http://communications.science.ankara.edu.tr

Commun.Fac.Sci.Univ.Ank.Ser. A1 Math. Stat. Volume 72, Number 1, Pages 199–215 (2023) DOI:10.31801/cfsuasmas.1099300 ISSN 1303-5991 E-ISSN 2618-6470

Research Article; Received: April 6, 2022; Accepted: September 5, 2022

S-n-IDEALS OF COMMUTATIVE RINGS

Hani A. KHASHAN¹ and Ece YETKIN CELIKEL²

¹Department of Mathematics, Faculty of Science, Al al-Bayt University, Al Mafraq, JORDAN ²Department of Basic Sciences, Faculty of Engineering, Hasan Kalyoncu University, Gaziantep, TÜRKİYE

ABSTRACT. Let R be a commutative ring with identity and S a multiplicatively closed subset of R. This paper aims to introduce the concept of S-n-ideals as a generalization of n-ideals. An ideal I of R disjoint with S is called an S-n-ideal if there exists $s \in S$ such that whenever $ab \in I$ for $a, b \in R$, then $sa \in \sqrt{0}$ or $sb \in I$. The relationships among S-n-ideals, n-ideals, S-prime and S-primary ideals are clarified. Besides several properties, characterizations and examples of this concept, S-n-ideals under various contexts of constructions including direct products, localizations and homomorphic images are given. For some particular S and $m \in \mathbb{N}$, all S-n-ideals of the ring \mathbb{Z}_m are completely determined. Furthermore, S-n-ideals of the idealization ring and amalgamated algebra are investigated.

1. INTRODUCTION

Throughout this paper, we assume that all rings are commutative with non-zero identity. For a ring R, we will denote by U(R), reg(R) and Z(R), the set of unit elements, regular elements and zero-divisor elements of R, respectively. For an ideal I of R, the radical of I denoted by \sqrt{I} is the ideal $\{a \in R : a^n \in I \text{ for some positive integer } n\}$ of R. In particular, $\sqrt{0}$ denotes the set of all nilpotent elements of R. We recall that a proper ideal I of a ring R is called prime (primary) if for $a, b \in R$, $ab \in I$ implies $a \in I$ or $b \in I$ ($b \in \sqrt{I}$). Several generalizations of prime and primary ideals were introduced and studied, (see for example [2]-[4], [6], [17]).

Let S be a multiplicatively closed subset of a ring R and I an ideal of R disjoint with S. Recently, Hamed and Malek [12] used a new approach to generalize prime ideals by defining S-prime ideals. I is called an S-prime ideal of R if there exists

©2023 Ankara University Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics

²⁰²⁰ Mathematics Subject Classification. Primary 13A15.

Keywords. S-n-ideal, n-ideal, S-prime ideal, S-primary ideal.

¹ hakhashan@aabu.edu.jo; 00000-0003-2167-5245

² ce.celikel@hku.edu.tr-Corresponding author; ⁰0000-0001-6194-656X

an $s \in S$ such that for all $a, b \in R$ whenever $ab \in I$, then $sa \in I$ or $sb \in I$. Then analogously, Visweswaran [16] introduced the notion of S-primary ideals. I is called an S-primary ideal of R if there exists an $s \in S$ such that for all $a, b \in R$ if $ab \in I$, then $sa \in I$ or $sb \in \sqrt{I}$. Many other generalizations of S-prime and S-primary ideals have been studied. For example, in [1], the authors defined I to be a weakly S-prime ideal if there exists an $s \in S$ such that for all $a, b \in R$ if $0 \neq ab \in I$, then $sa \in I$ or $sb \in I$. In 2015, Mohamadian [14] defined a new type of ideals called r-ideals. An ideal I of a ring R is said to be r-ideal, if $ab \in I$ and $a \notin Z(R)$ imply that $b \in I$ for each $a, b \in R$. Generalizing this concept, in 2017 the notion of n-ideals was first introduced and studied [15]. The authors called a proper ideal I of R an n-ideal if $ab \in I$ and $a \notin \sqrt{0}$ imply that $b \in I$ for each $a, b \in R$. Many other generalizations of n-ideals have been introduced recently, see for example [13] and [18]. Motivated and inspired by these studies, in this article, we study the S-version of the class of n-ideals by determining the structure of S-n-ideals of a ring. We call I an S-n-ideal of a ring R if there exists an (fixed) $s \in S$ such that for all $a, b \in R$ if $ab \in I$ and $sa \notin \sqrt{0}$, then $sb \in I$. We call this fixed element $s \in S$ an S-element of I. Clearly, for any multiplicatively closed subset S of R, every n-ideal is an S-n-ideal and the classes of n-ideals and S-n-ideals coincide if $S \subset U(R)$. However, this generalization of *n*-ideals is proper as we can see in Example 1. In Section 2, we start by giving an example of an S-n-ideal of a ring R that is not an n-ideal. Then we give many properties of S-n-ideals and show that S-n-ideals enjoy analogs of many of the properties of n-ideals. Also we discuss the relationship among S-n-ideals, n-ideals, S-prime and S-primary ideals, (Propositions 1, 6 and Examples 1, 2). In Theorems 1 and 2, we present some characterizations for Sn-ideals of a general commutative ring. Moreover, we investigate some conditions under which $(I :_R s)$ is an S-n-ideal of R for an S-n-ideal I of R and an Selement s of I, (Propositions 2, 3 and Example 3). For a particular case that $S \subseteq req(R)$, we justify some other results. For example, in this case, we prove that a maximal S-n-ideal of R is S-prime, (Proposition 6). In addition, we show in Proposition 4 that every proper ideal of a ring R is an S-n-ideal if and only if R is a UN-ring (a ring for which every nonunit element is a product of a unit and a nilpotent). Let $n \in \mathbb{N}$, say, $n = p_1^{r_1} p_2^{r_2} \dots p_k^{r_k}$ where p_1, p_2, \dots, p_k are distinct prime integers and $r_i \ge 1$ for all i. Then for all $2 \le i \le k-1$, $S_{p_1p_2\dots p_{i-1}p_{i+1}\dots p_k} = \{\bar{p}_1^{m_1} \bar{p}_2^{m_2} \dots \bar{p}_{i-1}^{m_{i+1}} \dots \bar{p}_{k-1}^{m_{k-1}} : m_j \in \mathbb{N} \cup \{0\}\}$ is a multiplicatively closed subset of \mathbb{Z}_n . In Theorem 4, we determine all $S_{p_1p_2\dots p_{i-1}p_{i+1}\dots p_k}$ -n-ideals of \mathbb{Z}_n for all i. In particular, we determine all S_p -n-ideals of \mathbb{Z}_n where $S_p = \{1, \bar{p}, \bar{p}^2, \bar{p}^3, \dots\}$ for any prime integer p dividing n, (Theorem 3). Furthermore, we study the stability of S-nideals with respect to various ring theoretic constructions such as localization, factor rings and direct product of rings, (Propositions 11, 12 and 14). Let R be a ring and M be an R-module. For a multiplicatively closed subset S of R, the set S(+)M = $\{(s,m): s \in S, m \in M\}$ is clearly a multiplicatively closed subset of the idealization ring R(+)M. In Section 3, first, we clarify the relation between the S-n-ideals of a

ring R and the S(+)M-n-ideals R(+)M, (Proposition 17). For rings R and R', an ideal J of R' and a ring homomorphism $f: R \to R'$, the amalgamation of R and R' along J with respect to f is the subring $R \bowtie^f J = \{(r, f(r) + j) : r \in R, j \in J\}$ of $R \times R'$. Clearly, the set $S \bowtie^f J = \{(s, f(s) + j) : s \in S, j \in J\}$ is a multiplicatively closed subset of $R \bowtie^f J$ whenever S is a multiplicatively closed subset of R. We finally determine when the ideals $I \bowtie^f J = \{(i, f(i) + j) : i \in I, j \in J\}$ and $\overline{K}^f = \{(a, f(a) + j) : a \in R, j \in J, f(a) + j \in K\}$ of $R \bowtie^f J$ are $(S \bowtie^f J)$ -n-ideals, (Theorems 5 and 6).

2. Properties of S-n-ideals

Definition 1. Let R be a ring, S be a multiplicatively closed subset of R and I be an ideal of R disjoint with S. We call I an S-n-ideal of R if there exists an (fixed) $s \in S$ such that for all $a, b \in R$ if $ab \in I$ and $sa \notin \sqrt{0}$, then $sb \in I$. This fixed element $s \in S$ is called an S-element of I.

Let I be an ideal of a ring R. If I is an n-ideal of R, then clearly I is an Sn-ideal for any multiplicatively closed subset of R disjoint with I. However, it is clear that the classes of n-ideals and S-n-ideals coincide if $S \subseteq U(R)$. Moreover, obviously any S-n-ideal is an S-primary ideal and the two concepts coincide if the ideal is contained in $\sqrt{0}$. However, the converses of these implications are not true in general as we can see in the following examples.

Example 1. Let $R = \mathbb{Z}_{12}$, $S = \{\overline{1}, \overline{3}, \overline{9}\}$ and consider the ideal $I = \langle \overline{4} \rangle$. Choose $s = \overline{3} \in S$ and let $a, b \in R$ with $ab \in I$ but $3b \notin I$. Now, $ab \in \langle \overline{2} \rangle$ implies $a \in \langle \overline{2} \rangle$ or $b \in \langle \overline{2} \rangle$. Assume that $a \notin \langle \overline{2} \rangle$ and $b \in \langle \overline{2} \rangle$. Since $a \notin \langle \overline{2} \rangle$, then $a \in \{\overline{1}, \overline{3}, \overline{5}, \overline{7}, \overline{9}, \overline{11}\}$ and since $3b \notin I$, we have $b \in \{\overline{2}, \overline{6}, \overline{10}\}$. Thus, in each case $ab \notin I$, a contradiction. Hence, we must have $a \in \langle \overline{2} \rangle$ and so $\overline{3}a \in \langle \overline{6} \rangle = \sqrt{0}$. On the other hand, I is not an n-ideal as $\overline{2} \cdot \overline{2} \in I$ but neither $\overline{2} \in \sqrt{0}$ nor $\overline{2} \in I$.

A (prime) primary ideal of a ring R that is not an n-ideal is a direct example of an (S-prime) S-primary ideal that is not an S-n-ideal where $S = \{1\}$. For a less trivial example, we have the following.

Example 2. Let $R = \mathbb{Z}[X]$ and let $I = \langle 4x \rangle$. consider the multiplicatively closed subset $S = \{4^m : m \in \mathbb{N} \cup \{0\}\}$ of R. Then I is an S-prime (and so S-primary) ideal of R, [16, Example 2.3]. However, I is not an S-n-ideal since for all $s = 4^m \in S$, we have $(2x)(2) \in I$ but $s(2x) \notin \sqrt{\mathbb{O}_{\mathbb{Z}[x]}}$ and $s(2) \notin I$.

Proposition 1. Let S be a multiplicatively closed subset of a ring R and I be an ideal of R disjoint with S.

- (1) If I is an S-n-ideal, then $sI \subseteq \sqrt{0}$ for some $s \in S$. If moreover, $S \subseteq reg(R)$, then $I \subseteq \sqrt{0}$.
- (2) $\sqrt{0}$ is an S-n-ideal of R if and only if $\sqrt{0}$ is an S-prime ideal of R.
- (3) Let $S \subseteq reg(R)$. Then 0 is an S-n-ideal of R if and only if 0 is an n-ideal.

Proof. (1) Let $a \in I$. Since $I \cap S = \emptyset$, $s \cdot 1 \notin I$ for all $s \in S$. Hence, $a \cdot 1 \in I$ implies that there exists an $s \in S$ such that $sa \in \sqrt{0}$. Thus, $sI \subseteq \sqrt{0}$ as desired. Moreover, if $S \subseteq reg(R)$, then clearly $I \subseteq \sqrt{0}$.

(2) Clear.

(3) Suppose s is an S-element of 0 and ab = 0 for some $a, b \in R$. Then $sa \in \sqrt{0}$ or sb = 0 which implies $s^n a^n = 0$ for some positive integer n or sb = 0. Since $S \subseteq reg(R)$, we have $a^n = 0$ or b = 0, as needed.

Next, we characterize S-n-ideals of rings by the following.

Theorem 1. Let S be a multiplicatively closed subset of a ring R and I be an ideal of R disjoint with S. The following statements are equivalent.

- (1) I is an S-n-ideal of R.
- (2) There exists an $s \in S$ such that for any two ideals J, K of R, if $JK \subseteq I$, then $sJ \subseteq \sqrt{0}$ or $sK \subseteq I$.

Proof. (1) \Rightarrow (2). Suppose *I* is an *S*-*n*-ideal of *R*. Assume on the contrary that for each $s \in S$, there exist two ideals J', K' of *R* such that $J'K' \subseteq I$ but $sJ' \notin \sqrt{0}$ and $sK' \notin I$. Then, for each $s \in S$, we can find two elements $a \in J'$ and $b \in K'$ such that $ab \in I$ but neither $sa \in \sqrt{0}$ nor $sb \in I$. By this contradiction, we are done.

 $(2) \Rightarrow (1)$. Let $a, b \in R$ with $ab \in I$. Taking $J = \langle a \rangle$ and $K = \langle b \rangle$ in (2), we get the result.

Theorem 2. Let S be a multiplicatively closed subset of a ring R and I be an ideal of R disjoint with S. If $\sqrt{0}$ is an S-n-ideal of R, then the following are equivalent.

- (1) I is an S-n-ideal of R.
- (2) There exists $s \in S$ such that for ideals $I_1, I_2, ..., I_n$ of R, if $I_1 I_2 \cdots I_n \subseteq I$, then $sI_j \subseteq \sqrt{0}$ or $sI_k \subseteq I$ for some $j, k \in \{1, ..., n\}$.
- (3) There exists $s \in S$ such that for elements $a_1, a_2, ..., a_n$ of R, if $a_1 a_2 \cdots a_n \in I$, then $sa_j \in \sqrt{0}$ or $sa_k \in I$ for some $j, k \in \{1, ..., n\}$.

Proof. (1)⇒(2). Let $s_1 \in S$ be an S-element of I. To prove the claim, we use mathematical induction on n. If n = 2, then the result is clear by Theorem 1. Suppose $n \geq 3$ and the claim holds for n - 1. Let $I_1, I_2, ..., I_n$ be ideals of R with $I_1I_2 \cdots I_n \subseteq I$. Then by Theorem 1, we conclude that either $s_1I_1 \subseteq \sqrt{0}$ or $s_1I_2 \cdots I_n \subseteq I$. Assume $(s_1I_2) \cdots I_n \subseteq I$. By the induction hypothesis, we have either, say, $s_1^2I_2 \subseteq \sqrt{0}$ or $s_1I_k \subseteq I$ for some $k \in \{3, ..., n\}$. Assume $s_1^2I_2 \subseteq \sqrt{0}$ and choose an S-element $s_2 \in S$ of $\sqrt{0}$. If $s_2(s_1^2R) \subseteq \sqrt{0} \cap S$, we get a contradiction. Thus, $s_2I_2 \subseteq \sqrt{0}$. By choosing $s = s_1s_2$, we get $sI_j \subseteq \sqrt{0}$ or $sI_k \subseteq I$ for some $j, k \in \{1, ..., n\}$, as needed.

 $(2) \Rightarrow (3)$. This is a particular case of (2) by taking $I_j := \langle a_j \rangle$ for all $j \in \{1, ..., n\}$.

 $(3) \Rightarrow (1)$. Clear by choosing n = 2 in (3).

Proposition 2. Let S be a multiplicatively closed subset of a ring R and I be an ideal of R disjoint with S. Then

- (1) If (I:s) is an *n*-ideal of *R* for some $s \in S$, then *I* is an *S*-*n*-ideal.
- (2) If I is an S-n-ideal and $(\sqrt{0}:s)$ is an n-ideal where $s \in S$ is an S-element of I, then (I:s) is an n-ideal of R.
- (3) If I is an S-n-ideal and $S \subseteq reg(R)$, then (I:s) is an n-ideal of R for any S-element s of I.

Proof. (1) Suppose that (I:s) is an *n*-ideal of *R* for some $s \in S$. We show that *s* is an *S*-element of *I*. Let $a, b \in R$ with $ab \in I$ and $sa \notin \sqrt{0}$. Then $ab \in (I:s)$ and $a \notin \sqrt{0}$ imply that $b \in (I:s)$. Thus, $sb \in I$ and *I* is an *S*-*n*-ideal.

(2) Suppose $a, b \in R$ with $ab \in (I:s)$. Then $a(sb) \in I$ which implies $sa \in \sqrt{0}$ or $s^2b \in I$. Suppose $sa \in \sqrt{0}$. Since $(\sqrt{0}:s)$ is an *n*-ideal, $(\sqrt{0}:s) = \sqrt{0}$ by [15, Proposition 2.3] and so $a \in \sqrt{0}$. Now, suppose $s^2b \in I$. If $sb \notin I$, then since I is an *S*-*n*-ideal, $s^3 \in \sqrt{0}$ and so $s \in \sqrt{0}$ which contradicts the assumption that $(\sqrt{0}:s)$ is proper. Thus, $sb \in I$ and $b \in (I:s)$ as needed.

(3) Suppose $S \subseteq reg(R)$ and I is an S-n-ideal. Let $a, b \in R$ with $ab \in (I:s)$ so that $a(sb) \in I$. If $sa \in \sqrt{0}$, then $s^m a^m = 0$ for some integer m. Since $S \subseteq reg(R)$, we get $a^m = 0$ and so $a \in \sqrt{0}$. If $s^2b \in I$, then similar to the proof of (2) we conclude that $b \in (I:s)$.

Note that the conditions that $(\sqrt{0}:s)$ is an *n*-ideal in (2) and $S \subseteq reg(R)$ in (3) of Proposition 2 are crucial. Indeed, consider $R = \mathbb{Z}_{12}, S = \{\overline{1}, \overline{3}, \overline{9}\}$. We showed in Example 1 that $I = \langle \overline{4} \rangle$ is an *S*-*n*-ideal which is not an *n*-ideal, and so $(I:\overline{3}) = I$ is not an *n*-ideal. Here, observe that $S \nsubseteq reg(R)$ and $(\sqrt{0}:3) = \langle \overline{2} \rangle$ is not an *n*-ideal of \mathbb{Z}_{12} .

Proposition 3. Let $S \subseteq reg(R)$ be a multiplicatively closed subset of a ring R and I be an S-prime ideal of R. Then I is an S-n-ideal if and only if $(I:s) = \sqrt{0}$ for some $s \in S$.

Proof. Suppose I is an S-n-ideal of R and s_1 be an S-element of I. Then $(I:s_1)$ is an n-ideal of R by Proposition 2. Moreover, $(I:ts_1)$ is an n-ideal for all $t \in S$. Indeed, if $ab \in (I:ts_1)$ for $a, b \in R$, then $abts_1 \in I$ and so either $s_1^2 a \in \sqrt{0}$ or $s_1tb \in I$. If $s_1^2 a \in \sqrt{0}$, then $a \in \sqrt{0}$ as $S \subseteq reg(R)$. Otherwise, we have $b \in (I:ts_1)$ as needed. Since I is an S-prime ideal of R, $(I:s_2)$ is a prime ideal of R where $s_2 \in S$ such that whenever $ab \in I$ for $a, b \in R$, either $s_2a \in I$ or $s_2b \in I$, [12, Proposition 1]. Similar to the above argument, we can also conclude that $(I:ts_2)$ is a prime ideal of R and so $(I:s) = \sqrt{0}$ by [15, Proposition 2.8]. Conversely, suppose $(I:s) = \sqrt{0}$ for some $s \in S$. Since I is an S-prime ideal, (I:s') is a prime ideal of R for some $s' \in S$. Moreover, if $a \in (I:s')$, then $as' \in I \subseteq (I:s) \subseteq \sqrt{0}$ and so $a \in \sqrt{0}$ as $S \subseteq reg(R)$. Thus, $(I:s') = \sqrt{0}$ is a prime ideal and so it an *n*-ideal again by [15, Proposition 2.8]. Therefore, I is an *S*-*n*-ideal by Proposition 2.

In the following example we justify that the condition $S \subseteq reg(R)$ can not be omitted in Proposition 3.

Example 3. The ideal $I = \langle \overline{2} \rangle$ of \mathbb{Z}_{12} is prime and so S-prime for $S = \{\overline{1}, \overline{3}, \overline{9}\} \notin reg(\mathbb{Z}_{12})$. Moreover, one can directly see that s = 3 is an S-element of I and so I is also an S-n-ideal of \mathbb{Z}_{12} . But $(I:s) = I \neq \sqrt{0}$ for all $s \in S$.

A ring R is said to be a UN-ring if every nonunit element is a product of a unit and a nilpotent. Next, we obtain a characterization for rings in which every proper ideal is an S-n-ideal where $S \subseteq reg(R)$.

Proposition 4. Let $S \subseteq reg(R)$ be a multiplicatively closed subset of a ring R. The following are equivalent.

- (1) Every proper ideal of R is an n-ideal.
- (2) Every proper ideal of R is an S-n-ideal.
- (3) R is a UN-ring.

Proof. Since $(1) \Rightarrow (2)$ is straightforward and $(3) \Rightarrow (1)$ is clear by [15, Proposition 2.25], we only need to prove $(2) \Rightarrow (3)$.

 $(2) \Rightarrow (3)$. Let *I* be a prime ideal of *R*. Then *I* is an *S*-prime and from our assumption, it is also an *S*-*n*-ideal. Thus $I \subseteq (I:s) = \sqrt{0}$ is a prime ideal of *R* by Proposition 3. Thus $\sqrt{0}$ is the unique prime ideal of *R* and so *R* is a UN-ring by [7, Proposition 2 (3)].

The equivalence of (1) and (2) in Proposition 4 need not be true if $S \not\subseteq reg(R)$.

Example 4. Consider the ring \mathbb{Z}_6 and let $S = \{1,3\}$. If $I = \langle \overline{0} \rangle$ or $\langle \overline{2} \rangle$, then a simple computations can show that I is an S-n-ideal of \mathbb{Z}_6 . However, \mathbb{Z}_6 has no proper n-ideals, [15, Example 2.2].

A ring R is said to be von Neumann regular if for all $a \in R$, there exists an element $b \in R$ such that $a = a^2 b$.

Proposition 5. Let $S \subseteq reg(R)$ be a multiplicatively closed subset of a ring R.

- (1) Let R be a reduced ring. Then R is an integral domain if and only if there exists an S-prime ideal of R which is also an S-n-ideal
- (2) R is a field if and only if R is von Neumann regular and 0 is an S-n-ideal of R.

Proof. (1) Let R be an integral domain. Since $0 = \sqrt{0}$ is prime, it is also an n-ideal again by [15, Corollary 2.9]. Thus $\sqrt{0}$ is both S-prime and S-n-ideal of R, as required. Conversely, suppose I is both S-prime and S-n-ideal of R. Hence, from Proposition 3 we conclude $(I : s) = \sqrt{0}$ which is an n-ideal by Proposition

2. $\sqrt{0} = 0$ is also a prime ideal by [15, Corollary 2.9], and thus R is an integral domain.

(2) Since $S \subseteq reg(R)$, from Proposition 1, 0 is an *S*-*n*-ideal of *R* if and only if 0 is an *n*-ideal. Thus, the claim is clear by [15, Theorem 2.15].

Let $n \in \mathbb{N}$. For any prime p dividing n, we denote the multiplicatively closed subset $\{1, \bar{p}, \bar{p}^2, \bar{p}^3, \ldots\}$ of \mathbb{Z}_n by S_p . Next, for any p dividing n, we clarify all S_p -n-ideals of \mathbb{Z}_n .

Theorem 3. Let $n \in \mathbb{N}$.

- (1) If $n = p^r$ for some prime integer p and $r \ge 1$, then \mathbb{Z}_n has no S_p -n-ideals.
- (2) If $n = p_1^{r_1} p_2^{r_2}$ where p_1 and p_2 are distinct prime integers and $r_1, r_2 \ge 1$, then for all i = 1, 2, every ideal of \mathbb{Z}_n disjoint with S_{p_i} is an S_{p_i} -n-ideal.
- (3) If $n = p_1^{r_1} p_2^{r_2} \dots p_k^{r_k}$ where p_1, p_2, \dots, p_k are distinct prime integers and $k \ge 3$, then for all $i = 1, 2, \dots, k$, \mathbb{Z}_n has no S_{p_i} -n-ideals.

Proof. (1) Clear since $I \cap S_p \neq \phi$ for any ideal I of \mathbb{Z}_n .

(2) Let $I = \langle \bar{p}_1^{t_1} \bar{p}_2^{t_2} \rangle$ be an ideal of \mathbb{Z}_n distinct with S_{p_1} . Then we must have $t_2 \geq 1$. Choose $s = \bar{p}_1^{t_1} \in S_{p_1}$ and let $ab \in I$ for $a, b \in \mathbb{Z}_n$. If $a \in \langle \bar{p}_2 \rangle$, then $sa \in \langle \bar{p}_1 \bar{p}_2 \rangle = \sqrt{0}$. If $a \notin \langle \bar{p}_2 \rangle$, then clearly $b \in \langle \bar{p}_2^{t_2} \rangle$ and so $sb \in I$. Therefore, I is an S_{p_1} -n-ideal of \mathbb{Z}_n . By a similar argument, we can show that every ideal of \mathbb{Z}_n distinct with S_{p_2} is an S_{p_2} -n-ideal.

(3) Let $I = \langle \bar{p}_1^{t_1} \bar{p}_2^{t_2} ... \bar{p}_k^{t_k} \rangle$ be an ideal of \mathbb{Z}_n distinct with S_{p_1} . Then there exists $j \neq 1$ such that $t_j \geq 1$, say, j = k. Thus, $\bar{p}_k^{t_k} (\bar{p}_1^{t_1} \bar{p}_2^{t_2} ... \bar{p}_{k-1}^{t_{k-1}}) \in I$ but $s\bar{p}_k^{t_k} \notin \sqrt{0}$ and $s(\bar{p}_1^{t_1} \bar{p}_2^{t_2} ... \bar{p}_{k-1}^{t_{k-1}}) \notin I$ for all $s \in S_{p_1}$. Therefore, I is not an S_{p_1} -n-ideal of \mathbb{Z}_n . Similarly, I is not an S_{p_i} -n-ideal of \mathbb{Z}_n for all i = 1, 2, ..., k.

Corollary 1. Let $n \in \mathbb{N}$. Then for any prime p dividing n, either \mathbb{Z}_n has no S_p -n-ideals or every ideal of \mathbb{Z}_n disjoint with S_p is an S_p -n-ideal.

In general if $n = p_1^{r_1} p_2^{r_2} \dots p_k^{r_k}$ where $r_i \ge 1$ for all *i*, then

$$S_{p_1p_2\dots p_{i-1}p_{i+1}\dots p_k} = \left\{ \bar{p}_1^{m_1} \bar{p}_2^{m_2} \dots \bar{p}_{i-1}^{m_{i-1}} \bar{p}_{i+1}^{m_{i+1}} \dots \bar{p}_k^{m_k} : m_j \in \mathbb{N} \cup \{0\} \right\}$$

is also a multiplicatively closed subset of \mathbb{Z}_n for all *i*. Next, we generalize Theorem 3.

Theorem 4. Let $n = p_1^{r_1} p_2^{r_2} \dots p_k^{r_k}$ where p_1, p_2, \dots, p_k are distinct prime integers and $r_i \ge 1$ for all i.

- (1) \mathbb{Z}_n has no $S_{p_1p_2...p_k}$ -*n*-ideals.
- (2) For i = 1, 2, ..., k, every ideal of \mathbb{Z}_n disjoint with $S_{p_1p_2...p_{i-1}p_{i+1}...p_k}$ is an $S_{p_1p_2...p_{i-1}p_{i+1}...p_k}$ -n-ideal.
- (3) Let $k \geq 3$. If $m \leq k-2$, then \mathbb{Z}_n has no $S_{p_1p_2...p_m}$ -n-ideals.

Proof. (1) This is clear since $I \cap S_{p_1p_2...p_k} \neq \phi$ for any ideal I of \mathbb{Z}_n .

(2) With no loss of generality, we may choose i = k. Let $I = \langle \bar{p}_1^{t_1} \bar{p}_2^{t_2} ... \bar{p}_k^{t_k} \rangle$ be an ideal of \mathbb{Z}_n disjoint with $S_{p_1p_2...p_{k-1}}$. Then we must have $t_k \geq 1$. Choose $s = \bar{p}_1^{t_1} \bar{p}_2^{t_2} ... \bar{p}_{k-1}^{t_{k-1}} \in S_{p_1p_2...p_{k-1}}$ and let $a, b \in \mathbb{Z}_n$ such that $ab \in I$. If $a \in \langle \bar{p}_k \rangle$, then $sa \in \langle \bar{p}_1 \bar{p}_2 ... \bar{p}_k \rangle = \sqrt{0}$. If $a \notin \langle \bar{p}_k \rangle$, then we must have $b \in \langle \bar{p}_k^{t_k} \rangle$. Thus, $sb \in I$ and I is an $S_{p_1p_2...p_{k-1}}$ -n-ideal of \mathbb{Z}_n .

(3) Assume m = k - 2 and let $I = \langle \bar{p}_1^{t_1} \bar{p}_2^{t_2} ... \bar{p}_k^{t_k} \rangle$ be an ideal of \mathbb{Z}_n disjoint with $S_{p_1 p_2 ... p_{k-2}}$. Then at least one of t_{k-1} and t_k is nonzero, say, $t_k \geqq 0$. Hence, $\bar{p}_k^{t_k} (\bar{p}_1^{t_1} \bar{p}_2^{t_2} ... \bar{p}_{k-1}^{t_{k-1}}) \in I$ but clearly $s \bar{p}_k^{t_k} \notin \sqrt{0}$ and $s (\bar{p}_1^{t_1} \bar{p}_2^{t_2} ... \bar{p}_{k-1}^{t_{k-1}}) \notin I$ for all $s \in S_{p_1 p_2 ... p_{k-2}}$. Therefore, \mathbb{Z}_n has no $S_{p_1 p_2 ... p_{k-2}}$ -n-ideals. A similar proof can be used if $1 \le m \leqq k - 2$.

An ideal I of a ring R is called a maximal S-n-ideal if there is no S-n-ideal of R that contains I properly. In the following proposition, we observe the relationship between maximal S-n-ideals and S-prime ideals.

Proposition 6. Let $S \subseteq reg(R)$ be a multiplicatively closed subset of a ring R. If I is a maximal S-n-ideal of R, then I is S-prime (and so $(I : s) = \sqrt{0}$ for some $s \in S$).

Proof. Suppose I is a maximal S-n-ideal of R and $s \in S$ is an S-element of I. Then (I:s) is an n-ideal of R by Proposition 2. Moreover, (I:s) is a maximal n-ideal of R. Indeed, if $(I:s) \subsetneq J$ for some n-ideal (and so S-n-ideal) J of R, then $I \subseteq (I:s) \subsetneq J$ which is a contradiction. By [15, Theorem 2.11], $(I:s) = \sqrt{0}$ is a prime ideal of R and so I is an S-prime ideal by [12, Proposition 1].

Proposition 7. Let S be a multiplicatively closed subset of a ring R and I be an ideal of R disjoint with S. If I is an S-n-ideal, and J is an ideal of R with $J \cap S \neq \emptyset$, then IJ and $I \cap J$ are S-n-ideals of R.

Proof. Let $s' \in J \cap S$. Let $a, b \in R$ with $ab \in IJ$. Since $ab \in I$, we have $sa \in \sqrt{0}$ or $sb \in I$ where s is an S-element of I. Hence, $(s's)a \in J\sqrt{0} \subseteq \sqrt{0}$ or $(s's)b \in IJ$. Thus, IJ is an S-n-ideal of R. The proof that $I \cap J$ is an S-n-ideal is similar. \Box

Proposition 8. Let S be a multiplicatively closed subset of a ring R and $I_1, I_2, ..., I_n$ be proper ideals of R.

- (1) If I_i is an S-n-ideal of R for all i = 1, ..., n, then $\bigcap_{i=1}^{n} I_i$ is an S-n-ideal of R.
- (2) If $\left(\bigcap_{j\in\Omega} I_j\right)\cap S\neq\emptyset$ for $\Omega\subseteq\{1,...,n\}$ and I_k is an S-n-ideal of R for all $k\in\{1,...,n\}-\Omega$, then $\bigcap_{i=1}^n I_i$ is an S-n-ideal of R.

Proof. (1) Suppose that for all i = 1, ..., n, I_i is an *S*-*n*-ideal of *R* and note that $\left(\bigcap_{i=1}^{n} I_i\right) \cap S = \emptyset$. For all i = 1, ..., n, choose $s_i \in S$ such that whenever $a, b \in R$ such that $ab \in I_i$, then $s_i a \in \sqrt{0}$ or $s_i b \in I_i$. Let $a, b \in R$ such that $ab \in \bigcap_{i=1}^{n} I_i$. Then $ab \in I_i$ for all i = 1, ..., n. If we let $s = \prod_{i=1}^{n} s_i \in S$, then clearly $sa \in \sqrt{0}$ or $sb \in \bigcap_{i=1}^{n} I_i$ and the result follows.

(2) Choose $s' \in \left(\bigcap_{j \in \Omega} I_j\right) \cap S$. Let $a, b \in R$ with $ab \in \bigcap_{i=1}^n I_i$. Then for all $k \in \{1, ..., n\} - \Omega$, $ab \in I_k$ and so $s_k a \in \sqrt{0}$ or $s_k b \in I_j$ for some S-element s_k of I_k . Hence, $(s' \prod_{\substack{k \in \{1, ..., n\} - \Omega}} s_k)a \in \sqrt{0}$ or $(s' \prod_{\substack{k \in \{1, ..., n\} - \Omega}} s_k)b \in \bigcap_{i=1}^n I_i$ and so $\bigcap_{i=1}^n I_i$ is an S-n-ideal of R.

Let S and T be two multiplicatively closed subsets of a ring R with $S \subseteq T$. Let I be an ideal disjoint with T. It is clear that if I is a S-n-ideal, then it is T-n-ideal. The converse is not true since while $I = \langle \overline{4} \rangle$ is an S-n-ideal of \mathbb{Z}_{12} for $S = \{\overline{1}, \overline{3}, \overline{9}\}$, it is not a T-n-ideal for $T = \{\overline{1}\} \subseteq S$.

Proposition 9. Let S and T be two multiplicatively closed subsets of a ring R with $S \subseteq T$ such that for each $t \in T$, there is an element $t' \in T$ such that $tt' \in S$. If I is a T-n-ideal of R, then I is an S-n-ideal of R.

Proof. Suppose $ab \in I$. Then there is a *T*-element $t \in T$ of *I* satisfying $ta \in \sqrt{0}$ or $tb \in I$. Hence there exists some $t' \in T$ with $s = tt' \in S$, and thus $sa \in \sqrt{0}$ or $sb \in I$.

Let S be a multiplicatively closed subset of a ring R. The saturation of S is the set $S^* = \{r \in R : \frac{r}{1} \text{ is a unit in } S^{-1}R\}$. It is clear that S^* is a multiplicatively closed subset of R and that $S \subseteq S^*$. Moreover, it is well known that $S^* = \{x \in R : xy \in S \text{ for some } y \in R\}$, see [11]. The set S is called saturated if $S^* = S$.

Proposition 10. Let S be a multiplicatively closed subset of a ring R and I be an ideal of R disjoint with S. Then I is an S-n-ideal of R if and only if I is an S^* -n-ideal of R.

Proof. Suppose I is an S^* -n-ideal of R. By Proposition 9, it is enough to prove that for each $t \in S^*$, there is an element $t' \in S^*$ such that $tt' \in S$. Let $t \in S^*$ and choose $t' \in R$ such that $ty \in S$. Then $t' \in S^*$ and $tt' \in S$ as required. The converse is obvious.

Let S and T be multiplicatively closed subsets of a ring R with $S \subseteq T$. Then clearly, $T^{-1}S = \{\frac{s}{t} : t \in T, s \in S\}$ is a multiplicatively closed subset of $T^{-1}R$.

Proposition 11. Let S, T be multiplicatively closed subsets of a ring R with $S \subseteq T$ and I be an ideal of R disjoint with T. If I is an S-n-ideal of R, then $T^{-1}I$ is an $T^{-1}S$ -n-ideal of $T^{-1}R$. Moreover, we have $T^{-1}I \cap R = (I : u)$ for some S-element u of I.

 $\begin{array}{l} Proof. \ \text{Suppose } I \ \text{is an } S\text{-}n\text{-}\text{ideal. } \text{Suppose } T^{-1}S \cap T^{-1}I \neq \phi, \ \text{say, } \frac{a}{t} \in T^{-1}S \cap T^{-1}I. \\ \text{Then } a \in S \ \text{and } ta \in I \ \text{for some } t \in T. \ \text{Since } S \subseteq T, \ \text{then } ta \in T \cap I, \ \text{a contradiction.} \\ \text{Thus, } T^{-1}I \ \text{is proper in } T^{-1}R \ \text{and } T^{-1}S \cap T^{-1}I = \phi. \ \text{Let } s \in S \ \text{be an } S\text{-element} \\ \text{of } I \ \text{and choose } \frac{s}{1} \in T^{-1}S. \ \text{Suppose } a, b \in R \ \text{and } t_1, t_2 \in T \ \text{with } \frac{a}{t_1} \frac{b}{t_2} \in T^{-1}I \ \text{and} \\ \frac{s}{1} \frac{a}{t_1} \notin \sqrt{0_{T^{-1}R}}. \ \text{Then } tab \in I \ \text{for some } t \in T \ \text{and } sa \notin \sqrt{0}. \ \text{Since } I \ \text{is an } S\text{-}n\text{-}\text{ideal}, \\ \text{we must have } stb \in I. \ \text{Thus, } \frac{s}{1} \frac{b}{t_2} = \frac{stb}{tt_2} \in T^{-1}I \ \text{as needed. Now, let } r \in T^{-1}I \cap R \\ \text{and choose } i \in I, t \in T \ \text{such that } \frac{r}{1} = \frac{i}{t}. \ \text{Then } vr \in I \ \text{for some } v \in T. \ \text{Since } I \ \text{is an } S\text{-}n\text{-}\text{ideal}, \\ \text{shere there exists } u \in S \subseteq T \ \text{such that } uv \in \sqrt{0} \ \text{or } ur \in I. \ \text{But } uv \notin \sqrt{0} \\ \text{as } T \cap \sqrt{0} = \phi \ \text{and so } ur \in I. \ \text{It follows that } r \in (I:u) \ \text{for some } S\text{-element } u \ \text{of } I. \\ \text{Since clearly } (I:u) \subseteq T^{-1}I \cap R \ \text{for all } u \in T, \ \text{the proof is completed.} \\ \square \end{aligned}$

In particular, if S = T, then all elements of $T^{-1}S$ are units in $T^{-1}R$. As a special case of of Proposition 11, we have the following.

Corollary 2. Let S be a multiplicatively closed subset of a ring R and I be an ideal of R disjoint with S. If I is an S-n-ideal of R, then $S^{-1}I$ is an n-ideal of $S^{-1}R$. Moreover, we have $S^{-1}I \cap R = (I:s)$ for some S-element s of I.

Proof. Suppose I is an S-n-ideal. Then $S^{-1}I$ is an $S^{-1}S$ -n-ideal of $S^{-1}R$ by Proposition 11. Let $a, b \in R$, $s_1, s_2 \in S$ with $\frac{a}{s_1} \frac{b}{s_2} \in S^{-1}I$. Then by assumption, $\frac{s}{t} \frac{a}{s_1} \in \sqrt{0_{S^{-1}R}}$ or $\frac{s}{t} \frac{b}{s_2} \in S^{-1}I$ for some $S^{-1}S$ -element $\frac{s}{t}$ of $S^{-1}I$. Since $\frac{s}{t}$ is a unit in $S^{-1}R$, then $S^{-1}I$ is an n-ideal of $S^{-1}R$ as required. The other part follows directly by Proposition 11.

Corollary 3. Let S be a multiplicatively closed subset of a ring R and I be an ideal of R disjoint with S. Then I is an S-n-ideal of R if and only if $S^{-1}I$ is an n-ideal of $S^{-1}R$, $S^{-1}I \cap R = (I:s)$ and $S^{-1}\sqrt{0} \cap R = (\sqrt{0}:t)$ for some $s, t \in S$.

Proof. ⇒) Suppose I is an S-n-ideal of R. Then $S^{-1}I$ is an n-ideal of $S^{-1}R$ by Corollary 2. The other part of the implication follows by using a similar approach to that used in the proof of Proposition 11.

 $\begin{array}{l} \Leftarrow) \text{ Suppose } S^{-1}I \text{ is an } n\text{-ideal of } S^{-1}R, S^{-1}I \cap R = (I:s) \text{ and } S^{-1}\sqrt{0} \cap R = (\sqrt{0}:t) \text{ for some } s,t \in S. \text{ Choose } u = st \in S \text{ and let } a,b \in R \text{ such that } ab \in I. \\ \text{Then } \frac{a}{1}\frac{b}{1} \in S^{-1}I \text{ and so } \frac{a}{1} \in \sqrt{S^{-1}0} = S^{-1}\sqrt{0} \text{ or } \frac{b}{1} \in S^{-1}I \text{ . If } \frac{a}{1} \in \sqrt{S^{-1}0}, \text{ then there is } w \in S \text{ such that } wa \in \sqrt{0}. \text{ Thus, } a = \frac{wa}{w} \in S^{-1}\sqrt{0} \cap R = (\sqrt{0}:t). \text{ Hence, } ta \in \sqrt{0} \text{ and so } ua = sta \in \sqrt{0}. \text{ If } \frac{b}{1} \in S^{-1}I, \text{ then there is } v \in S \text{ such that } vb \in I \text{ and so } b = \frac{vb}{v} \in S^{-1}I \cap R = (I:s). \text{ Therefore, } ub = tsb \in I \text{ and } I \text{ is an } S\text{-n-ideal of } R. \end{array}$

Proposition 12. Let $f : R_1 \to R_2$ be a ring homomorphism and S be a multiplicatively closed subset of R_1 . Then the following statements hold.

- (1) If f is an epimorphism and I is an S-n-ideal of R_1 containing Ker(f), then f(I) is an f(S)-n-ideal of R_2 .
- (2) If $Ker(f) \subseteq \sqrt{0_{R_1}}$ and J is an f(S)-n-ideal of R_2 , then $f^{-1}(J)$ is an S-n-ideal of R_1 .

Proof. First we show that $f(I) \cap f(S) = \emptyset$. Otherwise, there is $t \in f(I) \cap f(S)$ which implies t = f(x) = f(s) for some $x \in I$ and $s \in S$. Hence, $x - s \in Ker(f) \subseteq I$ and $s \in I$, a contradiction.

(1) Let $a, b \in R_2$ and $ab \in f(I)$. Since f is onto, a = f(x) and b = f(y) for some $x, y \in R_1$. Since $f(x)f(y) \in f(I)$ and $Ker(f) \subseteq I$, we have $xy \in I$ and so there exists an $s \in S$ such that $sx \in \sqrt{0_{R_1}}$ or $sy \in I$. Thus, $f(s)a \in \sqrt{0_{R_2}}$ or $f(s)b \in f(I)$, as needed.

(2) Let $a, b \in R_1$ with $ab \in f^{-1}(J)$. Then $f(ab) = f(a)f(b) \in J$ and since J is an f(S)-*n*-ideal of R_2 , there exists $f(s) \in f(S)$ such that $f(s)f(a) \in \sqrt{0_{R_2}}$ or $f(s)f(b) \in J$. Thus, $sa \in \sqrt{0_{R_1}}$ (as $Ker(f) \subseteq \sqrt{0_{R_1}}$) or $sb \in f^{-1}(J)$. \Box

Let S be a multiplicatively closed subset of a ring R and I be an ideal of R disjoint with S. If we denote $r + I \in R/I$ by \bar{r} , then clearly the set $\bar{S} = \{\bar{s} : s \in S\}$ is a multiplicatively closed subset of R/I. In view of Proposition 12, we conclude the following result for \bar{S} -n-ideals of R/I.

Corollary 4. Let S be a multiplicatively closed subset of a ring R and I, J are two ideals of R with $I \subseteq J$.

- (1) If J is an S-n-ideal of R, then J/I is an \overline{S} -n-ideal of R/I. Moreover, the converse is true if $I \subseteq \sqrt{0}$.
- (2) If R is a subring of R' and I' is an S-n-ideal of R', then $I' \cap R$ is an S-n-ideal of R.

Proof. (1) Note that $(J/I) \cap \overline{S} = \phi$ if and only if $I \cap S = \phi$. Now, we apply the canonical epimorphism $\pi : R \to R/I$ in Proposition 12.

(2) Apply the natural injection $i: R \to R'$ in Proposition 12 (2).

We recall that a proper ideal I of a ring R is called superfluous if whenever I + J = R for some ideal J of R, then J = R.

Proposition 13. Let $S \subseteq reg(R)$ be a multiplicatively closed subset of a ring R.

- (1) If I is an S-n-ideal of R, then it is superfluous.
- (2) If I and J are S-n-ideals of R, then I + J is an S-n-ideal.

Proof. (1) Suppose I + J = R for some ideal J of R and let $j \in J$. Then $1 - j \in I \subseteq \sqrt{0} \subseteq J(R)$ by (1) of Proposition 1. Thus, $j \in U(R)$ and J = R as needed.

(2) Suppose I and J are S-n-ideals of R. Since $I, J \subseteq \sqrt{0}, I + J \subseteq \sqrt{0}$ and so $(I+J) \cap S = \phi$. Now, $I/(I \cap J)$ is an \overline{S}_1 -n-ideal of $R/(I \cap J)$ by (1) of Corollary

4 where $\overline{S}_1 = \{s + (I \cap J) : s \in S\}$. If $\overline{S}_2 = \{s + J : s \in S\}$, then clearly $\overline{S}_1 \subseteq \overline{S}_2$ and so $I/(I \cap J)$ is also an \overline{S}_2 -*n*-ideal of $R/(I \cap J)$. By the isomorphism $(I + J)/J \cong I/(I \cap J)$, we conclude that (I + J)/J is an \overline{S}_2 -*n*-ideal of R/J. Now, the result follows again by (1) of Corollary 4.

Proposition 14. Let R and R' be two rings, $I \leq R$ and $I' \leq R'$. If S and S' are multiplicatively closed subsets of R and R', respectively, then

- (1) $I \times R'$ is an $(S \times S')$ -*n*-ideal of $R \times R'$ if and only if I is an S-*n*-ideal of R and $S' \cap \sqrt{0_{R'}} \neq \phi$.
- (2) $R \times I'$ is an $(S \times S')$ -n-ideal of $R \times R'$ if and only if I' is an S'-n-ideal of R' and $S \cap \sqrt{0_R} \neq \phi$.

Proof. It is clear that $(I \times R') \cap (S \times S') = \emptyset$ if and only if $I \cap S = \emptyset$ and $(R \times I') \cap (S \times S') = \emptyset$ if and only if $I' \cap S' = \emptyset$.

(1) Let $a, b \in R$ with $ab \in I$. Choose an $(S \times S')$ -element (s, s') of $I \times R'$. If $sb \notin I$, then $(a, 1)(b, 1) \in I \times R'$ with $(s, s')(b, 1) \notin I \times R'$. Since $I \times R'$ is an $(S \times S')$ -n-ideal, then $(s, s')(a, 1) \in \sqrt{0_{R \times R'}} = \sqrt{0_R} \times \sqrt{0_{R'}}$. Thus, $sa \in \sqrt{0_R}$ and $s' \in S' \cap \sqrt{0_{R'}}$ I. If $sb \in I$, then $(b, 1)(s, s') \in I \times R'$ and so $(s, s')(b, 1) \in \sqrt{0_{R \times R'}} = \sqrt{0_R} \times \sqrt{0_{R'}}$ as $(s, s')^2 \notin I \times R'$. In both cases, we conclude that I is an S-n-ideal of R and $S' \cap \sqrt{0_{R'}} \neq \phi$. Conversely, suppose I is an S-n-ideal of R, s is some S-element of Iand $s' \in S' \cap \sqrt{0_{R'}}$. Let $(a, a')(b, b') \in I \times R'$ for $(a, a'), (b, b') \in R \times R'$. Then $ab \in I$ which implies $sa \in \sqrt{0_R}$ or $sb \in I$. Hence, we have either $(s, s')(a, a') \in \sqrt{0_R} \times \sqrt{0_{R'}}$ or $(s, s')(b, b') \in I \times R'$. Therefore, (s, s') is an $S \times S'$ -element of $I \times R'$ as needed. (2) Similar to (1).

The assumptions $S' \cap \sqrt{0_{R'}} \neq \phi$ and $S \cap \sqrt{0_R} \neq \phi$ in Proposition 14 are crucial. Indeed, let $R = R' = \mathbb{Z}_{12}, S = S' = \{\overline{1}, \overline{3}, \overline{9}\}$ and $I = \langle \overline{4} \rangle$. It is shown in Example 1 that I is an S-n-ideal of R while $I \times R'$ is not an $(S \times S')$ -n-ideal of $R \times R'$ as $(\overline{2}, \overline{1})(\overline{2}, \overline{1}) \in I \times R'$ but for all $(s, s') \in S \times S$, neither $(s, s')(\overline{2}, \overline{1}) \in I \times R'$ nor $(s, s')(\overline{2}, \overline{1}) \in \sqrt{0_{R \times R'}}$.

Remark 1. Let S and S' be multiplicatively closed subsets of the rings R and R', respectively. If I and I' are proper ideals of R and R' disjoint with S, S', respectively, then $I \times I'$ is not an $(S \times S')$ -n-ideal of $R \times R'$.

Proof. First, note that $S \cap \sqrt{0_R} = S' \cap \sqrt{0_{R'}} = \emptyset$. Assume on the contrary that $I \times I'$ is an $(S \times S')$ -*n*-ideal of $R \times R'$ and (s, s') is an $(S \times S')$ -element of $I \times I'$. Since $(1,0)(0,1) \in I \times I'$, we conclude either $(s,s')(1,0) \in \sqrt{0_R} \times \sqrt{0_{R'}}$ or $(s,s')(0,1) \in I \times I'$ which implies $s \in \sqrt{0_R}$ or $s' \in I'$, a contradiction.

Proposition 15. Let R and R' be two rings, S and S' be multiplicatively closed subsets of R and R', respectively. If I and I' are proper ideals of R, R', respectively then $I \times I'$ is an $(S \times S')$ -n-ideal of $R \times R'$ if one of the following statements holds.

- (1) I is an S-n-ideal of R and $S' \cap \sqrt{0_{R'}} \neq \phi$.
- (2) I' is an S'-n-ideal of R' and $S \cap \sqrt{0_R} \neq \phi$.

Proof. Clearly $(I \times I') \cap (S \times S') = \emptyset$ if and only if $I \cap S = \emptyset$ or $I' \cap S' = \emptyset$. Suppose I is an S-n-ideal of R and $S' \cap \sqrt{0_{R'}} \neq \phi$. Then $I \cap S = \emptyset$ and $0_{R'} \in I' \cap S' \neq \emptyset$. Choose an S-element s of I and let $(a, a')(b, b') \in I \times I'$ for $(a, a'), (b, b') \in R \times R'$. Then $ab \in I$ which implies $sa \in \sqrt{0_R}$ or $sb \in I$. Hence, we have either $(s, 0)(a, a') \in \sqrt{0_R} \times \sqrt{0_{R'}}$ or $(s, 0)(b, b') \in I \times I'$. Therefore, (s, 0) is an $S \times S'$ -element of $I \times I'$. Similarly, if I' is an S'-n-ideal of R' and $S \cap \sqrt{0_R} \neq \phi$, then also $I \times I'$ is an $(S \times S')$ -n-ideal of $R \times R'$.

3. S-n-ideals of Idealizations and Amalgamations

Recall that the idealization of an *R*-module *M* denoted by R(+)M is the commutative ring $R \times M$ with coordinate-wise addition and multiplication defined as $(r_1, m_1)(r_2, m_2) = (r_1r_2, r_1m_2 + r_2m_1)$. For an ideal *I* of *R* and a submodule *N* of *M*, I(+)N is an ideal of R(+)M if and only if $IM \subseteq N$. It is well known that if I(+)N is an ideal of R(+)M, then $\sqrt{I(+)N} = \sqrt{I}(+)M$ and in particular, $\sqrt{0_{R(+)M}} = \sqrt{0}(+)M$. If *S* is a multiplicatively closed subset of *R*, then clearly the sets $S(+)M = \{(s,m) : s \in S, m \in M\}$ and $S(+)0 = \{(s,0) : s \in S\}$ are multiplicatively closed subsets of the ring R(+)M.

Next, we determine the relation between S-n-ideals of R and S(+)M-n-ideals of the R(+)M.

Proposition 16. Let N be a submodule of an R-module M, S be a multiplicatively closed subset of R and I be an ideal of R where $IM \subseteq N$. If I(+)N is an S(+)M-n-ideal of R(+)M, then I is an S-n-ideal of R.

Proof. Clearly, $S \cap I = \phi$. Choose an S(+)M-element (s,m) of I(+)N and let $a, b \in R$ such that $ab \in I$. Then $(a, 0)(b, 0) \in I(+)N$ and so $(s, m)(a, 0) \in \sqrt{0}(+)M$ or $(s, m)(b, 0) \in I(+)N$. Hence, $sa \in \sqrt{0}$ or $sb \in I$ and I is an S-n-ideal of R

Proposition 17. Let S be a multiplicatively closed subset of a ring R, I be an ideal of R disjoint with S and M be an R-module. The following are equivalent.

(1) I is an S-n-ideal of R.

 $(3) \Rightarrow (1)$. Proposition 16.

- (2) I(+)M is an S(+)0-*n*-ideal of R(+)M.
- (3) I(+)M is an S(+)M-n-ideal of R(+)M.

Proof. $(1) \Rightarrow (2)$. Suppose I is an S-n-ideal of R, s is an S-element of I and note that $S(+) \cap I(+)M = \phi$. Choose $(s,0) \in S(+)0$ and let $(a,m_1), (b,m_2) \in R(+)M$ such that $(a,m_1)(b,m_2) \in I(+)M$. Then $ab \in I$ and so either $sa \in \sqrt{0}$ or $sb \in I$. It follows that $(s,0)(a,m_1) \in \sqrt{0}(+)M = \sqrt{0}_{R(+)M}$ or $(s,0)(b,m_2) \in I(+)M$. Thus, I(+)M is an S(+)0-n-ideal of R(+)M.

 $(2) \Rightarrow (3)$. Clear since $S(+) 0 \subseteq S(+)M$.

Remark 2. The converse of Proposition 16 is not true in general. For example, if $S = \{1, -1\}$, then 0 is an S-n-ideal of \mathbb{Z} but $0(+)\overline{0}$ is not an $(S(+)\mathbb{Z}_6)$ -n-ideal

of $\mathbb{Z}(+)\mathbb{Z}_6$. For example, $(2,\bar{0})(0,\bar{3}) \in 0(+)\bar{0}$ but clearly $(s,m)(2,\bar{0}) \notin \sqrt{0}(+)\mathbb{Z}_6 = \sqrt{0}\mathbb{Z}_{(+)\mathbb{Z}_6}$ and $(s,m)(0,\bar{3}) \notin 0(+)\bar{0}$ for all $(s,m) \in S(+)\mathbb{Z}_6$.

Let R and R' be two rings, J be an ideal of R' and $f : R \to R'$ be a ring homomorphism. The set $R \bowtie^f J = \{(r, f(r) + j) : r \in R, j \in J\}$ is a subring of $R \times R'$ called the amalgamation of R and R' along J with respect to f. In particular, if $Id_R : R \to R$ is the identity homomorphism on R, then $R \bowtie J = R \bowtie^{Id_R} J =$ $\{(r, r + j) : r \in R, j \in J\}$ is the amalgamated duplication of a ring along an ideal J. Many properties of this ring have been investigated and analyzed over the last two decades, see for example [9], [10].

Let *I* be an ideal of *R* and *K* be an ideal of f(R) + J. Then $I \bowtie^f J = \{(i, f(i) + j) : i \in I, j \in J\}$ and $\overline{K}^f = \{(a, f(a) + j) : a \in R, j \in J, f(a) + j \in K\}$ are ideals of $R \bowtie^f J$, [10]. For a multiplicatively closed subset *S* of *R*, one can easily verify that $S \bowtie^f J = \{(s, f(s) + j) : s \in S, j \in J\}$ and $W = \{(s, f(s)) : s \in S\}$ are multiplicatively closed subsets of $R \bowtie^f J$. If $J \subseteq \sqrt{0_{R'}}$, then one can easily see that $\sqrt{0_{R \bowtie^f J}} = \sqrt{0_R} \bowtie^f J$.

Next, we determine when the ideal $I \bowtie^f J$ is $(S \bowtie^f J)$ -n-ideal in $R \bowtie^f J$.

Theorem 5. Consider the amalgamation of rings R and R' along the ideals J of R' with respect to a homomorphism f. Let S be a multiplicatively closed subset of R and I be an ideal of R disjoint with S. Consider the following statements:

(1) $I \bowtie^f J$ is a W-n-ideal of $R \bowtie^f J$.

(2) $I \bowtie^f J$ is a $(S \bowtie^f J)$ -n-ideal of $R \bowtie^f J$.

(3) I is a S-n-ideal of R.

Then $(1) \Rightarrow (2) \Rightarrow (3)$. Moreover, if $J \subseteq \sqrt{0_{R'}}$, then the statements are equivalent.

Proof. (1) \Rightarrow (2). Clear, as $W \subseteq S \bowtie^f J$.

(2) \Rightarrow (3). First note that $(S \bowtie^f J) \cap (I \bowtie^f J) = \emptyset$ if and only if $S \cap I = \emptyset$. Suppose $I \bowtie^f J$ is an $(S \bowtie^f J)$ -n-ideal of $R \bowtie^f J$. Choose an $(S \bowtie^f J)$ -element (s, f(s)) of $I \bowtie^f J$. Let $a, b \in R$ such that $ab \in I$ and $sa \notin \sqrt{0_R}$. Then $(a, f(a))(b, f(b)) \in I \bowtie^f J$ and clearly $(s, f(s))(a, f(a)) \notin \sqrt{0_{R \bowtie^f J}}$. Hence, $(s, f(s))(b, f(b)) \in I \bowtie^f J$ and so $sb \in I$. Thus, s is an S-element of I and I is an S-n-ideal of R.

Now, suppose $J \subseteq \sqrt{0_{R'}}$. We prove $(3) \Rightarrow (1)$. Suppose *s* is an *S*-element of *I* and let $(a, f(a) + j_1)(b, f(b) + j_2) = (ab, (f(a) + j_1)(f(b) + j_2)) \in I \bowtie^f J$ for $(a, f(a) + j_1), (b, f(b) + j_1) \in R \bowtie^f J$. If $(s, f(s))(a, f(a) + j_1) \notin \sqrt{0_{R \bowtie^f J}} = \sqrt{0_R} \bowtie^f J$, then $sa \notin \sqrt{0_R}$. Since $ab \in I$, we conclude that $sb \in I$ and so $(s, f(s))(b, f(b) + j_2) \in I \bowtie^f J$. Thus, (s, f(s)) is a *W*-element of $I \bowtie^f J$ and $I \bowtie^f J$ is a *W*-n-ideal of $R \bowtie^f J$.

Corollary 5. Consider the amalgamation of rings R and R' along the ideal $J \subseteq \sqrt{0_{R'}}$ of R' with respect to a homomorphism f. Let S be a multiplicatively closed subset of R. The $(S \bowtie^f J)$ -n-ideals of $R \bowtie^f J$ containing $\{0\} \times J$ are of the form $I \bowtie^f J$ where I is a S-n-ideal of R.

Proof. From Theorem 5, $I \bowtie^f J$ is a $(S \bowtie^f J)$ -*n*-ideal of $R \bowtie^f J$ for any *S*-*n*-ideal *I* of *R*. Let *K* be a $(S \bowtie^f J)$ -*n*-ideal of $R \bowtie^f J$ containing $\{0\} \times J$. Consider the surjective homomorphism $\varphi : R \bowtie^f J \to R$ defined by $\varphi(a, f(a) + j) = a$ for all $(a, f(a) + j) \in R \bowtie^f J$. Since $Ker(\varphi) = \{0\} \times J \subseteq K$, $I := \varphi(K)$ is a *S*-*n*-ideal of *R* by Proposition 12. Since $\{0\} \times J \subseteq K$, we conclude that $K = I \bowtie^f J$. \Box

Let T be a multiplicatively closed subset of R'. Then clearly, the set $\overline{T}^f = \{(s, f(s) + j) : s \in R, j \in J, f(s) + j \in T\}$ is a multiplicatively closed subset of $R \bowtie^f J$.

Theorem 6. Consider the amalgamation of rings R and R' along the ideals J of R'with respect to an epimorphism f. Let K be an ideal of R' and T be a multiplicatively closed subset of R' disjoint with K. If \overline{K}^f is a \overline{T}^f -n-ideal of $R \bowtie^f J$, then K is a T-n-ideal of R'. The converse is true if $J \subseteq \sqrt{0_{R'}}$ and $Ker(f) \subseteq \sqrt{0_R}$.

Proof. First, note that $T \cap K = \phi$ if and only if $\overline{T}^f \cap \overline{K}^f = \phi$. Suppose \overline{K}^f is a \overline{T}^{f} -n-ideal of $R \bowtie^{f} J$ and (s, f(s) + j) is some \overline{T}^{f} -element of \overline{K}^{f} . Let $a', b' \in R'$ such that $a'b' \in K$ and choose $a, b \in R$ where f(a) = a' and b = f(b'). Then $(a, f(a)), (b, f(b)) \in R \bowtie^f J$ with $(a, f(a))(b, f(b)) = (ab, f(ab)) \in \overline{K}^f$. By assumption, we have either $(s, f(s) + j)(a, f(a)) = (sa, (f(s) + j)f(a)) \in \sqrt{0_{R \bowtie fJ}}$ or $(s, f(s) + j)(b, f(b)) = (sb, (f(s) + j)f(b)) \in \overline{K}^f$. Thus, $f(s) + j \in T$ and clearly, $(f(s)+j)f(a) \in \sqrt{0_{R'}}$ or $(f(s)+j)f(b) \in K$. It follows that K is a T-n-ideal of R'. Now, suppose K is a T-n-ideal of R', t = f(s) is a T-element of $K, J \subseteq \sqrt{0_{R'}}$ and $Ker(f) \subseteq \sqrt{0_R}$. Let $(a, f(a) + j_1)(b, f(b) + j_2) = (ab, (f(a) + j_1)(f(b) + j_2)) \in \bar{K}^f$ for $(a, f(a) + j_1), (b, f(b) + j_2) \in R \bowtie^f J$. Then $(f(a) + j_1)(f(b) + j_2) \in K$ and so $f(s)(f(a) + j_1) \in \sqrt{0_{R'}}$ or $f(s)(f(b) + j_2) \in K$. Suppose $f(s)(f(a) + j_1) \in \sqrt{0_{R'}}$. Since $J \subseteq \sqrt{0_{R'}}$, then $f(sa) \in \sqrt{0_{R'}}$ and so $(sa)^m \in Ker(f) \subseteq \sqrt{0_R}$ for some integer m. Hence, $sa \in \sqrt{0_R}$ and $(s, f(s))(a, f(a) + j_1) \in \sqrt{0_{R \bowtie^f J}}$. If $f(s)(f(b) + j_2) \in K$, then clearly, $(s, f(s))(b, f(b) + j_2) \in \overline{K}^f$. Therefore, \overline{K}^f is a \overline{T}^f -n-ideal of $R \bowtie^f J$ as needed. \square

In particular, $S \times f(S)$ is a multiplicatively closed subset of $R \bowtie^f J$ for any multiplicatively closed subset S of R. Hence, we have the following corollary of Theorem 6.

Corollary 6. Let R, R', J, S and f be as in Theorem 5. Let K be an ideal of R' and T = f(S). Consider the following statements.

(1) \overline{K}^f is a $(S \times T)$ -n-ideal of $R \bowtie^f J$.

(2) \overline{K}^f is a \overline{T}^f -n-ideal of $R \bowtie^f J$.

(3) K is a T-n-ideal of R.

Then $(1) \Rightarrow (2) \Rightarrow (3)$. Moreover, if $J \subseteq \sqrt{0_{R'}}$ and $Ker(f) \subseteq \sqrt{0_R}$, then the statements are equivalent.

We note that if $J \not\subseteq \sqrt{0_{R'}}$, then the equivalences in Theorems 5 and 6 are not true in general.

Example 5. Let $R = \mathbb{Z}$, $I = \langle 0 \rangle = K$, $J = \langle 3 \rangle \notin \sqrt{0_{\mathbb{Z}}}$ and $S = \{1\} = T$. We have $I \bowtie J = \{(0, 3n) : n \in \mathbb{Z}\}$, $\bar{K} = \{(3n, 0) : n \in \mathbb{Z}\}$, $S \bowtie J = \{(1, 3n + 1) : n \in \mathbb{Z}\}$, $\bar{T} = \{(1 - 3n, 1) : n \in \mathbb{Z}\}$ and $\sqrt{0_{R \bowtie J}} = \{(0, 0)\}$.

- (1) I is a S-n-ideal of R but $I \bowtie J$ is not a $(S \bowtie J)$ -n-ideal of $R \bowtie J$. Indeed, we have $(0,3), (1,4) \in R \bowtie J$ with $(0,3)(1,4) = (0,12) \in I \bowtie J$. But $(1,3n+1)(0,3) \notin \sqrt{0_{R\bowtie J}}$ and $(1,3n+1)(1,4) \notin I \bowtie J$ for all $n \in \mathbb{Z}$.
- (2) K is a T-n-ideal of R but \bar{K} is not a \bar{T} -n-ideal of $R \bowtie J$. For example, $(-3,0), (-4,-1) \in R \bowtie J$ with $(-3,0)(-4,-1) = (12,0) \in \bar{K}$. However, $(1-3n,1)(-3,0) \notin \sqrt{0_{R\bowtie J}}$ and $(1-3n,1)(-4,-1) \notin \bar{K}$ for all $n \in \mathbb{Z}$.

By taking $S = \{1\}$ in Theorem 5 and Corollary 6, we get the following particular case.

Corollary 7. Let R, R', J, I, K and f be as in Theorems 5 and 6.

- (1) If $I \bowtie^f J$ is an *n*-ideal of $R \bowtie^f J$, then I is an *n*-ideal of R. Moreover, the converse is true if $J \subseteq \sqrt{0_{R'}}$.
- (2) If \overline{K}^f is an *n*-ideal of $R \bowtie^f J$, then K is an *n*-ideal of R'. Moreover, the converse is true if $J \subseteq \sqrt{0_{R'}}$ and $Ker(f) \subseteq \sqrt{0_R}$.

Corollary 8. Let R, R', I, J, K, S and T be as in Theorems 5 and 6.

- (1) If $I \bowtie J$ is a $(S \bowtie J)$ -*n*-ideal of $R \bowtie J$, then I is a *S*-*n*-ideal of R. Moreover, the converse is true if $J \subseteq \sqrt{0_{R'}}$.
- (2) If \overline{K} is a \overline{T} -*n*-ideal of $R \bowtie J$, then K is a T-*n*-ideal of R'. The converse is true if $J \subseteq \sqrt{0_{R'}}$ and $Ker(f) \subseteq \sqrt{0_R}$.

As a generalization of S-n-ideals to modules, in the following we define the notion of S-n-submodules which may inspire the reader for the other work.

Definition 2. Let S be a multiplicatively closed subset of a ring R, and let M be a unital R-module. A submodule N of M with $(N :_R M) \cap S = \emptyset$ is called an S -n-submodule if there is an $s \in S$ such that $am \in N$ implies $sa \in \sqrt{(0:_R M)}$ or $sm \in N$ for all $a \in R$ and $m \in M$.

Author Contribution Statements Both of the authors contributed equally to this manuscript and both reviewed the final manuscript.

Declaration of Competing Interests We declare that the authors have no potential conflict of interest (financial or non-financial).

References

- Almahdi, F. A., Bouba, E. M., Tamekkante, M. On weakly S-prime ideals of commutative rings, Analele Stiint. ale Univ. Ovidius Constanta Ser. Mat., 29(2) (2021), 173-186. https://doi.org/10.2478/auom-2021-0024
- [2] Anderson, D. F., Badawi, A., On n-absorbing ideals of commutative rings, Commun. Algebra, 39(5) (2011), 1646–1672. https://doi.org/10.1080/00927871003738998

- [3] Anderson, D. D., Bataineh, M., Generalizations of prime ideals, Commun. Algebra, 36(2) (2008), 686-696. https://doi.org/10.1080/00927870701724177
- [4] Anderson, D., Smith, E., Weakly prime ideals, Houst. J. Math., 29(4) (2003), 831-840.
- [5] Badawi, A., On 2-absorbing ideals of commutative rings, Bull. Austral. Math. Soc., 75(3) (2007), 417-429. https://doi.org/10.1017/S0004972700039344
- [6] Darani, A. Y., Generalizations of primary ideals in commutative rings, Novi Sad. J. Math., 42 (2012), 27-35.
- [7] Călugăreanu, G., UN-rings. J. Algebra its Appl., 15(10) (2016), 1650182. https://doi.org/10.1142/S0219498816501826
- [8] D'Anna, M., Fontana, M., An amalgamated duplication of a ring along an ideal: the basic properties, J. Algebra its Appl., 6(3) (2007), 443–459. https://doi.org/10.1142/S0219498807002326
- [9] D'Anna, M., Fontana, M., The amalgamated duplication of a ring along a multiplicativecanonical ideal, Ark. Mat., 45(2) (2007), 241-252. https://doi.org/10.1007/s11512-006-0038-1
- [10] D'Anna, M., Finocchiaro, C. A., Fontana, M., Properties of chains of prime ideals in an amalgamated algebra along an ideal, J. Pure Appl. Algebra, 214 (2010), 1633-1641. https://doi.org/10.1016/j.jpaa.2009.12.008
- [11] Gilmer, R. W., Multiplicative Ideal Theory, M. Dekker, 1972.
- [12] Hamed, A., Malek, A., S-prime ideals of a commutative ring, Beitr. Algebra Geom., 61(3) (2020), 533-542. https://doi.org/10.1007/s13366-019-00476-5
- [13] Khashan, H. A., Bani-Ata, A. B., J-ideals of commutative rings, Int. Electron. J. Algebra, 29 (2021), 148-164. https://doi.org/10.24330/ieja.852139
- [14] Mohamadian, R., r-ideals in commutative rings, Turkish J. Math., 39(5) (2015), 733-749. https://doi.org/10.3906/mat-1503-35
- [15] Tekir, U., Koc, S., Oral, K. H., n-ideals of commutative rings, *Filomat*, 31(10) (2017), 2933-2941. https://doi.org/10.2298/FIL1710933T
- [16] Visweswaran, S., Some results on S-primary ideals of a commutative ring, Beitr. Algebra Geom., 63(8) (2021), 1-20. https://doi.org/10.1007/s13366-021-00580-5
- [17] Yassine, A., Nikmehr, M. J., Nikandish, R., On 1-absorbing prime ideals of commutative rings, J. Algebra its Appl., 20(10) (2021), 2150175. https://doi.org/10.1142/S0219498821501759.
- [18] Yetkin Celikel, E., Generalizations of n-ideals of Commutative Rings, J. Sci. Technol., 12(2) (2019), 650-657. https://doi.org/10.18185/erzifbed.471609