06789.

This probability is surprisingly small and hence the strategy followed by the student to
answer the exam does not seem to be the best.

Example 3.6. A seed producer knows from experience that [10%,20%] of a large batch
of seeds does not germinate. The producer sells his seeds in packages of 20 seeds, guaran-
teeing that at least 18 of them will germinate. He calculates the percentage of packages
that will not meet the guarantee if there is a indeterminacy of 40%.

Solution:
Let XN be the number of seeds that will end up germinating in a packages of 20

seeds. Then, XN has a neutrosophic binomial distribution bin(n, pN ) with n = 20 and
pN = [0.8, 0.9]. Then,

P (XN ≤ 17) = P (X ≤ 16.6) = 1− P (X ≥ 17.6)

= 1−
20∑

x=17.6

(
20
x

)
([0.8, 0.9])x([0.1, 0.2])20−x = [0.15, 0.37].

Therefore, [15%,37%] of packages will not meet the guarantee. If we make this exercise in a
classical way, taking pN = 0.9, we obtain P (X ≤ 17) = 32% ∈ P (XN ≤ 17) = [0.15, 0.37].

By using computational software R, we can randomly obtain the neutrosophic binomial
distribution by using the following command:

# rbinom ( j , n , p) takes j randomly va lue s for the neutrosoph ic binomial d i s t r i b u t i o n
# bin (n , p)
> rbinom ( 1 1 , 7 , 0 . 7 )
[ 1 ] 2 1 8 5 8 9 3 1 1 4 3

Theorem 3.7. Let XN and YN be two independence neutrosophic random variables with
neutrosophic distribution bin(n, pN ) and bin(m, pN ), respectively. Then, XN + YN ∼
bin(n + m, pN ).

Proof. Let u be a value from the set {0, 1, ..., m+n}. Then, 0 ≤ x ≤ n+I, 0 ≤ y ≤ m+I
and x+y = u+2I. By hypothesis of independence (for more notion related to independence
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of neutrosophic random variables, we refer the reader to [17]),

P (X + Y = u + 2I) =
∑

x−I,y−I

P (X = x− I)P (Y = y − I)

=
∑

x−I,y−I

(
n

x− I

)
px−I

N (1− p)n−x+I

(
m

y − I

)
py−I

N (1− p)m−y+I

= pu−2I(1− p)n+m−u+2I
∑

x−I,y−I

(
n

x− I

)(
m

y − I

)

=
(

n + m

u− 2I

)
pu−2I(1− p)n+m−u+2I .

□

Theorem 3.8. Let XN be a neutrosophic random variable with XN ∼ bin(n, pN ), then
n−XN ∼ bin(n, 1− pN ).

Proof. For any x = I, 1 + I, ..., n + I,

P (n−X = x− I) = P (X = n− x + I) =
(

n

n− x + I

)
pn−x+I

N (1− pN )x−I

=
(

n

x− I

)
(1− pN )x−Ipn−x+I .

□

Theorem 3.9. Let’s consider that we have any random experiment and that B is an
event with strictly positive probability. Suppose that n independent trials of the random
experiment are performed and that XNn denotes the number of times event B is observed
to occur in these n trials with an indeterminacy I ∈ [0, 1]. Then, for any fixed value j ≥ 1,

lim
n→∞

P (Xn > j − In) = 1.

Proof.

lim
n→∞

P (Xn > j − In) = 1− lim
n→∞

P (Xn ≤ j − In)

= 1− lim
n→∞

j+I∑
x=I

(
n

x− I

)
px−I

N (1− pN )n−x+I

= 1−
j+I∑
x=I

1
(x− I)!

px−I
N (1− pN )−(x−I) lim

n→∞
n!

(n− x + I)!
(1− pN )n.

Now,

lim
n→∞

n!
(n− x + I)!

(1− pN )n = (n− x + I + 1)...n(1− pN )n

= nx−I(1− pN )n

= e(x−I)ln(n)+nln(1−pN )

= ex−Inenln(1−p)

→ 0,

since ln(1− p) < 0. Therefore, lim
n→∞

P (Xn > j − In) = 1. □
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3.4. Neutrosophic geometric distribution (NGD)
Let XN be a neutrosophic random variable. We say that XN has neutrosophic geometric

distribution denoted by XN ∼ geo(pN ) where pN is set with one or more elements (may
pN be an interval). Nuetorsophic probability function is given by

fX(x− I) =


pN (1− pN )x−I , if x = I, 1 + I, 2 + I, ..., n + I.

0, otherwise.

Proof.
∞∑

x=I

pN (1− pN )x−I = pN

∞∑
x=I

(1− pN )x−I

= 1.

□

By Theorems (2.7) and (2.9), we can see that

E(XN ) = 1− pN

pN
+ I,

V ar(XN ) = 1− pN

p2
N

.

By using computational software R, we can obtain the neutrosophic geometric proba-
bility by using the following command:

# dgeom (x−I , p ) e v a l u a t e s f (x−I ) in the neutrosoph ic d i s t r i b u t i o n geo (p) where I =0.3
and x=5.3

> dgeom ( 5 , 0 . 4 )
[ 1 ] 0 .03

Example 3.10. One person participates each week with a ticket in a lottery game, where
the probability of winning the first prize is pN = [10−8, 10−6] with an indeterminacy of
[0.2, 0.4]. How many years on average does this person play the game until you get the
first prize?

Solution:

E(XN + 1) = 1− pN

pN
+ 1 + I

= 1
pN

+ I

= 1
[10−8, 10−6]

+ [0.2, 0.4]

= [106, 108] + [0.2, 0.4]
= [1000000.2, 100000000.4].

This is the average number of weeks a person must play to get the top prize and is
approximately equivalent to [19164.96,1916495.61] years.

Theorem 3.11. Let XN0 , XN1 , ... be a sequence of independence neutrosophic random
variables with neutrosophic distribution Ber(pN ). If XN = min{n ≥ 0 : Xn = 1 − I}.
Then, XN has neutrosophic geometric distribution.
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Proof. For each n ≥ 0, the event (X = n − I) is equal to the event (X0 = −I, X1 =
−I, ..., Xn−1 = −I, Xn = 1− I). Therefore,

P (X = n− I) = P (X0 = −I, X1 = −I, ..., Xn−1 = −I, Xn = 1− I)
= P (X0 = −I)P (X1 = −I)...P (Xn−1 = −I)P (Xn = 1− I)
= (1− pN )n−1−IpN .

□
Theorem 3.12. Let XN and YN be two independence neutrosophic random variable which
have geo(pN ) distribution. Then,

P (XN + YN = j − 2I) =
(

j + 1− 2I

j − 2I

)
(1− pN )j−2Ip2

N ,

for j = I, 1 + I, 2 + I, ...

Proof.

P (XN + YN = j − 2I) =
j+I∑
x=I

P (X = x− I, Y = j − x− I)

=
j+I∑
x=I

P (X = x− I)P (Y = j − x− I)

=
j+I∑
x=I

(1− pN )x−IpN (1− pN )j−x−IpN

= (j + 1− 2I)(1− pN )j−2Ip2
N .

□
Theorem 3.13. Let YN = 1 + XN be a neutrosophic random variable where XN has
neutrosophic geometric distribution. Then,

(1) The neutrosophic density function of YN is given by

fY (y − I) =


pN (1− pN )y−I−1, if y = 1 + I, 2 + I, ..., n + I.

0, otherwise.

(2) E(YN ) = 1
pN

+ I.

(3) V ar(YN ) = 1− pN

p2
N

.

Proof.
(1) The neutrosophic random variable YN = 1+XN takes values in 1+I, 2+I, ... with

probabilities
fY (y − I) = P (YN = y) = P (1 + XN = y) = P (XN = y − 1) = (1− pN )y−1−IpN .

(2) E(YN ) = E(1 + XN ) = 1 + E(XN ) = 1 + (1− pN )/pN + I = 1/pN + I.
(3) V ar(YN ) = V ar(1 + XN ) = V ar(XN ) = (1− pN )/p2

N .
□

3.5. Neutrosophic negative binomial distribution(NNBD)
Let XN be a neutrosophic random variable. We say that XN has neutrosophic negative

binomial distribution denoted by XN ∼ binneg(rN , pN ) where rN and pN are sets with
one or more elements (may rN and pN be an intervals). Nuetorsophic probability function
is given by
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fX(x− I) =


(rN +x−I−1

x−I

)
prN

N (1− pN )x−I , if x = I, 1 + I, 2 + I, ..., n + I.

0, otherwise.

Proof.
∞∑

x=I

(
rN + x− I − 1

x− I

)
prN

N (1− pN )x−I = prN
N

∞∑
x=I

(−1)x−I

(
−rN

x− I

)
(1− pN )x−I

= prN
N

∞∑
x=I

(
−rN

x− I

)
(pN − 1)x−I

= prN
N (1 + pN − 1)−rN

= 1.

□
By Theorems (2.7) and (2.9), we can see that

E(XN ) = rN
1− pN

pN
+ I,

V ar(XN ) = rN
1− pN

p2
N

.

By using computational software R, we can obtain the neutrosophic negative binomial
distribution by using the following command:
# dnbinom (x−I , r , p ) e v a l u a t e s f (x−I ) in the neutrosoph ic d i s t r i b u t i o n binneg ( r , p )

where I =0.4 and x=3.4
> dnbinom ( 3 , 5 , 0 . 5 )
[ 1 ] 0 .13

Example 3.14. A balanced coin is tossed repeatedly whose two results are heads and
tails. What is the probability of getting the third tail on the fifth toss if there is an inde-
terminacy of [0.1,0.5]?

Solution:

P (X = 2− I) = P (X = [1.5, 1.9]) =
(

[5.5, 5.9]
[1.5, 1.9]

)
(1/2)5 = [0.16, 0.20].

Therefore, the probability of getting the third tail on the fifth toss is [0.16,0.20]. If we make
this exercise in classical way, we obtain P (X = 2) = 0.18 ∈ P (XN = 2) = [0.16, 0.20].

Theorem 3.15. Let Xn1 , XN2 , ... be a sequence of independence neutrosophic random
variables with distribution Ber(pN ) and let rN ≥ 1 such that

XN = min{n ≥ rN :
n+I∑

k=1+I

XNk
= rN} − rN .

Then, XN has neutrosophic distribution binneq(rN , pN ).

Proof. XN can take values in I, 1 + I, ... For any of these values,

P (XN = x) = P (min{n ≥ rN :
n+I∑

k=1+I

XNk
= rN} = rN + x− I

= P (XNrN +x−I
= 1) and in (XN1 , XN2 , ..., XNrN +x−I−1) there is rN − 1

=
(

rN + x− I − 1
rN − 1

)
(1− pN )x−IprN

N .
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□

Theorem 3.16. Let YN = rN + XN be a neutrosophic random variable such that XN has
distribution binneq(rN , pN ). Then,

(1) The neutrosophic density function of YN is given by

fY (y − I) =


( y−1−I

y−I−rN

)
prN

N (1− pN )y−I−rN , if y = rN + I, rN + 1 + I, ...

0, otherwise.

(2) E(YN ) = rN

pN
+ I.

(3) V ar(YN ) = rN
1− pN

p2
N

.

Proof.
(1) The neutrosophic random variable YN takes values in y = rN + I, rN + 1 + I, ...

with probabilities

fY (y − I) = P (Y = y − I) = P (rN + XN = y)
= P (X = y − I − rN )

=
(

y − I − 1
y − I − rN

)
(1− pN )y−I−rN prN

N .

(2) E(YN ) = E(rN + XN ) = rN + E(XN ) = rN + rN (1− pN )/pN + I = rN /pN + I.

(3) V ar(YN ) = V ar(rN + YN ) = V ar(X) = rN
1− pN

p2
N

.

□

3.6. Neutrosophic hypergeometric distribution (NHGD)
Let XN be a neutrosophic random variable. We say that XN has neutrosophic hyperge-

ometric distribution denoted by XN ∼ hypergeo(NN , KN , n) where NN and KN are sets
with one or more elements (may NN and KN be an intervals). Nuetorsophic probability
function is given by

fX(x− I) =


(KN

x−I

)(NN −KN
n−x+I

)(NN
n

) , if x = I, 1 + I, 2 + I, ..., n + I.

0, otherwise.

Proof. It follows form the fact (a + b)NN = (a + b)KN (a + b)NN −KN . □

By Theorems (2.7) and (2.9), we can see that

E(XN ) = n
KN

NN
+ I,

V ar(XN ) = n
KN

NN

NN −KN

NN

NN − n

NN − 1
.

By using computational software R, we can obtain the neutrosophic hypergeometric
distribution by using the following command:
# hyper (x−I ,K,K−N, n) e v a l u a t e s f (x−I ) in the neutrosoph ic d i s t r i b u t i o n where I =0.2

and x=3.2
> dnbinom ( 3 , 7 , 1 3 , 5 )
[ 1 ] 0 .17
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Example 3.17. In a fish tank there are 10 fish of which 6 are male and 4 are female. 5
pieces are drawn at random and without replacement. What is the probability that there
are 3 males and 2 females if there is an indeterminacy of [10%,30%]?

Solution:

P (XN = 3) = P (X = [2.7, 2.9]) =
( 6

[2.7,2.9]
)( 4

[2.1,2.3]
)(10

5
)

= [0.40, 0.49].

If we make this exercise in classical way, we obtain P (X = 3) = 0.47 ∈ P (XN = 3) =
[0.40, 0.49].

Remark 3.18. As NN , KN →∞ with KN /NN = γ ∈ R, then

P (XN = x)→
(

n

x− I

)
γx−I(1− γ)n−x+I ,

so the neutrosophic distribution tends to a neutrosophic Binomial distribution.

The following theorem shows a general description of Remark 3.18.

Theorem 3.19. Let XN be a neutrosophic random variable with neutrosophic hyper-
geoemtric distribution. Then, neutrosophic density probability function of XN converges
to the neutrosophic density function bin(n, pN ) when NN →∞ when KN /NN → pN ∈ R.

Proof. We begin to discompose the neutrosophic density probability function as can been
shown as follows. In particular, NN ! = (NN − x + I)!NN (NN − 1)...(NN − x + I + 1).
Then,

fX(x− I) =
(NN

x−I

)(NN −KN
n−x+I

)(NN
n

)
= KN !(NN −KN )!n!(NN − n)!

(x− I)!(KN − x + I)!(n− x + I)!(NN −KN − n + x− I)!NN !

=
(

n

x− I

)
KN !(NN −KN )!

NN !
(NN − n)!

(KN − x + I)!(NN −KN − n + x− I)!

=
(

n

x− I

)
KN (KN − 1)...(KN − x + I + 1)
NN (NN − 1)...(NN − x + I + 1)

(NN −KN )(NN −KN − 1)...(NN −KN − n + x− I + 1)
(NN − x + I)(NN − x + I − 1)...(NN − n + 1)

.

Thus,

KN (KN − 1)...(KN − x + I + 1)
NN (NN − 1)...(NN − x + I + 1)

, (3.2)

tends to px−I
N , and

(NN −KN )(NN −KN − 1)...(NN −KN − n + x− I + 1)
(NN − x + I)(NN − x + I − 1)...(NN − n + 1)

, (3.3)

tends to (1− pN )n−x+I . Hence, by Equations (3.2) and (3.3) we conclude the proof.
□
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3.7. Neutrosophic Poisson distribution (NPD)
Let XN be a neutrosophic random variable. We say that XN has neutrosophic Poisson

distribution denoted by XN ∼ Poisson(λN ) where λN is set with one or more elements
(may λN be an interval). Nuetorsophic probability function is given by

fX(x− I) =


e−λN

λx−I
N

(x− I)!
, if x = I, 1 + I, 2 + I, ..., n + I.

0, otherwise.

Proof. It follows from the fact ex−I =
∞∑

j=I

(x− I)j

j!
. □

By Theorems (2.7) and (2.9), we can see that

E(XN ) = λN + I,

V ar(XN ) = λN .

By using computational software R, we can obtain the neutrosophic Poisson distribution
by using the following command:

# dpois (x−I , \ lambda ) e v a l u a t e s f (x−I ) in the neutrosoph ic Poisson d i s t r i b u t i o n
where I =0.6 and x=3.6

> dnbinom ( 3 , 2 )
[ 1 ] 0 .18

Example 3.20. On average [2,4] requests to access a page are received web for any given
minute with an indeterminacy of 20%. What is the probability that in a given minute:

(1) No one requests access to the page.
(2) More than two requests are received.

Solution:
Let XN be the number of requests per minute with an indeterminacy of 20%. We will
suppose that XN has neutrosophic distribution Poisson(λN ) with λN = [2, 4]. Then,

(1) P (X = −I) = e−[2,4] [2, 4]−0.2

−0.2!
= [0.15, 0.23].

(2)

P (X > 2− I) = 1− P (X ≤ 2− I)
= 1− (P (X = −I) + P (X = 1− I) + P (X = 2− I))
= 1− (P (X = −0.2) + P (X = 0.8) + P (X = 1.8))

= 1− e−[2,4]( [2, 4]−0.2

−0, 2!
+ [2, 4]0.8

0.8!
+ [2, 4]1.8

1, 8!
)

= [0.24, 0.37].

Theorem 3.21. Let XN and YN be two independence neutrosophic random variables with
neutrosophic distribution Poisson(λN1) and Poisson(λN2), respectively. Then, XN +YN ∼
Pisson(λN1 + λN2).
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Proof. For any u ≥ 0,

P (XN + YN = u− 2I) =
u+I∑
x=I

P (XN = x, YN = u− x)

=
u+I∑
x=I

P (XN = x)P (YN = u− x)

=
u+I∑
x=I

eλN1
λx−I

N1

(x− I)!
eλN2

λu−x+I
N1

(u− x + I)!

= e−(λN1 +λN2
1

(u− 2I)!

u+I∑
x=I

(
u− 2I

x− I

)
λx−I

N1
λu−x+I

N2

= e−(λN1 +λN2
(λN1 + λN2)u−2I

(u− 2I)!
.

□

3.8. Relationship between neutrosophic discrete distributions in random
variables

As well as happens in classical probability, the distributions presented in this paper can
be related to each other, as can be seen in the following diagram:

NHGD ← NBD → NGD

↘ ↓ ↓
NbD NNBD

↓ ↙
NPD

Meanings:
(1) Neutrosophic Bernoulli distribution: NBD.
(2) Neutrosophic binomial distribution: NbD.
(3) Neutrosophic geometric distribution: NGD.
(4) Neutrosophic negative binomial distribution:NNBD.
(5) Neutrosophic hypergeometric distribution: NHGD
(6) Neutrosophic Poisson distribution: NPD.

It is easy to verify these relations, since they are proved in a similar way to classical
probability, only the degree indeterminacy must be taken into account.

4. Conclusion
The neutrosophic probability distributions only deal with the specified undetermined

values. In this paper, we contributed to the study of classical distributions and classical
neutrosophic probability distribution and applied them in neutrosophic random variable
an we define its discrete distribution. We called these distributions neutrosophic discrete
distributions in neutrosophic random variables. On the other hand, We conclude from
this paper that the neutrosophic discrete distributions in neutrosophic random variables
gives us a more general and clarity study of the studied issue. In this paper, we presented
several solved for the problems that classic logic and classical neutrosophic probability.
We look forward in the future to apply these distrbutions in decision making, engineer
and social science environment.
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