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TURKIYE

ABSTRACT. Let R be a commutative ring with identity and S a multiplicatively
closed subset of R. This paper aims to introduce the concept of S-n-ideals as
a generalization of n-ideals. An ideal I of R disjoint with S is called an S-
n-ideal if there exists s € S such that whenever ab € I for a,b € R, then
sa € v/0 or sb € I. The relationships among S-n-ideals, n-ideals, S-prime and
S-primary ideals are clarified. Besides several properties, characterizations and
examples of this concept, S-n-ideals under various contexts of constructions
including direct products, localizations and homomorphic images are given.
For some particular S and m € N, all S-n-ideals of the ring Z,,, are completely
determined. Furthermore, S-n-ideals of the idealization ring and amalgamated
algebra are investigated.

1. INTRODUCTION

Throughout this paper, we assume that all rings are commutative with non-zero
identity. For a ring R, we will denote by U(R), reg(R) and Z(R), the set of unit
elements, regular elements and zero-divisor elements of R, respectively. For an
ideal I of R, the radical of I denoted by /T is the ideal {a € R:a" € I for some
positive integer n} of R. In particular, v/0 denotes the set of all nilpotent elements
of R. We recall that a proper ideal I of a ring R is called prime (primary) if for
a,b€ R, abe I impliesa € I or b€ I (be /). Several generalizations of prime
and primary ideals were introduced and studied, (see for example [2]- [4], [6], [17]).

Let S be a multiplicatively closed subset of a ring R and I an ideal of R disjoint
with S. Recently, Hamed and Malek [12] used a new approach to generalize prime
ideals by defining S-prime ideals. I is called an S-prime ideal of R if there exists
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an s € S such that for all a,b € R whenever ab € I, then sa € I or sb € I. Then
analogously, Visweswaran [16] introduced the notion of S-primary ideals. I is called
an S-primary ideal of R if there exists an s € S such that for all a,b € R if ab € I,
then sa € I or sb € /I. Many other generalizations of S-prime and S-primary
ideals have been studied. For example, in |1], the authors defined I to be a weakly
S-prime ideal if there exists an s € S such that for all a,b € R if 0 # ab € I, then
sa € I or sb € I. In 2015, Mohamadian [14] defined a new type of ideals called
r-ideals. An ideal I of a ring R is said to be r -ideal, if ab € I and a ¢ Z(R)
imply that b € I for each a,b € R. Generalizing this concept, in 2017 the notion
of n-ideals was first introduced and studied [15]. The authors called a proper ideal
I of R an n-ideal if ab € I and a ¢ V0 imply that b € I for each a,b € R. Many
other generalizations of n-ideals have been introduced recently, see for example [13]
and [18]. Motivated and inspired by these studies, in this article, we study the
S-version of the class of n-ideals by determining the structure of S-n-ideals of a
ring. We call I an S-n-ideal of a ring R if there exists an (fixed) s € S such that for
all a,b € Rif ab € I and sa ¢ \/0, then sb € I. We call this fixed element s € S an
S-element of I. Clearly, for any multiplicatively closed subset S of R, every n-ideal
is an S-n-ideal and the classes of n-ideals and S-n-ideals coincide if S C U(R).
However, this generalization of n-ideals is proper as we can see in Example [1| In
Section 2, we start by giving an example of an S-n-ideal of a ring R that is not
an n-ideal. Then we give many properties of S-n-ideals and show that S-n-ideals
enjoy analogs of many of the properties of n-ideals. Also we discuss the relationship
among S-n-ideals, n-ideals, S-prime and S-primary ideals, (Propositions |§| and
Examples . In Theorems (1| and [2, we present some characterizations for S-
n-ideals of a general commutative ring. Moreover, we investigate some conditions
under which (I :g s) is an S-n-ideal of R for an S-n-ideal I of R and an S-
element s of I, (Propositions and Example . For a particular case that
S C reg(R), we justify some other results. For example, in this case, we prove
that a maximal S-n-ideal of R is S-prime, (Proposition @ In addition, we show
in Proposition [] that every proper ideal of a ring R is an S-n-ideal if and only
if R is a UN-ring (a ring for which every nonunit element is a product of a unit
and a nilpotent). Let n € N, say, n = pi'p5*..p;* where pi,ps, ..., pi are distinct
prime integers and r; > 1 for all . Then for all 2 <i <k —1, S, po. pi1pisiopr =
(P P52 oDty s my € NU{0}} is a multiplicatively closed subset of
L. In Theorem @] we determine all Sy, p,.. p; 1p;41...p-N-ideals of Z;, for all i. In
particular, we determine all Sp-n-ideals of Z, where S, = {1,p,p?,p°, ...} for any
prime integer p dividing n, (T heorem. Furthermore, we study the stability of S-n-
ideals with respect to various ring theoretic constructions such as localization, factor
rings and direct product of rings, (Propositions and. Let R be a ring and
M be an R-module. For a multiplicatively closed subset S of R, the set S(+)M =
{(s,m) : s € S, m € M} is clearly a multiplicatively closed subset of the idealization
ring R(+)M. In Section 3, first, we clarify the relation between the S-n-ideals of a
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ring R and the S(+)M-n-ideals R(+)M, (Proposition [17). For rings R and R’, an
ideal J of R’ and a ring homomorphism f : R — R/, the amalgamation of R and R’
along J with respect to f is the subring R xf J = {(r, f(r) +j):r € R, j € J} of
Rx R'. Clearly, the set S x/ J = {(s, f(s) +j) : s €S, j € J} is a multiplicatively
closed subset of R x/ J whenever S is a multiplicatively closed subset of R. We
finally determine when the ideals I x/ J = {(i, f(i) +j):i €I, j € J} and K/ =
{(a,f(a) +j):a€ R, j€J, fla)+j € K} of R x/ J are (S x/ J)-n-ideals,
(Theorems [5] and [6]).

2. PROPERTIES OF S-n-IDEALS

Definition 1. Let R be a ring, S be a multiplicatively closed subset of R and I be
an ideal of R disjoint with S. We call I an S-n-ideal of R if there exists an (fized)
s € S such that for all a,b € R if ab € I and sa ¢ /0, then sb € I. This fived
element s € S is called an S-element of I.

Let I be an ideal of a ring R. If I is an n-ideal of R, then clearly I is an S-
n-ideal for any multiplicatively closed subset of R disjoint with I. However, it is
clear that the classes of n-ideals and S-n-ideals coincide if S C U(R). Moreover,
obviously any S-n-ideal is an S-primary ideal and the two concepts coincide if the
ideal is contained in /0. However, the converses of these implications are not true
in general as we can see in the following examples.

Example 1. Let R = Z12, S = {1,3,9} and consider the ideal I =< 4 >. Choose
s =3¢€ S and let a,b € R with ab € I but 3b ¢ I. Now, ab €< 2 > implies
a€<2>o0rbe<2>. Assume thata ¢<2 > andb €< 2 >. Sincea ¢< 2 >, then
ab ¢ I, a contradiction. Hence, we must have a €< 2 > and so 3a €< 6 >= /0.
On the other hand, I is not an n-ideal as 2 -2 € I but neither 2 € V0 nor 2 € I.

A (prime) primary ideal of a ring R that is not an n-ideal is a direct example of
an (S-prime) S-primary ideal that is not an S-n-ideal where S = {1}. For a less
trivial example, we have the following.

Example 2. Let R = Z[X] and let I = (4z). consider the multiplicatively closed
subset S = {4™ : m € NU{0}} of R. Then I is an S-prime (and so S-primary) ideal
of R, [16, Example 2.3]. However, I is not an S-n-ideal since for all s = 4™ € S,

we have (22)(2) € T but s(2x) ¢ \/0z[z) and s(2) ¢ 1.

Proposition 1. Let S be a multiplicatively closed subset of a ring R and I be an
ideal of R disjoint with S.

(1) If I is an S-n-ideal, then sI C /0 for some s € S. If moreover, S C reg(R),
then I C /0.

(2) V0 is an S-n-ideal of R if and only if 1/0 is an S-prime ideal of R.

(3) Let S C reg(R). Then 0 is an S-n-ideal of R if and only if 0 is an n-ideal.
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Proof. (1) Leta € I. Since INS =10, s-1¢ I for all s € S. Hence, a-1 € I implies
that there exists an s € S such that sa € /0. T hus, sI C V0 as desired. Moreover,
if S C reg(R), then clearly I C /0.

(2) Clear.

(3) Suppose s is an S-element of 0 and ab = 0 for some a,b € R. Then sa € v0
or sb = 0 which implies s"a™ = 0 for some positive integer n or sb = 0. Since
S C reg(R), we have a™ = 0 or b = 0, as needed. a

Next, we characterize S-n-ideals of rings by the following.

Theorem 1. Let S be a multiplicatively closed subset of a ring R and I be an ideal
of R disjoint with S. The following statements are equivalent.

(1) Iis an S-n-ideal of R.
(2) There exists an s € S such that for any two ideals J, K of R, if JK C I,
then sJ C v/0 or sK C I.

Proof. (1)=(2). Suppose I is an S-n-ideal of R. Assume on the contrary that for
each s € S, there exist two ideals J’, K’ of R such that J'K’ C I but sJ" ¢ V0 and
sK' ¢ I. Then, for each s € S, we can find two elements a € J' and b € K’ such
that ab € I but neither sa € v/0 nor sb € I. By this contradiction, we are done.
(2)=(1). Let a,b € R with ab € I. Taking J =< a > and K =< b > in (2), we
get the result. [

Theorem 2. Let S be a multiplicatively closed subset of a ring R and I be an ideal
of R disjoint with S. If \/O is an S-n-ideal of R, then the following are equivalent.

(1) Iis an S-n-ideal of R.

(2) There exists s € S such that for ideals I, Io, ..., I, of R, if I1I5---1I, C I,
then sI; C /0 or sl C I for some j, k € {1,...,n}.

(3) There exists s € S such that for elements a4, as, ..., a, of R, if ajas---a, €
I, then sa; € v/0 or say, € I for some j,k € {1,...,n}.

Proof. (1)=>(2). Let s;1 € S be an S-element of I. To prove the claim, we use
mathematical induction on n. If n = 2, then the result is clear by Theorem
Suppose n > 3 and the claim holds for n — 1. Let Iy, Is,..., I, be ideals of R
with I1I5---1, C I. Then by Theorem [l we conclude that either s1I; C V0 or
silo---I, C I. Assume (s1l2)---I, C I. By the induction hypothesis, we have
either, say, s2I, C v/0 or sy C I for some k € {3,...,n}. Assume s3I C v/0 and
choose an S-element s, € S of V0. If s5(s7R) € /0N S, we get a contradiction.
Thus, sols C V0. By choosing s = 5152, we get sI; C V0 or sI, C I for some
j,ke{l,...,n}, as needed.

(2)=(3). This is a particular case of (2) by taking I; :=< a; > for all j €
{1,..,n}.

(3)=(1). Clear by choosing n = 2 in (3). O
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Proposition 2. Let S be a multiplicatively closed subset of a ring R and I be an
ideal of R disjoint with S. Then

(1) If (I : s) is an n-ideal of R for some s € S, then I is an S-n-ideal.

(2) If I is an S-n-ideal and (1/0 : s) is an n-ideal where s € S is an S-element
of I, then (I : s) is an n-ideal of R.

(3) If I is an S-n-ideal and S C reg(R), then (I : s) is an n-ideal of R for any
S-element s of I.

Proof. (1) Suppose that (I : s) is an n-ideal of R for some s € S. We show that s
is an S-element of I. Let a,b € R with ab € I and sa ¢ /0. Then ab € (I : s) and
a ¢ /0 imply that b € (I : s).Thus, sb € I and I is an S-n-ideal.

(2) Suppose a,b € R with ab € (I : s). Then a(sb) € I which implies sa € v0
or s’b € I. Suppose sa € /0. Since (10 : s) is an n-ideal, (+0 : s) = VO
by |15, Proposition 2.3] and so a € V0. Now, suppose b € 1. If sb ¢ I, then since
I is an S-n-ideal, s € V0 and so s € v/0 which contradicts the assumption that
(+/0 : 5) is proper. Thus, sb € I and b € (I : s) as needed.

(3) Suppose S C reg(R) and I is an S-n-ideal. Let a,b € R with ab € (I : s) so
that a(sb) € I . If sa € v/0, then s™a™ = 0 for some integer m. Since S C reg(R),
we get a™ = 0 and so a € V0. If s?b € I, then similar to the proof of (2) we
conclude that b € (I : s). O

Note that the conditions that (/0 : s) is an n-ideal in (2) and S C reg(R) in (3)
of Proposition are crucial. Indeed, consider R = Z12, S = {1, 3,9}. We showed in
Example that I =<4 > is an S-n-ideal which is not an n-ideal, and so (1 : 3) = I
is not an n-ideal. Here, observe that S ¢ reg(R) and (v/0 : 3) =< 2 > is not an

n-ideal of Z1s.

Proposition 3. Let S C reg(R) be a multiplicatively closed subset of a ring R and
I be an S-prime ideal of R. Then I is an S-n-ideal if and only if (I : s) = \/0 for
some s € S.

Proof. Suppose I is an S-n-ideal of R and s; be an S-element of I. Then (I : s1)
is an n-ideal of R by Proposition [28 Moreover, (I : ts1) is an n-ideal for all ¢ € S.
Indeed, if ab € (I : ts;) for a,b € R, then abts; € I and so either s?a € /0
or sith € I. If s2a € /0, then a € V0 as S C reg(R). Otherwise, we have
b e (I:1ts1) as needed. Since I is an S-prime ideal of R, (I : s3) is a prime ideal
of R where sy € S such that whenever ab € I for a,b € R, either ssa € I or
s9b € I, |12, Proposition 1]. Similar to the above argument, we can also conclude
that (I : tsg) is a prime ideal for all ¢ € S. Now, choose s = sys2. Then (I : s)
is both a prime and an n-ideal of R and so (I : s) = v/0 by [15, Proposition 2.8].
Conversely, suppose (I : s) = /0 for some s € S. Since I is an S-prime ideal,
(I : §') is a prime ideal of R for some s’ € S. Moreover, if a € (I : &), then
as’EIQ(I:s)Q\@andsoaeﬁassgreg(l%). Thus, (I : s') = /0 is a
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prime ideal and so it an n-ideal again by [15, Proposition 2.8]. Therefore, I is an
S-n-ideal by Proposition O

In the following example we justify that the condition S C reg(R) can not be
omitted in Proposition [3]

Example 3. The ideal I =< 2 > of Z1 is prime and so S-prime for S = {1,3,9} ¢
reg(Zy2). Moreover, one can directly see that s = 3 is an S-element of I and so I
is also an S-n-ideal of Z1o. But (I :s) =1 # /0 for all s € S.

A ring R is said to be a UN-ring if every nonunit element is a product of a unit
and a nilpotent. Next, we obtain a characterization for rings in which every proper
ideal is an S-n-ideal where S C reg(R).

Proposition 4. Let S C reg(R) be a multiplicatively closed subset of a ring R.
The following are equivalent.

(1) Every proper ideal of R is an n-ideal.
(2) Every proper ideal of R is an S-n-ideal.
(3) R is a UN-ring.

Proof. Since (1)=(2) is straightforward and (3)=(1) is clear by |15/ Proposition
2.25], we only need to prove (2)=(3).

(2)=(3). Let I be a prime ideal of R. Then I is an S-prime and from our
assumption, it is also an S-n-ideal. Thus I C (I : s) = /0 is a prime ideal of R
by Proposition Thus v/0 is the unique prime ideal of R and so R is a UN-ring
by |7, Proposition 2 (3)]. O

The equivalence of (1) and (2) in Proposition [4| need not be true if S € reg(R).

Example 4. Consider the ring Z¢ and let S = {1,3}. If I = (0) or (2), then a
simple computations can show that I is an S-n-ideal of Zg. However, Zg has no
proper n-ideals, (15, Example 2.2].

A ring R is said to be von Neumann regular if for all a € R, there exists an
element b € R such that a = a?b.

Proposition 5. Let S C reg(R) be a multiplicatively closed subset of a ring R.

(1) Let R be a reduced ring. Then R is an integral domain if and only if there
exists an S-prime ideal of R which is also an S-n-ideal

(2) R is a field if and only if R is von Neumann regular and 0 is an S-n-ideal
of R.

Proof. (1) Let R be an integral domain. Since 0 = /0 is prime, it is also an n-
ideal again by [15, Corollary 2.9]. Thus v/0 is both S-prime and S-n-ideal of R,
as required. Conversely, suppose I is both S-prime and S-n-ideal of R. Hence,
from Proposition [3[ we conclude (I : s) = /0 which is an n-ideal by Proposition
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V0 = 0 is also a prime ideal by [15, Corollary 2.9], and thus R is an integral
domain.

(2) Since S C reg(R), from Proposition (1} 0 is an S-n-ideal of R if and only if 0
is an n-ideal. Thus, the claim is clear by |15, Theorem 2.15]. O

Let n € N. For any prime p dividing n, we denote the multiplicatively closed
subset {1,p,p% p%, ...} of Z, by S,. Next, for any p dividing n, we clarify all
Sp-n-ideals of Z,,.

Theorem 3. Letn € N.

(1) If n = p” for some prime integer p and r > 1, then Z,, has no Sp,-n-ideals.

(2) If n = p'p5? where p; and py are distinct prime integers and 71,72 > 1,
then for all ¢ = 1,2, every ideal of Z,, disjoint with S, is an S),,-n-ideal.

(3) If n = pi'py*...p,* where p1,pa, ..., pj are distinct prime integers and k > 3,
then for all ¢ = 1,2, ..., k, Z,, has no Sp,-n-ideals.

Proof. (1) Clear since I NS, # ¢ for any ideal I of Z,.

(2) Let I = (p{*p%*) be an ideal of Z, distinct with S,,. Then we must have
ty > 1. Choose s = pi* € S,, and let ab € I for a,b € Z,. If a € (pa), then
sa € (p1p2) = V0. If a & (p2), then clearly b € <]5§2> and so sb € I. Therefore, I is
an Sy, -n-ideal of Z,,. By a similar argument, we can show that every ideal of Z,
distinct with S, is an Sj,-n-ideal.

(3) Let I = (p{'ps?...p;" ) be an ideal of Z, distinct with S,,. Then there exists
j # 1 such that ¢; > 1, say, j = k. Thus, j)zk (pﬁlp?...pzkjf) € I but sﬁfj ¢ 0
and s(ﬁ?ﬁ?...ﬁi’ff) ¢ I for all s € Sp,. Therefore, I is not an S,,-n-ideal of Z,,.
Similarly, I is not an Sp,-n-ideal of Z,, for all i = 1,2, ..., k. U

Corollary 1. Let n € N. Then for any prime p dividing n, either Z, has no
Sp-n-ideals or every ideal of Z,, disjoint with S, is an Sp-n-ideal.
In general if n = pi*p3?...p;" where r; > 1 for all 4, then
Spipapipisrwe = AP PE S Pint Pt By s my € NU{0})

is also a multiplicatively closed subset of Z,, for all :. Next, we generalize Theorem

Bl
71,72

Theorem 4. Let n = p'py?...p;" where py,pa,...,pi are distinct prime integers
and r; > 1 for all i.

(1) Zy,, has no Sp,p,...p,-n-ideals.

(2) Fori =1,2,...k, every ideal of Z,, disjoint with Sy p, . .p; 1pisi..p. 1S an
Splp2~~m—1pi+1--~pk'n_1dea1'

(3) Let k> 3. If m < k — 2, then Z,, has no Sy, ,.. p,,-n-ideals.
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Proof. (1) This is clear since I NSy, p,..p. 7# ¢ for any ideal I of Z,,.

(2) With no loss of generality, we may choose i = k. Let I = <]§§1;5§2...]§2’“>
be an ideal of Z,, disjoint with Sp,p,..pr_,- Then we must have ¢, > 1. Choose
s = ]3?;3;2...]32“_’11 € Spips..pn_, and let a,b € Z,, such that ab € I. If a € (py), then
sa € (p1P2...pk) = V0. If a ¢ (py,), then we must have b € (py*). Thus, sb € I and
Iis an Sp,p,..pp_,-n-ideal of Z,.

(3) Assume m = k — 2 and let T = <]5§1]5;2...]52k> be an ideal of Z, disjoint
with Sy, p,..pe_,- Then at least one of ¢,_; and ¢; is nonzero, say, t; = 0. Hence,

—t1 —to —tk—1 g1

;Ezk (p1' Py ...Dy 1) € I but clearly sﬁfj ¢ /0 and s(ﬁilﬁg"...pk_l) ¢ I for all s €
Spips...pi_»- Lherefore, Z,, has no Sy, p,..p._,-n-ideals. A similar proof can be used
ifl1<msk-—2 O

An ideal I of a ring R is called a maximal S-n-ideal if there is no S-n-ideal of R
that contains I properly. In the following proposition, we observe the relationship
between maximal S-n-ideals and S-prime ideals.

Proposition 6. Let S C reg(R) be a multiplicatively closed subset of a ring R. If
I is a mazimal S-n-ideal of R, then I is S-prime (and so (I : s) = /0 for some
seS).

Proof. Suppose [ is a maximal S-n-ideal of R and s € S is an S-element of I.
Then (I : s) is an n-ideal of R by Proposition [2l Moreover, (I : s) is a maximal
n-ideal of R. Indeed, if (I : s) C J for some n-ideal (and so S-n-ideal) J of R, then
I C(I:s)<C J which is a contradiction. By [15, Theorem 2.11], (I : s) = /0 is a
prime ideal of R and so [ is an S-prime ideal by [12, Proposition 1]. O

Proposition 7. Let S be a multiplicatively closed subset of a ring R and I be an
ideal of R disjoint with S. If I is an S-n-ideal, and J is an ideal of R with JNS # (},
then IJ and I NJ are S-n-ideals of R.

Proof. Let s € JNS. Let a,b € R with ab € I.J. Since ab € I, we have sa € V0
or sb € I where s is an S-element of I. Hence, (s's)a € Jv/0 C /0 or (s's)b € I.J.
Thus, IJ is an S-n-ideal of R. The proof that I N J is an S-n-ideal is similar. [

Proposition 8. Let S be a multiplicatively closed subset of a ring R and I, Is,...,
I, be proper ideals of R.

(1) If I; is an S-n-ideal of R for all 4 = 1, ...,n, then () I; is an S-n-ideal of R.

i=1

(2) If ( N Ij> NS # 0 for @ C{1,...n} and I is an S-n-ideal of R for all
JEQ

ke{l,..,n} —Q, then () I; is an S-n-ideal of R.
i=1

1=
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Proof. (1) Suppose that for all i = 1,...,n, I; is an S-n-ideal of R and note that
n

(ﬂ Ii> NS =@. For all i = 1,...,n, choose s; € S such that whenever a,b € R
i=1

n
such that ab € I;, then s;a € VO or s;b € I;. Let a,b € R such that ab € () I;.
i=1
n
Then ab € I; for all i = 1,...,n. If welet s = [ s; € S, then clearly sa € v/0 or
i=1

sb € N I; and the result follows.
i=1

1=

(2) Choose s € (ﬂ Ij> NS. Let a,b € R with ab € () I;. Then for all
JjeQ i=1
ke {l,..n}—Q, ab € I} and so sya € V0 or s3b € I; for some S-element s;, of
Ij,. Hence, (s’ I1 si)a € V0 or (s I1 sp)be () I andso () I; is
ke{l,.. ,n}—Q ke{l,...n}—Q i=1 i=1
an S-n-ideal of R. O

Let S and T be two multiplicatively closed subsets of a ring R with S C T.
Let I be an ideal disjoint with 7. It is clear that if I is a S-n-ideal, then it is
T-n-ideal. The converse is not true since while I =< 4 > is an S-n-ideal of Zi5 for
S ={1,3,9}, it is not a T-n-ideal for T = {1} C S.

Proposition 9. Let S and T be two multiplicatively closed subsets of a Ting R with
S C T such that for each t € T, there is an element t' € T such that tt' € S. If I
is a T-n-ideal of R, then I is an S-n-ideal of R.

Proof. Suppose ab € I. Then there is a T-element ¢t € T of I satisfying ta € v/0
or tb € I. Hence there exists some t’ € T with s = ¢t/ € S, and thus sa € VO or
sbel. |

Let S be a multiplicatively closed subset of a ring R. The saturation of S is the
set $* = {r € R: T isaunit in S~'R}. It is clear that S* is a multiplicatively closed
subset of R and that S C S*. Moreover, it is well known that S* = {x € R: 2y € S
for some y € R}, see [11]. The set S is called saturated if S* = S.

Proposition 10. Let S be a multiplicatively closed subset of a ring R and I be
an ideal of R disjoint with S. Then I is an S-n-ideal of R if and only if I is an
S*-n-ideal of R.

Proof. Suppose I is an S*-n-ideal of R. By Proposition [0 it is enough to prove
that for each ¢ € S*, there is an element t’ € S* such that tt’ € S. Let ¢t € S* and
choose t' € R such that ty € S. Then ¢’ € S* and tt’ € S as required. The converse
is obvious. (]

Let S and T be multiplicatively closed subsets of a ring R with S C T. Then
clearly, T71S = {% :teT,se S} is a multiplicatively closed subset of T~ R.
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Proposition 11. Let S, T be multiplicatively closed subsets of a ring R with S C T
and I be an ideal of R disjoint with T. If I is an S-n-ideal of R, then T~ I is an
T=1S-n-ideal of T"'R. Moreover, we have T"*IN R = (I : u) for some S-element
u of I.

Proof. Suppose I is an S-n-ideal. Suppose T~1SNT I # ¢, say, 7€ T-1SNT—1I.
Thena € Sandta € I forsomet € T. Since S C T, then ta € TNI, a contradiction.
Thus, T~ is proper in T"'R and T~1SNT'] = ¢. Let s € S be an S-element
of I and choose £ € T~'S. Suppose a,b € R and t1,t, € T with %% € T7'T and

i1 ¢ VOr-1g. Then tab € I for some ¢t € T and sa ¢ /0. Since I is an S-n-ideal,
we must have stb € I. Thus, %% = % € T~ as needed. Now, let r e T"'INR
and choose i € I, t € T such that { = ;. Then vr € I for some v € T'. Since [ is an
S-n-ideal, then there exists v € S C T such that uv € VO or ur € I. But uv ¢ NG
as T'N+v/0 = ¢ and so ur € I. Tt follows that r € (I : u) for some S-element u of I.

Since clearly (I : u) C T~'I N R for all u € T, the proof is completed. |

In particular, if S = T, then all elements of 7S are units in T7'R. As a
special case of of Proposition we have the following.

Corollary 2. Let S be a multiplicatively closed subset of a ring R and I be an ideal
of R disjoint with S. If I is an S-n-ideal of R, then S™'I is an n-ideal of S™'R.
Moreover, we have STYIN R = (I : s) for some S-element s of I.

Proof. Suppose I is an S-n-ideal. Then S~'I is an S~!S-n-ideal of S™'R by
Proposition Let a,b € R, s1,s2 € S with ié € S7'I. Then by assumption,
1+ € V051 or f% € ST for some S~!S-element 3 of S~'I. Since 7 is a
unit in ST'R, then S~'I is an n-ideal of S~'R as required. The other part follows
directly by Proposition ([

Corollary 3. Let S be a multiplicatively closed subset of a ring R and I be an ideal
of R disjoint with S. Then I is an S-n-ideal of R if and only if S™'I is an n-ideal
of STIR, ST\ INR=(I:5) and S~'"VON R = (/0 : t) for some s,t € S.

Proof. =) Suppose I is an S-n-ideal of R. Then S™!I is an n-ideal of S™'R by
Corollary 2l The other part of the implication follows by using a similar approach
to that used in the proof of Proposition

<) Suppose S™! is an n-ideal of S~'R, ST'INR=(I:5s) and S"'VONR =
(+/0 : t) for some s,t € S. Choose u = st € S and let a,b € R such that ab € I.
Then %% € S7'T and so $evsSTlo= S~14/0 or % e S1r. If § € v.S~10, then
there is w € S such that wa € V0. Thus, a = ot e S~ IWVONR= (\m : t). Hence,
ta € V0 and so ua = sta € V0. If % € S7'I, then there is v € S such that vb € I
and so b= € S'INR=(I:s). Therefore, ub =tsb € I and I is an S-n-ideal
of R. O
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Proposition 12. Let f : Ry — Rs be a ring homomorphism and S be a multiplica-
tively closed subset of R1. Then the following statements hold.

(1) If f is an epimorphism and I is an S-n-ideal of Ry containing Ker(f), then
f(I) is an f(S)-n-ideal of Ra.

(2) If Ker(f) C /Ogr, and J is an f(S)-n-ideal of Ry, then f~1(J) is an S-n-
ideal of R;.

Proof. First we show that f(I) N f(S) = 0. Otherwise, there is t € f(I) N f(S)
which implies t = f(z) = f(s) for some z € I and s € S. Hence, x—s € Ker(f) C I
and s € I, a contradiction.

(1) Let a,b € Ry and ab € f(I). Since f is onto, a = f(x) and b = f(y) for
some x,y € Ry. Since f(x)f(y) € f(I) and Ker(f) C I, we have xy € I and so
there exists an s € S such that sz € \/Ogr, or sy € I. Thus, f(s)a € \/Or, or
f(s)b e f(I), as needed.

(2) Let a,b € Ry with ab € f~1(J). Then f(ab) = f(a)f(b) € J and since J
is an f(9)-n-ideal of Rj, there exists f(s) € f(S) such that f(s)f(a) € \/Ogr, or
f(s)f(b) € J. Thus, sa € \/0g, (as Ker(f) C /0gr,) or sbe€ f~1(J). O

Let S be a multiplicatively closed subset of a ring R and I be an ideal of R
disjoint with S. If we denote r + I € R/I by 7, then clearly the set S = {5: 5 € S}
is a multiplicatively closed subset of R/I. In view of Proposition we conclude
the following result for S-n-ideals of R/I.

Corollary 4. Let S be a multiplicatively closed subset of a ring R and I, J are two
ideals of R with I C J .

(1) If J is an S-n-ideal of R, then J/I is an S-n-ideal of R/I. Moreover, the
converse is true if I C /0.

(2) If Ris asubring of R’ and I’ is an S-n-ideal of R/, then I'NR is an S-n-ideal
of R.

Proof. (1) Note that (J/I) NS = ¢ if and only if I NS = ¢. Now, we apply the
canonical epimorphism 7 : R — R/I in Proposition
(2) Apply the natural injection i : R — R’ in Proposition [12] (2). O

We recall that a proper ideal I of a ring R is called superfluous if whenever
I+ J = R for some ideal J of R, then J = R.
Proposition 13. Let S C reg(R) be a multiplicatively closed subset of a ring R.

(1) If I is an S-n-ideal of R, then it is superfluous.
(2) If I and J are S-n-ideals of R, then I + J is an S-n-ideal.

Proof. (1) Suppose I + J = R for some ideal J of R and let j € J. Then 1 —j €
IC+0CJ(R) by (1) of Proposition Thus, j € U(R) and J = R as needed.

(2) Suppose I and J are S-n-ideals of R. Since I,J C V0, I +J C /0 and so
(I+J)NS =¢. Now, I/(INJ)isan Si-n-ideal of R/(I N J) by (1) of Corollary
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[l where S; = {s+(INJ):se Sk If Sy ={s+J:s € S} then clearly
Sy € Sy and so I/(INJ) is also an Sy-n-ideal of R/(I NJ). By the isomorphism
(I+J)/J=I/(INJ),we conclude that (I + J)/J is an S-n-ideal of R/J. Now,
the result follows again by (1) of Corollary (]

Proposition 14. Let R and R’ be two rings, <R and I' <R'. If S and S’ are
multiplicatively closed subsets of R and R, respectively, then

(1) I x R isan (S x 8’)-n-ideal of R x R’ if and only if I is an S-n-ideal of R
and S’ N+/0r # ¢.

(2) Rx I’ is an (S x S’)-n-ideal of R x R’ if and only if I’ is an S’-n-ideal of
R’ and SN +/0gr # ¢.

Proof. Tt is clear that (I x R')N(SxS")=0ifand only if INS =0 and (Rx I')N
(S x S)=0if and only if I'N S = 0.

(1) Let a,b € R with ab € I. Choose an (Sx.S’)-element (s, s") of IXR'. If sb ¢ I,
then (a,1)(b,1) € I x R’ with (s,5")(b,1) ¢ Ix R'. Since I x R’ is an (S x.5")-n-ideal,
then (s,s")(a,1) € /Orxr' = VOr x /Og'. Thus, sa € \/Og and s’ € S’ N+/0r'
I. If sb € I, then (b,1)(s,s’) € I x R'and so (s,5")(b,1) € \/Orxr = vOr X /Op'
as (s,s')?2 ¢ I x R'. In both cases, we conclude that I is an S-n-ideal of R and
S'N+/0r # ¢. Conversely, suppose I is an S-n-ideal of R, s is some S-element of [
and s € S'N/0g. Let (a,a’)(b,b') € I x R’ for (a,a’),(b,b') € RxR'. Thenab € I
which implies sa € /Og or sb € I. Hence, we have either (s, s')(a,a’) € /Or x/Or'
or (s,8')(b,b') € I x R'. Therefore, (s,s’) is an S x S’-element of I x R’ as needed.

(2) Similar to (1). O

The assumptions S’ N+/0r # ¢ and SN+/0r # ¢ in Proposition [14] are crucial.
Indeed, let R = R' =715, S = 5" ={1,3,9} and I =< 4 > . It is shown in Example
that I is an S-n-ideal of R while I x R’ is not an (S x S’)-n-ideal of R x R’ as

(2,1)(2,1) € I x R but for all (s,s') € S x S, neither (s,5)(2,1) € I x R nor
(S,S/)(Q, 1) € Opxnp.

Remark 1. Let S and S’ be multiplicatively closed subsets of the rings R and
R', respectively. If I and I' are proper ideals of R and R’ disjoint with S, S’,
respectively, then I x I' is not an (S x S’)-n-ideal of R X R'.

Proof. First, note that SN +/0r = S’ N0 = 0. Assume on the contrary that
IxI'isan (SxS’)-n-ideal of Rx R and (s, s’) is an (S x S’)-element of I x I’. Since
(1,0)(0,1) € I x I', we conclude either (s,s’)(1,0) € \/Or x v/Or or (s,5')(0,1) €
I x I" which implies s € v/Og or s’ € I'; a contradiction. O

Proposition 15. Let R and R’ be two rings, S and S’ be multiplicatively closed
subsets of R and R', respectively. If I and I’ are proper ideals of R, R', respectively
then I x I' is an (S x S")-n-ideal of R x R’ if one of the following statements holds.

(1) Iis an S-n-ideal of R and S’ N+/0Op' # ¢.
(2) I is an S’'-n-ideal of R’ and SN +/0g # ¢.
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Proof. Clearly (I x I"YN(SxS") =0 if and only if INS =0 or I'NS" = (). Suppose
I is an S-n-ideal of R and S’ N+/0r # ¢. Then INS =0 and Opr € I' NS’ # 0.
Choose an S-element s of I and let (a,a’)(b,b") € I x I for (a,d’), (b,b') € R x R'.
Then ab € I which implies sa € \/Or or sb € I. Hence, we have either (s,0)(a,a’) €
VOr x \/Og: or (5,0)(b,b') € I x I'. Therefore, (s,0) is an S x S’-element of I x I'.
Similarly, if I’ is an S’-n-ideal of R’ and S N +\/0r # ¢, then also I x I' is an
(S x §")-n-ideal of R x R’. O

3. S-n-IDEALS OF IDEALIZATIONS AND AMALGAMATIONS

Recall that the idealization of an R-module M denoted by R(+)M is the com-
mutative ring R x M with coordinate-wise addition and multiplication defined as
(r1,mq1)(ra,ma) = (rire,r1ma + r9my). For an ideal I of R and a submodule N
of M, I(+)N is an ideal of R(+)M if and only if IM C N. It is well known
that if I(+)N is an ideal of R(+)M, then \/T(+)N = VI(+)M and in partic-
ular, \/Opypr = VO(+)M. If S is a multiplicatively closed subset of R, then
clearly the sets S(+)M = {(s,m):s€ S, me M} and S(+)0 = {(s,0) : s € S}
are multiplicatively closed subsets of the ring R(+)M.

Next, we determine the relation between S-n-ideals of R and S(4)M-n-ideals of
the R(+)M.

Proposition 16. Let N be a submodule of an R-module M, S be a multiplicatively
closed subset of R and I be an ideal of R where IM C N. If I(+)N is an S(+)M-
n-ideal of R(+)M, then I is an S-n-ideal of R.

Proof. Clearly, SN I = ¢. Choose an S(+)M-element (s,m) of I(+)N and let
a,b € R such that ab € I. Then (a,0)(b,0) € I(+)N and so (s,m)(a,0) € VO(+)M
or (s,m)(b,0) € I(+)N. Hence, sa € V0 or sb € I and I is an S-n-ideal of R O

Proposition 17. Let S be a multiplicatively closed subset of a ring R, I be an ideal
of R disjoint with S and M be an R-module. The following are equivalent.

(1) Iis an S-n-ideal of R.
(2) I(+)M is an S(+)0-n-ideal of R(+)M.
(3) I(+)M is an S(+)M-n-ideal of R(+)M.

(
(
Proof. (1)=(2). Suppose I is an S-n-ideal of R, s is an S-element of I and note
that S(+)0N I(4+)M = ¢. Choose (s,0) € S(+)0 and let (a, mq), (b,m2) € R(+)M
such that (a,m;)(b,mo) € I(+)M. Then ab € I and so either sa € v/0 or sb € I. Tt
follows that (s,0)(a,m1) € VO(+)M = VOr(n or (s,0)(b,mz2) € I(+)M. Thus,
I(+)M is an S(+)0-n-ideal of R(+)M.
(2)=(3). Clear since S(+)0 C S(+)M.
(3)=(1). Proposition [16] O

Remark 2. The converse of Proposition is not true in general. For example,
if S ={1,—1}, then 0 is an S-n-ideal of Z but 0(+)0 is not an (S(+)Zg)-n-ideal
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of Z(+)Zs. For example, (2,0)(0,3) € 0(+)0 but clearly (s m)(2,0) ¢ VO(+)Zs =
V0z1)zs and (s,m)(0,3) ¢ 0(+)0 for all (s,m) € S(+)Zs

Let R and R’ be two rings, J be an ideal of R' and f : R — R’ be a ring
homomorphism. The set R x/ J = {(r,f(r)+j):7 € R, j € J} is a subring of
Rx R’ called the amalgamation of R and R’ along J with respect to f. In particular,
if Idgr : R — R is the identity homomorphism on R, then R x J = R wx/r J =
{(r,r+j):7r € R, j€ J} is the amalgamated duplication of a ring along an ideal
J. Many properties of this ring have been investigated and analyzed over the last
two decades, see for example [9], [10].

Let I be an ideal of R and K be an ideal of f(R) + J. Then I x/ J =
{(i, f(i) + ) i€, je Jyand K/ ={(a, f(a) +j) :a € R, j € J, f(a) +j € K}
are ideals of R x/ J, [10]. For a multiplicatively closed subset S of R, one can easily
verify that S )7 J = {(s, f(s) +j):s€S,j € J} and W = {(s, f(s)) : s € S} are
multiplicatively closed subsets of R x/ J. If J C \/Or/, then one can easily see
that \/ORNf'] = \/(E Nf J.

Next, we determine when the ideal I x/ J is (S 7/ J)-n-ideal in R x/ J.

Theorem 5. Consider the amalgamation of rings R and R’ along the ideals J of
R’ with respect to a homomorphism f. Let S be a multiplicatively closed subset of
R and I be an ideal of R disjoint with S. Consider the following statements:

(1) I xf J is a W-n-ideal of R x/ J.

(2) I x¥ Jis a (S xf J)-n-ideal of R x5 J.

(3) I is a S-n-ideal of R.

Then (1) = (2) = (3). Moreover, if J C \/Or/, then the statements are equiva-
lent.

Proof. (1)=(2). Clear, as W C S 7 J.

(2)=(3). First note that (S x/ J)N(I =/ J) = @ if and only if SNI = @). Suppose
I x/ Jisan (S x/ J)-n-ideal of R x/ J. Choose an (S x/ .J)-element (s, f(s))
of I x/ J. Let a,b € R such that ab € I and sa ¢ \/Og. Then (a, f(a))(b, f(b)) €
I %7 J and clearly (s, f(s))(a, f(a)) & /Orwnsy- Hence, (s, f(s))(b, f(b)) € I =/ J
and so sb € I. Thus, s is an S-element of I and [ is an S-n-ideal of R.

Now, suppose J C /Og.. We prove (3)=(1). Suppose s is an S-element of
I and let (a, f(a) + j1)(b, f(b) + j2) = (ab, (f(a) + j1)(f(b) + j2)) € I w/ J for
(a, f(a) + 51), (b, f(b) + 1) € R w! J. If (s, f(s))(a, f(a) + 1) & \/Orwrs =
VOg x/ J, then sa ¢ /Og. Since ab € I, we conclude that sb € I and so
(s, F(5))(b, f(b) + j2) € I =¥ J. Thus, (s, f(s)) is a W-element of I x/ J and
I xf Jis a W-n-ideal of R x/ J. ]

Corollary 5. Consider the amalgamation of rings R and R’ along the ideal J C
VOr' of R' with respect to a homomorphism f. Let S be a multiplicatively closed
subset of R. The (S x/ J)-n-ideals of R xf J containing {0} x J are of the form
I x/ J where I is a S—n-ideal of R.
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Proof. From Theorem 5} I x/ Jis a (S x/ J)-n-ideal of R / J for any S-n-ideal
I of R. Let K be a (S xf J)-n-ideal of R xf J containing {0} x J. Consider the
surjective homomorphism ¢ : R x/ J — R defined by ¢(a, f(a) + j) = a for all
(a, f(a)+j) € R xS J. Since Ker(p) = {0} x J C K, I := p(K) is a S-n-ideal of
R by Proposition Since {0} x J C K, we conclude that K = I x/ J. O

Let T be a multiplicatively closed subset of R’. Then clearly, the set T/ =
{(s, f(s)+34):s€ R, jeJ f(s)+j € T} is a multiplicatively closed subset of
R xS J.

Theorem 6. Consider the amalgamation of rings R and R’ along the ideals J of R’
with respect to an epimorphism f. Let K be an ideal of R’ and T be a multiplicatively
closed subset of R' disjoint with K. If K is a TY-n-ideal of R w7 J, then K is a
T-n-ideal of R'. The converse is true if J C /O and Ker(f) C /Og.

Proof. First, note that TN K = ¢ if and only if 77 N K/ = ¢. Suppose K7 is a
T7-n-ideal of R x/ J and (s, f(s) + j) is some T-element of K¥. Let o/, € R’
such that a’d’ € K and choose a,b € R where f(a) = a’ and b = f(b'). Then
(a, f(a)), (b, f(B)) € R w/ J with (a, ()b, f(})) = (ab, f(ab)) € KI. By as-
sumption, we have either (s, f(s) + j)(a, f(a)) = (sa, (f(s) +7)f(a)) € \/Orxs; Or
(5, £(5) + )(b, F(8)) = (sb, ((5) + )/ (5)) € K. Thus, f(s) +j € T and clearly,
(f(s)+7)f(a) € VOg or (f(s)+j)f(b) € K. It follows that K is a T-n-ideal of R’.
Now, suppose K is a T-n-ideal of R’, t = f(s) is a T-element of K, J C \/Or and
Ker(f) € v/0r. Let (a, f(a) +j1) (b, f(b) + j2) = (ab, (f(a) + j1)(f (D) + j2)) € K/
for (a, f(a) + 1), (b, f(B) + j2) € R 0/ J. Then (f(a) -+ 1)(f(B) + ) € K and so0
F(3)(F{a) + 1) € VO or 7(s)(f(b) + ja) € K. Suppose f(s)(f(a] + 1) € VOR.
Since J C \/0g/, then f(sa) € v/Or and so (sa)™ € Ker(f) C \/Og for some integer
m. Hence, sa € 0 and (5, £())(a, £(a) + j1) € sz T F(5)(F(B) +2) € K,
then clearly, (s, f(s))(b, f(b) + j2) € K/. Therefore, K/ is a T/-n-ideal of R xf J
as needed. g

In particular, S x f(S) is a multiplicatively closed subset of R xf J for any
multiplicatively closed subset S of R. Hence, we have the following corollary of
Theorem [6l

Corollary 6. Let R, R', J, S and f be as in Theorem[5 Let K be an ideal of R’
and T = f(S). Consider the following statements.

(1) Kf is a (S x T)-n-ideal of R =% J.

(2) K7 is a TY -n-ideal of R x/ J.

(3) K is a T-n-ideal of R.

Then (1) = (2) = (8). Moreover, if J C \/Or and Ker(f) C \/Og, then the
statements are equivalent.

We note that if J ¢ /Og/, then the equivalences in Theorems |5 and |§| are not
true in general.
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Example 5. Let R=7,1=(0) =K, J=(3) £ 0z and S = {1} =T. We have
I'xJ={0,3n):neZ}, K={3n,0):neZ} SxJ={13n+1):ncZ},
T={(1-3n,1):neZ} and \/0rus = {(0,0)}.

(1) Iis a S-n-ideal of R but I x .J is not a (S x J)-n-ideal of R x J. Indeed,
we have (0,3),(1,4) € R wx J with (0,3)(1,4) = (0,12) € I x J. But
(1,3n+1)(0,3) ¢ v/ Orws and (1,3n+1)(1,4) ¢ I x J for all n € Z.

(2) K is a T-n-ideal of R but K is not a T-n-ideal of R x J. For example,
(-3,0),(—4,—1) € R x J with (=3,0)(—4,—1) = (12,0) € K. However,
(1—=3n,1)(=3,0) ¢ \/Orxs and (1 —3n,1)(—4,—1) ¢ K for all n € Z.

By taking S = {1} in Theoremand Corollary@7 we get the following particular
case.

Corollary 7. Let R, R', J, I, K and f be as in Theorems@ and @

(1) If I xf J is an n-ideal of R x/ J, then I is an n-ideal of R. Moreover, the
converse is true if J C \/0r/.

(2) If K/ is an n-ideal of R x/ J, then K is an n-ideal of R’. Moreover, the
converse is true if J C +/0p and Ker(f) C /0g.

Corollary 8. Let R, R',I, J, K, S and T be as in Theorems@ and @

(1) I x Jisa (S x J)-n-ideal of R x J, then I is a S—n-ideal of R. Moreover,
the converse is true if J C \/0g:.
(2) If K is a T-n-ideal of R x J, then K is a T-n-ideal of R’. The converse is
true if J C v/0gr and Ker(f) C v/Og.
As a generalization of S-n-ideals to modules, in the following we define the notion
of S -n-submodules which may inspire the reader for the other work.

Definition 2. Let S be a multiplicatively closed subset of a ring R, and let M be
a unital R-module. A submodule N of M with (N :g M)NS = 0 is called an S
-n-submodule if there is an s € S such that am € N implies sa € \/(0:g M) or
sm € N for alla € R and m € M.

Author Contribution Statements Both of the authors contributed equally to
this manuscript and both reviewed the final manuscript.

Declaration of Competing Interests We declare that the authors have no po-
tential conflict of interest (financial or non-financial).

REFERENCES

[1] Almahdi, F. A., Bouba, E. M., Tamekkante, M. On weakly S-prime ideals of commuta-
tive rings, Analele Stiint. ale Univ. Ovidius Constanta Ser. Mat., 29(2) (2021), 173-186.
https://doi.org/10.2478 /auom-2021-0024

[2] Anderson, D. F., Badawi, A., On n-absorbing ideals of commutative rings, Commun. Algebra,
39(5) (2011), 1646-1672. https://doi.org/10.1080/00927871003738998



9
(10]
[11]
(12]
(13]
(14]
[15]
[16]
(17]

18]

S-n-IDEALS OF COMMUTATIVE RINGS 215

Anderson, D. D., Bataineh, M., Generalizations of prime ideals, Commun. Algebra, 36(2)
(2008), 686-696. https://doi.org/10.1080/00927870701724177

Anderson, D., Smith, E., Weakly prime ideals, Houst. J. Math., 29(4) (2003), 831-840.
Badawi, A., On 2-absorbing ideals of commutative rings, Bull. Austral. Math. Soc., 75(3)
(2007), 417-429. https://doi.org/10.1017/S0004972700039344

Darani, A. Y., Generalizations of primary ideals in commutative rings, Novi Sad. J. Math.,
42 (2012), 27-35.

Calugdreanu, G., UN-rings. J. Algebra idts Appl., 15(10) (2016), 1650182.
https://doi.org/10.1142/50219498816501826

D’Anna, M., Fontana, M., An amalgamated duplication of a ring along
an ideal: the basic properties, J. Algebra its Appl., 6(3) (2007), 443-459.
https://doi.org/10.1142/S0219498807002326

D’Anna, M., Fontana, M., The amalgamated duplication of a ring along a multiplicative-
canonical ideal, Ark. Mat., 45(2) (2007), 241-252. https://doi.org/10.1007/s11512-006-0038-1
D’Anna, M., Finocchiaro, C. A., Fontana, M., Properties of chains of prime ideals in
an amalgamated algebra along an ideal, J. Pure Appl. Algebra, 214 (2010), 1633-1641.
https://doi.org/10.1016/j.jpaa.2009.12.008

Gilmer, R. W., Multiplicative Ideal Theory, M. Dekker, 1972.

Hamed, A., Malek, A., S-prime ideals of a commutative ring, Beitr. Algebra Geom., 61(3)
(2020), 533-542. https://doi.org/10.1007/s13366-019-00476-5

Khashan, H. A., Bani-Ata, A. B., J-ideals of commutative rings, Int. Electron. J. Algebra,
29 (2021), 148-164. https://doi.org/10.24330//icja.852139

Mohamadian, R., r-ideals in commutative rings, Turkish J. Math., 39(5) (2015), 733-749.
https://doi.org/10.3906/mat-1503-35

Tekir, U., Koc, S., Oral, K. H., n-ideals of commutative rings, Filomat, 31(10) (2017), 2933-
2941. https://doi.org/10.2298 /FIL1710933T

Visweswaran, S., Some results on S-primary ideals of a commutative ring, Beitr. Algebra
Geom., 63(8) (2021), 1-20. https://doi.org/10.1007/s13366-021-00580-5

Yassine, A., Nikmehr, M. J., Nikandish, R., On 1-absorbing prime ideals of commutative rings,
J. Algebra its Appl., 20(10) (2021), 2150175. https://doi.org/10.1142/S0219498821501759.
Yetkin Celikel, E., Generalizations of n-ideals of Commutative Rings, J. Sci. Technol., 12(2)
(2019), 650-657. https://doi.org/10.18185 /erzifbed.471609



	1. Introduction
	2. Properties of S-n-ideals
	3. S-n-ideals of Idealizations and Amalgamations
	References

