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TÜRKİYE

Abstract. Let R be a commutative ring with identity and S a multiplicatively

closed subset of R. This paper aims to introduce the concept of S-n-ideals as

a generalization of n-ideals. An ideal I of R disjoint with S is called an S-
n-ideal if there exists s ∈ S such that whenever ab ∈ I for a, b ∈ R, then

sa ∈
√
0 or sb ∈ I. The relationships among S-n-ideals, n-ideals, S-prime and

S-primary ideals are clarified. Besides several properties, characterizations and
examples of this concept, S-n-ideals under various contexts of constructions

including direct products, localizations and homomorphic images are given.

For some particular S and m ∈ N, all S-n-ideals of the ring Zm are completely
determined. Furthermore, S-n-ideals of the idealization ring and amalgamated

algebra are investigated.

1. Introduction

Throughout this paper, we assume that all rings are commutative with non-zero
identity. For a ring R, we will denote by U(R), reg(R) and Z(R), the set of unit
elements, regular elements and zero-divisor elements of R, respectively. For an
ideal I of R, the radical of I denoted by

√
I is the ideal {a ∈ R : an ∈ I for some

positive integer n} of R. In particular,
√
0 denotes the set of all nilpotent elements

of R. We recall that a proper ideal I of a ring R is called prime (primary) if for

a, b ∈ R, ab ∈ I implies a ∈ I or b ∈ I (b ∈
√
I). Several generalizations of prime

and primary ideals were introduced and studied, (see for example [2]- [4], [6], [17]).
Let S be a multiplicatively closed subset of a ring R and I an ideal of R disjoint

with S. Recently, Hamed and Malek [12] used a new approach to generalize prime
ideals by defining S-prime ideals. I is called an S-prime ideal of R if there exists
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an s ∈ S such that for all a, b ∈ R whenever ab ∈ I, then sa ∈ I or sb ∈ I. Then
analogously, Visweswaran [16] introduced the notion of S-primary ideals. I is called
an S-primary ideal of R if there exists an s ∈ S such that for all a, b ∈ R if ab ∈ I,
then sa ∈ I or sb ∈

√
I. Many other generalizations of S-prime and S-primary

ideals have been studied. For example, in [1], the authors defined I to be a weakly
S-prime ideal if there exists an s ∈ S such that for all a, b ∈ R if 0 ̸= ab ∈ I, then
sa ∈ I or sb ∈ I. In 2015, Mohamadian [14] defined a new type of ideals called
r-ideals. An ideal I of a ring R is said to be r -ideal, if ab ∈ I and a /∈ Z(R)
imply that b ∈ I for each a, b ∈ R. Generalizing this concept, in 2017 the notion
of n-ideals was first introduced and studied [15]. The authors called a proper ideal

I of R an n-ideal if ab ∈ I and a /∈
√
0 imply that b ∈ I for each a, b ∈ R. Many

other generalizations of n-ideals have been introduced recently, see for example [13]
and [18]. Motivated and inspired by these studies, in this article, we study the
S-version of the class of n-ideals by determining the structure of S-n-ideals of a
ring. We call I an S-n-ideal of a ring R if there exists an (fixed) s ∈ S such that for

all a, b ∈ R if ab ∈ I and sa /∈
√
0, then sb ∈ I. We call this fixed element s ∈ S an

S-element of I. Clearly, for any multiplicatively closed subset S of R, every n-ideal
is an S-n-ideal and the classes of n-ideals and S-n-ideals coincide if S ⊆ U(R).
However, this generalization of n-ideals is proper as we can see in Example 1. In
Section 2, we start by giving an example of an S-n-ideal of a ring R that is not
an n-ideal. Then we give many properties of S-n-ideals and show that S-n-ideals
enjoy analogs of many of the properties of n-ideals. Also we discuss the relationship
among S-n-ideals, n-ideals, S-prime and S-primary ideals, (Propositions 1, 6 and
Examples 1, 2). In Theorems 1 and 2, we present some characterizations for S-
n-ideals of a general commutative ring. Moreover, we investigate some conditions
under which (I :R s) is an S-n-ideal of R for an S-n-ideal I of R and an S-
element s of I, (Propositions 2, 3 and Example 3). For a particular case that
S ⊆ reg(R), we justify some other results. For example, in this case, we prove
that a maximal S-n-ideal of R is S-prime, (Proposition 6). In addition, we show
in Proposition 4 that every proper ideal of a ring R is an S-n-ideal if and only
if R is a UN-ring (a ring for which every nonunit element is a product of a unit
and a nilpotent). Let n ∈ N, say, n = pr11 pr22 ...prkk where p1, p2, ..., pk are distinct
prime integers and ri ≥ 1 for all i. Then for all 2 ≤ i ≤ k − 1, Sp1p2...pi−1pi+1...pk

={
p̄m1
1 p̄m2

2 ...p̄
mi−1

i−1 p̄
mi+1

i+1 ...p̄
mk−1

k−1 : mj ∈ N ∪ {0}
}
is a multiplicatively closed subset of

Zn. In Theorem 4, we determine all Sp1p2...pi−1pi+1...pk
-n-ideals of Zn for all i. In

particular, we determine all Sp-n-ideals of Zn where Sp =
{
1, p̄, p̄2, p̄3, ...

}
for any

prime integer p dividing n, (Theorem 3). Furthermore, we study the stability of S-n-
ideals with respect to various ring theoretic constructions such as localization, factor
rings and direct product of rings, (Propositions 11, 12 and 14). Let R be a ring and
M be an R-module. For a multiplicatively closed subset S of R, the set S(+)M =
{(s,m) : s ∈ S, m ∈ M} is clearly a multiplicatively closed subset of the idealization
ring R(+)M . In Section 3, first, we clarify the relation between the S-n-ideals of a
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ring R and the S(+)M -n-ideals R(+)M , (Proposition 17). For rings R and R′, an
ideal J of R′ and a ring homomorphism f : R → R′, the amalgamation of R and R′

along J with respect to f is the subring R ⋊⋉f J = {(r, f(r) + j) : r ∈ R, j ∈ J} of
R×R′. Clearly, the set S ⋊⋉f J = {(s, f(s) + j) : s ∈ S, j ∈ J} is a multiplicatively
closed subset of R ⋊⋉f J whenever S is a multiplicatively closed subset of R. We
finally determine when the ideals I ⋊⋉f J = {(i, f(i) + j) : i ∈ I, j ∈ J} and K̄f =
{(a, f(a) + j) : a ∈ R, j ∈ J , f(a) + j ∈ K} of R ⋊⋉f J are (S ⋊⋉f J)-n-ideals,
(Theorems 5 and 6).

2. Properties of S-n-ideals

Definition 1. Let R be a ring, S be a multiplicatively closed subset of R and I be
an ideal of R disjoint with S. We call I an S-n-ideal of R if there exists an (fixed)

s ∈ S such that for all a, b ∈ R if ab ∈ I and sa /∈
√
0, then sb ∈ I. This fixed

element s ∈ S is called an S-element of I.

Let I be an ideal of a ring R. If I is an n-ideal of R, then clearly I is an S-
n-ideal for any multiplicatively closed subset of R disjoint with I. However, it is
clear that the classes of n-ideals and S-n-ideals coincide if S ⊆ U(R). Moreover,
obviously any S-n-ideal is an S-primary ideal and the two concepts coincide if the
ideal is contained in

√
0. However, the converses of these implications are not true

in general as we can see in the following examples.

Example 1. Let R = Z12, S = {1, 3, 9} and consider the ideal I =< 4 >. Choose
s = 3 ∈ S and let a, b ∈ R with ab ∈ I but 3b /∈ I. Now, ab ∈< 2 > implies
a ∈< 2 > or b ∈< 2 >. Assume that a /∈< 2 > and b ∈< 2 >. Since a /∈< 2 >, then
a ∈ {1, 3, 5, 7, 9, 11} and since 3b /∈ I, we have b ∈ {2, 6, 10}. Thus, in each case

ab /∈ I, a contradiction. Hence, we must have a ∈< 2 > and so 3a ∈< 6 >=
√
0.

On the other hand, I is not an n-ideal as 2 · 2 ∈ I but neither 2 ∈
√
0 nor 2 ∈ I.

A (prime) primary ideal of a ring R that is not an n-ideal is a direct example of
an (S-prime) S-primary ideal that is not an S-n-ideal where S = {1}. For a less
trivial example, we have the following.

Example 2. Let R = Z[X] and let I = ⟨4x⟩. consider the multiplicatively closed
subset S = {4m : m ∈ N∪{0}} of R. Then I is an S-prime (and so S-primary) ideal
of R, [16, Example 2.3]. However, I is not an S-n-ideal since for all s = 4m ∈ S,
we have (2x)(2) ∈ I but s(2x) /∈

√
0Z[x] and s(2) /∈ I.

Proposition 1. Let S be a multiplicatively closed subset of a ring R and I be an
ideal of R disjoint with S.

(1) If I is an S-n-ideal, then sI ⊆
√
0 for some s ∈ S. If moreover, S ⊆ reg(R),

then I ⊆
√
0.

(2)
√
0 is an S-n-ideal of R if and only if

√
0 is an S-prime ideal of R.

(3) Let S ⊆ reg(R). Then 0 is an S-n-ideal of R if and only if 0 is an n-ideal.
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Proof. (1) Let a ∈ I. Since I ∩S = ∅, s · 1 /∈ I for all s ∈ S. Hence, a · 1 ∈ I implies

that there exists an s ∈ S such that sa ∈
√
0. Thus, sI ⊆

√
0 as desired. Moreover,

if S ⊆ reg(R), then clearly I ⊆
√
0.

(2) Clear.

(3) Suppose s is an S-element of 0 and ab = 0 for some a, b ∈ R. Then sa ∈
√
0

or sb = 0 which implies snan = 0 for some positive integer n or sb = 0. Since
S ⊆ reg(R), we have an = 0 or b = 0, as needed. □

Next, we characterize S-n-ideals of rings by the following.

Theorem 1. Let S be a multiplicatively closed subset of a ring R and I be an ideal
of R disjoint with S. The following statements are equivalent.

(1) I is an S-n-ideal of R.
(2) There exists an s ∈ S such that for any two ideals J,K of R, if JK ⊆ I,

then sJ ⊆
√
0 or sK ⊆ I.

Proof. (1)⇒(2). Suppose I is an S-n-ideal of R. Assume on the contrary that for

each s ∈ S, there exist two ideals J ′,K ′ of R such that J ′K ′ ⊆ I but sJ ′ ⊈
√
0 and

sK ′ ⊈ I. Then, for each s ∈ S, we can find two elements a ∈ J ′ and b ∈ K ′ such

that ab ∈ I but neither sa ∈
√
0 nor sb ∈ I. By this contradiction, we are done.

(2)⇒(1). Let a, b ∈ R with ab ∈ I. Taking J =< a > and K =< b > in (2), we
get the result. □

Theorem 2. Let S be a multiplicatively closed subset of a ring R and I be an ideal
of R disjoint with S. If

√
0 is an S-n-ideal of R, then the following are equivalent.

(1) I is an S-n-ideal of R.
(2) There exists s ∈ S such that for ideals I1, I2, ..., In of R, if I1I2 · · · In ⊆ I,

then sIj ⊆
√
0 or sIk ⊆ I for some j, k ∈ {1, ..., n}.

(3) There exists s ∈ S such that for elements a1, a2, ..., an of R, if a1a2 · · · an ∈
I, then saj ∈

√
0 or sak ∈ I for some j, k ∈ {1, ..., n}.

Proof. (1)⇒(2). Let s1 ∈ S be an S-element of I. To prove the claim, we use
mathematical induction on n. If n = 2, then the result is clear by Theorem 1.
Suppose n ≥ 3 and the claim holds for n − 1. Let I1, I2,..., In be ideals of R
with I1I2 · · · In ⊆ I. Then by Theorem 1, we conclude that either s1I1 ⊆

√
0 or

s1I2 · · · In ⊆ I. Assume (s1I2) · · · In ⊆ I. By the induction hypothesis, we have

either, say, s21I2 ⊆
√
0 or s1Ik ⊆ I for some k ∈ {3, ..., n}. Assume s21I2 ⊆

√
0 and

choose an S-element s2 ∈ S of
√
0. If s2(s

2
1R) ⊆

√
0 ∩ S, we get a contradiction.

Thus, s2I2 ⊆
√
0. By choosing s = s1s2, we get sIj ⊆

√
0 or sIk ⊆ I for some

j, k ∈ {1, ..., n}, as needed.
(2)⇒(3). This is a particular case of (2) by taking Ij :=< aj > for all j ∈

{1, ..., n}.
(3)⇒(1). Clear by choosing n = 2 in (3). □
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Proposition 2. Let S be a multiplicatively closed subset of a ring R and I be an
ideal of R disjoint with S. Then

(1) If (I : s) is an n-ideal of R for some s ∈ S, then I is an S-n-ideal.

(2) If I is an S-n-ideal and (
√
0 : s) is an n-ideal where s ∈ S is an S-element

of I, then (I : s) is an n-ideal of R.
(3) If I is an S-n-ideal and S ⊆ reg(R), then (I : s) is an n-ideal of R for any

S-element s of I.

Proof. (1) Suppose that (I : s) is an n-ideal of R for some s ∈ S. We show that s

is an S-element of I. Let a, b ∈ R with ab ∈ I and sa /∈
√
0. Then ab ∈ (I : s) and

a /∈
√
0 imply that b ∈ (I : s).Thus, sb ∈ I and I is an S-n-ideal.

(2) Suppose a, b ∈ R with ab ∈ (I : s). Then a(sb) ∈ I which implies sa ∈
√
0

or s2b ∈ I. Suppose sa ∈
√
0. Since (

√
0 : s) is an n-ideal, (

√
0 : s) =

√
0

by [15, Proposition 2.3] and so a ∈
√
0. Now, suppose s2b ∈ I. If sb /∈ I, then since

I is an S-n-ideal, s3 ∈
√
0 and so s ∈

√
0 which contradicts the assumption that

(
√
0 : s) is proper. Thus, sb ∈ I and b ∈ (I : s) as needed.
(3) Suppose S ⊆ reg(R) and I is an S-n-ideal. Let a, b ∈ R with ab ∈ (I : s) so

that a(sb) ∈ I . If sa ∈
√
0, then smam = 0 for some integer m. Since S ⊆ reg(R),

we get am = 0 and so a ∈
√
0. If s2b ∈ I, then similar to the proof of (2) we

conclude that b ∈ (I : s). □

Note that the conditions that (
√
0 : s) is an n-ideal in (2) and S ⊆ reg(R) in (3)

of Proposition 2 are crucial. Indeed, consider R = Z12, S = {1, 3, 9}. We showed in
Example 1 that I =< 4 > is an S-n-ideal which is not an n-ideal, and so (I : 3) = I

is not an n-ideal. Here, observe that S ⊈ reg(R) and (
√
0 : 3) =< 2 > is not an

n-ideal of Z12.

Proposition 3. Let S ⊆ reg(R) be a multiplicatively closed subset of a ring R and

I be an S-prime ideal of R. Then I is an S-n-ideal if and only if (I : s) =
√
0 for

some s ∈ S.

Proof. Suppose I is an S-n-ideal of R and s1 be an S-element of I. Then (I : s1)
is an n-ideal of R by Proposition 2. Moreover, (I : ts1) is an n-ideal for all t ∈ S.

Indeed, if ab ∈ (I : ts1) for a, b ∈ R, then abts1 ∈ I and so either s21a ∈
√
0

or s1tb ∈ I. If s21a ∈
√
0, then a ∈

√
0 as S ⊆ reg(R). Otherwise, we have

b ∈ (I : ts1) as needed. Since I is an S-prime ideal of R, (I : s2) is a prime ideal
of R where s2 ∈ S such that whenever ab ∈ I for a, b ∈ R, either s2a ∈ I or
s2b ∈ I, [12, Proposition 1]. Similar to the above argument, we can also conclude
that (I : ts2) is a prime ideal for all t ∈ S. Now, choose s = s1s2. Then (I : s)

is both a prime and an n-ideal of R and so (I : s) =
√
0 by [15, Proposition 2.8].

Conversely, suppose (I : s) =
√
0 for some s ∈ S. Since I is an S-prime ideal,

(I : s′) is a prime ideal of R for some s′ ∈ S. Moreover, if a ∈ (I : s′), then

as′ ∈ I ⊆ (I : s) ⊆
√
0 and so a ∈

√
0 as S ⊆ reg(R). Thus, (I : s′) =

√
0 is a
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prime ideal and so it an n-ideal again by [15, Proposition 2.8]. Therefore, I is an
S-n-ideal by Proposition 2. □

In the following example we justify that the condition S ⊆ reg(R) can not be
omitted in Proposition 3.

Example 3. The ideal I =< 2 > of Z12 is prime and so S-prime for S = {1, 3, 9} ⊈
reg(Z12). Moreover, one can directly see that s = 3 is an S-element of I and so I

is also an S-n-ideal of Z12. But (I : s) = I ̸=
√
0 for all s ∈ S.

A ring R is said to be a UN-ring if every nonunit element is a product of a unit
and a nilpotent. Next, we obtain a characterization for rings in which every proper
ideal is an S-n-ideal where S ⊆ reg(R).

Proposition 4. Let S ⊆ reg(R) be a multiplicatively closed subset of a ring R.
The following are equivalent.

(1) Every proper ideal of R is an n-ideal.
(2) Every proper ideal of R is an S-n-ideal.
(3) R is a UN-ring.

Proof. Since (1)⇒(2) is straightforward and (3)⇒(1) is clear by [15, Proposition
2.25], we only need to prove (2)⇒(3).

(2)⇒(3). Let I be a prime ideal of R. Then I is an S-prime and from our

assumption, it is also an S-n-ideal. Thus I ⊆ (I : s) =
√
0 is a prime ideal of R

by Proposition 3. Thus
√
0 is the unique prime ideal of R and so R is a UN-ring

by [7, Proposition 2 (3)]. □

The equivalence of (1) and (2) in Proposition 4 need not be true if S ⊈ reg(R).

Example 4. Consider the ring Z6 and let S = {1, 3}. If I = ⟨0̄⟩ or ⟨2̄⟩, then a
simple computations can show that I is an S-n-ideal of Z6. However, Z6 has no
proper n-ideals, [15, Example 2.2].

A ring R is said to be von Neumann regular if for all a ∈ R, there exists an
element b ∈ R such that a = a2b.

Proposition 5. Let S ⊆ reg(R) be a multiplicatively closed subset of a ring R.

(1) Let R be a reduced ring. Then R is an integral domain if and only if there
exists an S-prime ideal of R which is also an S-n-ideal

(2) R is a field if and only if R is von Neumann regular and 0 is an S-n-ideal
of R.

Proof. (1) Let R be an integral domain. Since 0 =
√
0 is prime, it is also an n-

ideal again by [15, Corollary 2.9]. Thus
√
0 is both S-prime and S-n-ideal of R,

as required. Conversely, suppose I is both S-prime and S-n-ideal of R. Hence,
from Proposition 3 we conclude (I : s) =

√
0 which is an n-ideal by Proposition
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2.
√
0 = 0 is also a prime ideal by [15, Corollary 2.9], and thus R is an integral

domain.
(2) Since S ⊆ reg(R), from Proposition 1, 0 is an S-n-ideal of R if and only if 0

is an n-ideal. Thus, the claim is clear by [15, Theorem 2.15]. □

Let n ∈ N. For any prime p dividing n, we denote the multiplicatively closed
subset

{
1, p̄, p̄2, p̄3, ...

}
of Zn by Sp. Next, for any p dividing n, we clarify all

Sp-n-ideals of Zn.

Theorem 3. Let n ∈ N.

(1) If n = pr for some prime integer p and r ≥ 1, then Zn has no Sp-n-ideals.
(2) If n = pr11 pr22 where p1 and p2 are distinct prime integers and r1, r2 ≥ 1,

then for all i = 1, 2, every ideal of Zn disjoint with Spi
is an Spi

-n-ideal.
(3) If n = pr11 pr22 ...prkk where p1, p2, ..., pk are distinct prime integers and k ≥ 3,

then for all i = 1, 2, ..., k, Zn has no Spi-n-ideals.

Proof. (1) Clear since I ∩ Sp ̸= ϕ for any ideal I of Zn.

(2) Let I =
〈
p̄t11 p̄t22

〉
be an ideal of Zn distinct with Sp1 . Then we must have

t2 ≥ 1. Choose s = p̄t11 ∈ Sp1
and let ab ∈ I for a, b ∈ Zn. If a ∈ ⟨p̄2⟩, then

sa ∈ ⟨p̄1p̄2⟩ =
√
0. If a /∈ ⟨p̄2⟩, then clearly b ∈

〈
p̄t22
〉
and so sb ∈ I. Therefore, I is

an Sp1
-n-ideal of Zn. By a similar argument, we can show that every ideal of Zn

distinct with Sp2
is an Sp2

-n-ideal.

(3) Let I =
〈
p̄t11 p̄t22 ...p̄tkk

〉
be an ideal of Zn distinct with Sp1

. Then there exists

j ̸= 1 such that tj ≥ 1, say, j = k. Thus, p̄tkk (p̄t11 p̄t22 ...p̄
tk−1

k−1 ) ∈ I but sp̄tkk /∈
√
0

and s(p̄t11 p̄t22 ...p̄
tk−1

k−1 ) /∈ I for all s ∈ Sp1
. Therefore, I is not an Sp1

-n-ideal of Zn.
Similarly, I is not an Spi

-n-ideal of Zn for all i = 1, 2, ..., k. □

Corollary 1. Let n ∈ N. Then for any prime p dividing n, either Zn has no
Sp-n-ideals or every ideal of Zn disjoint with Sp is an Sp-n-ideal.

In general if n = pr11 pr22 ...prkk where ri ≥ 1 for all i, then

Sp1p2...pi−1pi+1...pk
=
{
p̄m1
1 p̄m2

2 ...p̄
mi−1

i−1 p̄
mi+1

i+1 ...p̄mk

k : mj ∈ N ∪ {0}
}

is also a multiplicatively closed subset of Zn for all i. Next, we generalize Theorem
3.

Theorem 4. Let n = pr11 pr22 ...prkk where p1, p2, ..., pk are distinct prime integers
and ri ≥ 1 for all i.

(1) Zn has no Sp1p2...pk
-n-ideals.

(2) For i = 1, 2, ..., k, every ideal of Zn disjoint with Sp1p2...pi−1pi+1...pk
is an

Sp1p2...pi−1pi+1...pk
-n-ideal.

(3) Let k ≥ 3. If m ≤ k − 2, then Zn has no Sp1p2...pm
-n-ideals.
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Proof. (1) This is clear since I ∩ Sp1p2...pk
̸= ϕ for any ideal I of Zn.

(2) With no loss of generality, we may choose i = k. Let I =
〈
p̄t11 p̄t22 ...p̄tkk

〉
be an ideal of Zn disjoint with Sp1p2...pk−1

. Then we must have tk ≥ 1. Choose

s = p̄t11 p̄t22 ...p̄
tk−1

k−1 ∈ Sp1p2...pk−1
and let a, b ∈ Zn such that ab ∈ I. If a ∈ ⟨p̄k⟩, then

sa ∈ ⟨p̄1p̄2...p̄k⟩ =
√
0. If a /∈ ⟨p̄k⟩, then we must have b ∈

〈
p̄tkk
〉
. Thus, sb ∈ I and

I is an Sp1p2...pk−1
-n-ideal of Zn.

(3) Assume m = k − 2 and let I =
〈
p̄t11 p̄t22 ...p̄tkk

〉
be an ideal of Zn disjoint

with Sp1p2...pk−2
. Then at least one of tk−1 and tk is nonzero, say, tk ≩ 0. Hence,

p̄tkk (p̄t11 p̄t22 ...p̄
tk−1

k−1 ) ∈ I but clearly sp̄tkk /∈
√
0 and s(p̄t11 p̄t22 ...p̄

tk−1

k−1 ) /∈ I for all s ∈
Sp1p2...pk−2

. Therefore, Zn has no Sp1p2...pk−2
-n-ideals. A similar proof can be used

if 1 ≤ m ≨ k − 2. □

An ideal I of a ring R is called a maximal S-n-ideal if there is no S-n-ideal of R
that contains I properly. In the following proposition, we observe the relationship
between maximal S-n-ideals and S-prime ideals.

Proposition 6. Let S ⊆ reg(R) be a multiplicatively closed subset of a ring R. If

I is a maximal S-n-ideal of R, then I is S-prime (and so (I : s) =
√
0 for some

s ∈ S).

Proof. Suppose I is a maximal S-n-ideal of R and s ∈ S is an S-element of I.
Then (I : s) is an n-ideal of R by Proposition 2. Moreover, (I : s) is a maximal
n-ideal of R. Indeed, if (I : s) ⊊ J for some n-ideal (and so S-n-ideal) J of R, then

I ⊆ (I : s) ⊊ J which is a contradiction. By [15, Theorem 2.11], (I : s) =
√
0 is a

prime ideal of R and so I is an S-prime ideal by [12, Proposition 1]. □

Proposition 7. Let S be a multiplicatively closed subset of a ring R and I be an
ideal of R disjoint with S. If I is an S-n-ideal, and J is an ideal of R with J∩S ̸= ∅,
then IJ and I ∩ J are S-n-ideals of R.

Proof. Let s′ ∈ J ∩ S. Let a, b ∈ R with ab ∈ IJ. Since ab ∈ I, we have sa ∈
√
0

or sb ∈ I where s is an S-element of I. Hence, (s′s)a ∈ J
√
0 ⊆

√
0 or (s′s)b ∈ IJ .

Thus, IJ is an S-n-ideal of R. The proof that I ∩ J is an S-n-ideal is similar. □

Proposition 8. Let S be a multiplicatively closed subset of a ring R and I1, I2,...,
In be proper ideals of R.

(1) If Ii is an S-n-ideal of R for all i = 1, ..., n, then
n⋂

i=1

Ii is an S-n-ideal of R.

(2) If

( ⋂
j∈Ω

Ij

)
∩ S ̸= ∅ for Ω ⊆ {1, ..., n} and Ik is an S-n-ideal of R for all

k ∈ {1, ..., n} − Ω, then
n⋂

i=1

Ii is an S-n-ideal of R.
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Proof. (1) Suppose that for all i = 1, ..., n, Ii is an S-n-ideal of R and note that(
n⋂

i=1

Ii

)
∩ S = ∅. For all i = 1, ..., n, choose si ∈ S such that whenever a, b ∈ R

such that ab ∈ Ii, then sia ∈
√
0 or sib ∈ Ii. Let a, b ∈ R such that ab ∈

n⋂
i=1

Ii.

Then ab ∈ Ii for all i = 1, ..., n. If we let s =
n∏

i=1

si ∈ S, then clearly sa ∈
√
0 or

sb ∈
n⋂

i=1

Ii and the result follows.

(2) Choose s′ ∈

( ⋂
j∈Ω

Ij

)
∩ S. Let a, b ∈ R with ab ∈

n⋂
i=1

Ii. Then for all

k ∈ {1, ..., n} − Ω, ab ∈ Ik and so ska ∈
√
0 or skb ∈ Ij for some S-element sk of

Ik. Hence, (s′
∏

k∈{1,...,n}−Ω

sk)a ∈
√
0 or (s′

∏
k∈{1,...,n}−Ω

sk)b ∈
n⋂

i=1

Ii and so
n⋂

i=1

Ii is

an S-n-ideal of R. □

Let S and T be two multiplicatively closed subsets of a ring R with S ⊆ T .
Let I be an ideal disjoint with T. It is clear that if I is a S-n-ideal, then it is
T -n-ideal. The converse is not true since while I =< 4 > is an S-n-ideal of Z12 for
S = {1, 3, 9}, it is not a T -n-ideal for T = {1} ⊆ S.

Proposition 9. Let S and T be two multiplicatively closed subsets of a ring R with
S ⊆ T such that for each t ∈ T , there is an element t′ ∈ T such that tt′ ∈ S. If I
is a T -n-ideal of R, then I is an S-n-ideal of R.

Proof. Suppose ab ∈ I. Then there is a T -element t ∈ T of I satisfying ta ∈
√
0

or tb ∈ I. Hence there exists some t′ ∈ T with s = tt′ ∈ S, and thus sa ∈
√
0 or

sb ∈ I. □

Let S be a multiplicatively closed subset of a ring R. The saturation of S is the
set S∗ = {r ∈ R : r

1 is a unit in S−1R}. It is clear that S∗ is a multiplicatively closed
subset of R and that S ⊆ S∗. Moreover, it is well known that S∗ = {x ∈ R : xy ∈ S
for some y ∈ R}, see [11]. The set S is called saturated if S∗ = S.

Proposition 10. Let S be a multiplicatively closed subset of a ring R and I be
an ideal of R disjoint with S. Then I is an S-n-ideal of R if and only if I is an
S∗-n-ideal of R.

Proof. Suppose I is an S∗-n-ideal of R. By Proposition 9, it is enough to prove
that for each t ∈ S∗, there is an element t′ ∈ S∗ such that tt′ ∈ S. Let t ∈ S∗ and
choose t′ ∈ R such that ty ∈ S. Then t′ ∈ S∗ and tt′ ∈ S as required. The converse
is obvious. □

Let S and T be multiplicatively closed subsets of a ring R with S ⊆ T . Then
clearly, T−1S =

{
s
t : t ∈ T , s ∈ S

}
is a multiplicatively closed subset of T−1R.



208 H. A. KHASHAN, E. YETKİN CELİKEL

Proposition 11. Let S, T be multiplicatively closed subsets of a ring R with S ⊆ T
and I be an ideal of R disjoint with T . If I is an S-n-ideal of R, then T−1I is an
T−1S-n-ideal of T−1R. Moreover, we have T−1I ∩R = (I : u) for some S-element
u of I.

Proof. Suppose I is an S-n-ideal. Suppose T−1S∩T−1I ̸= ϕ, say, a
t ∈ T−1S∩T−1I.

Then a ∈ S and ta ∈ I for some t ∈ T . Since S ⊆ T , then ta ∈ T∩I, a contradiction.
Thus, T−1I is proper in T−1R and T−1S ∩ T−1I = ϕ. Let s ∈ S be an S-element
of I and choose s

1 ∈ T−1S. Suppose a, b ∈ R and t1, t2 ∈ T with a
t1

b
t2

∈ T−1I and
s
1

a
t1

/∈
√
0T−1R. Then tab ∈ I for some t ∈ T and sa /∈

√
0. Since I is an S-n-ideal,

we must have stb ∈ I. Thus, s
1

b
t2

= stb
tt2

∈ T−1I as needed. Now, let r ∈ T−1I ∩ R

and choose i ∈ I, t ∈ T such that r
1 = i

t . Then vr ∈ I for some v ∈ T . Since I is an

S-n-ideal, then there exists u ∈ S ⊆ T such that uv ∈
√
0 or ur ∈ I. But uv /∈

√
0

as T ∩
√
0 = ϕ and so ur ∈ I. It follows that r ∈ (I : u) for some S-element u of I.

Since clearly (I : u) ⊆ T−1I ∩R for all u ∈ T , the proof is completed. □

In particular, if S = T , then all elements of T−1S are units in T−1R. As a
special case of of Proposition 11, we have the following.

Corollary 2. Let S be a multiplicatively closed subset of a ring R and I be an ideal
of R disjoint with S. If I is an S-n-ideal of R, then S−1I is an n-ideal of S−1R.
Moreover, we have S−1I ∩R = (I : s) for some S-element s of I.

Proof. Suppose I is an S-n-ideal. Then S−1I is an S−1S-n-ideal of S−1R by
Proposition 11. Let a, b ∈ R, s1, s2 ∈ S with a

s1
b
s2

∈ S−1I. Then by assumption,
s
t

a
s1

∈
√
0S−1R or s

t
b
s2

∈ S−1I for some S−1S-element s
t of S−1I. Since s

t is a

unit in S−1R, then S−1I is an n-ideal of S−1R as required. The other part follows
directly by Proposition 11. □

Corollary 3. Let S be a multiplicatively closed subset of a ring R and I be an ideal
of R disjoint with S. Then I is an S-n-ideal of R if and only if S−1I is an n-ideal
of S−1R, S−1I ∩R = (I : s) and S−1

√
0 ∩R = (

√
0 : t) for some s, t ∈ S.

Proof. ⇒) Suppose I is an S-n-ideal of R. Then S−1I is an n-ideal of S−1R by
Corollary 2. The other part of the implication follows by using a similar approach
to that used in the proof of Proposition 11.

⇐) Suppose S−1I is an n-ideal of S−1R, S−1I ∩ R = (I : s) and S−1
√
0 ∩ R =

(
√
0 : t) for some s, t ∈ S. Choose u = st ∈ S and let a, b ∈ R such that ab ∈ I.

Then a
1
b
1 ∈ S−1I and so a

1 ∈
√
S−10 = S−1

√
0 or b

1 ∈ S−1I . If a
1 ∈

√
S−10, then

there is w ∈ S such that wa ∈
√
0. Thus, a = wa

w ∈ S−1
√
0 ∩R = (

√
0 : t). Hence,

ta ∈
√
0 and so ua = sta ∈

√
0. If b

1 ∈ S−1I, then there is v ∈ S such that vb ∈ I

and so b = vb
v ∈ S−1I ∩ R = (I : s). Therefore, ub = tsb ∈ I and I is an S-n-ideal

of R. □
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Proposition 12. Let f : R1 → R2 be a ring homomorphism and S be a multiplica-
tively closed subset of R1. Then the following statements hold.

(1) If f is an epimorphism and I is an S-n-ideal of R1 containing Ker(f), then
f(I) is an f(S)-n-ideal of R2.

(2) If Ker(f) ⊆
√
0R1

and J is an f(S)-n-ideal of R2, then f−1(J) is an S-n-
ideal of R1.

Proof. First we show that f(I) ∩ f(S) = ∅. Otherwise, there is t ∈ f(I) ∩ f(S)
which implies t = f(x) = f(s) for some x ∈ I and s ∈ S. Hence, x−s ∈ Ker(f) ⊆ I
and s ∈ I, a contradiction.

(1) Let a, b ∈ R2 and ab ∈ f(I). Since f is onto, a = f(x) and b = f(y) for
some x, y ∈ R1. Since f(x)f(y) ∈ f(I) and Ker(f) ⊆ I, we have xy ∈ I and so
there exists an s ∈ S such that sx ∈

√
0R1

or sy ∈ I. Thus, f(s)a ∈
√
0R2

or
f(s)b ∈ f(I), as needed.

(2) Let a, b ∈ R1 with ab ∈ f−1(J). Then f(ab) = f(a)f(b) ∈ J and since J
is an f(S)-n-ideal of R2, there exists f(s) ∈ f(S) such that f(s)f(a) ∈

√
0R2

or
f(s)f(b) ∈ J . Thus, sa ∈

√
0R1 (as Ker(f) ⊆

√
0R1) or sb ∈ f−1(J). □

Let S be a multiplicatively closed subset of a ring R and I be an ideal of R
disjoint with S. If we denote r+ I ∈ R/I by r̄, then clearly the set S̄ = {s : s ∈ S}
is a multiplicatively closed subset of R/I. In view of Proposition 12, we conclude
the following result for S-n-ideals of R/I.

Corollary 4. Let S be a multiplicatively closed subset of a ring R and I, J are two
ideals of R with I ⊆ J .

(1) If J is an S-n-ideal of R, then J/I is an S-n-ideal of R/I. Moreover, the

converse is true if I ⊆
√
0.

(2) If R is a subring of R′ and I ′ is an S-n-ideal of R′, then I ′∩R is an S-n-ideal
of R.

Proof. (1) Note that (J/I) ∩ S = ϕ if and only if I ∩ S = ϕ. Now, we apply the
canonical epimorphism π : R → R/I in Proposition 12.

(2) Apply the natural injection i : R → R′ in Proposition 12 (2). □

We recall that a proper ideal I of a ring R is called superfluous if whenever
I + J = R for some ideal J of R, then J = R.

Proposition 13. Let S ⊆ reg(R) be a multiplicatively closed subset of a ring R.

(1) If I is an S-n-ideal of R, then it is superfluous.
(2) If I and J are S-n-ideals of R, then I + J is an S-n-ideal.

Proof. (1) Suppose I + J = R for some ideal J of R and let j ∈ J . Then 1 − j ∈
I ⊆

√
0 ⊆ J(R) by (1) of Proposition 1. Thus, j ∈ U(R) and J = R as needed.

(2) Suppose I and J are S-n-ideals of R. Since I, J ⊆
√
0, I + J ⊆

√
0 and so

(I + J) ∩ S = ϕ. Now, I/(I ∩ J) is an S1-n-ideal of R/(I ∩ J) by (1) of Corollary
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4 where S̄1 = {s + (I ∩ J) : s ∈ S}. If S̄2 = {s + J : s ∈ S}, then clearly
S̄1 ⊆ S̄2 and so I/(I ∩ J) is also an S2-n-ideal of R/(I ∩ J). By the isomorphism
(I + J)/J ∼= I/(I ∩ J), we conclude that (I + J)/J is an S2-n-ideal of R/J . Now,
the result follows again by (1) of Corollary 4. □

Proposition 14. Let R and R′ be two rings, I ⊴ R and I ′ ⊴ R′. If S and S′ are
multiplicatively closed subsets of R and R′, respectively, then

(1) I ×R′ is an (S × S′)-n-ideal of R×R′ if and only if I is an S-n-ideal of R
and S′ ∩

√
0R′ ̸= ϕ.

(2) R × I ′ is an (S × S′)-n-ideal of R × R′ if and only if I ′ is an S′-n-ideal of
R′ and S ∩

√
0R ̸= ϕ.

Proof. It is clear that (I ×R′)∩ (S×S′) = ∅ if and only if I ∩S = ∅ and (R× I ′)∩
(S × S′) = ∅ if and only if I ′ ∩ S′ = ∅.

(1) Let a, b ∈ R with ab ∈ I. Choose an (S×S′)-element (s, s′) of I×R′. If sb /∈ I,
then (a, 1)(b, 1) ∈ I×R′ with (s, s′)(b, 1) /∈ I×R′. Since I×R′ is an (S×S′)-n-ideal,
then (s, s′)(a, 1) ∈

√
0R×R′ =

√
0R ×

√
0R′ . Thus, sa ∈

√
0R and s′ ∈ S′ ∩

√
0R′

I. If sb ∈ I, then (b, 1)(s, s′) ∈ I × R′and so (s, s′)(b, 1) ∈
√
0R×R′ =

√
0R ×

√
0R′

as (s, s′)2 /∈ I × R′. In both cases, we conclude that I is an S-n-ideal of R and
S′∩

√
0R′ ̸= ϕ. Conversely, suppose I is an S-n-ideal of R, s is some S-element of I

and s′ ∈ S′∩
√
0R′ . Let (a, a′)(b, b′) ∈ I×R′ for (a, a′), (b, b′) ∈ R×R′. Then ab ∈ I

which implies sa ∈
√
0R or sb ∈ I. Hence, we have either (s, s′)(a, a′) ∈

√
0R×

√
0R′

or (s, s′)(b, b′) ∈ I ×R′. Therefore, (s, s′) is an S × S′-element of I ×R′ as needed.
(2) Similar to (1). □

The assumptions S′ ∩
√
0R′ ̸= ϕ and S ∩

√
0R ̸= ϕ in Proposition 14 are crucial.

Indeed, let R = R′ = Z12, S = S′ = {1, 3, 9} and I =< 4 > . It is shown in Example
1 that I is an S-n-ideal of R while I × R′ is not an (S × S′)-n-ideal of R × R′ as
(2, 1)(2, 1) ∈ I × R′ but for all (s, s′) ∈ S × S, neither (s, s′)(2, 1) ∈ I × R′ nor
(s, s′)(2, 1) ∈

√
0R×R′ .

Remark 1. Let S and S′ be multiplicatively closed subsets of the rings R and
R′, respectively. If I and I ′ are proper ideals of R and R′ disjoint with S, S′,
respectively, then I × I ′ is not an (S × S′)-n-ideal of R×R′.

Proof. First, note that S ∩
√
0R = S′ ∩

√
0R′ = ∅. Assume on the contrary that

I×I ′ is an (S×S′)-n-ideal of R×R′ and (s, s′) is an (S×S′)-element of I×I ′. Since
(1, 0)(0, 1) ∈ I × I ′, we conclude either (s, s′)(1, 0) ∈

√
0R ×

√
0R′ or (s, s′)(0, 1) ∈

I × I ′ which implies s ∈
√
0R or s′ ∈ I ′, a contradiction. □

Proposition 15. Let R and R′ be two rings, S and S′ be multiplicatively closed
subsets of R and R′, respectively. If I and I ′ are proper ideals of R, R′, respectively
then I× I ′ is an (S×S′)-n-ideal of R×R′ if one of the following statements holds.

(1) I is an S-n-ideal of R and S′ ∩
√
0R′ ̸= ϕ.

(2) I ′ is an S′-n-ideal of R′ and S ∩
√
0R ̸= ϕ.
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Proof. Clearly (I×I ′)∩ (S×S′) = ∅ if and only if I ∩S = ∅ or I ′∩S′ = ∅. Suppose
I is an S-n-ideal of R and S′ ∩

√
0R′ ̸= ϕ. Then I ∩ S = ∅ and 0R′ ∈ I ′ ∩ S′ ̸= ∅.

Choose an S-element s of I and let (a, a′)(b, b′) ∈ I × I ′ for (a, a′), (b, b′) ∈ R×R′.
Then ab ∈ I which implies sa ∈

√
0R or sb ∈ I. Hence, we have either (s, 0)(a, a′) ∈√

0R ×
√
0R′ or (s, 0)(b, b′) ∈ I × I ′. Therefore, (s, 0) is an S×S′-element of I × I ′.

Similarly, if I ′ is an S′-n-ideal of R′ and S ∩
√
0R ̸= ϕ, then also I × I ′ is an

(S × S′)-n-ideal of R×R′. □

3. S-n-ideals of Idealizations and Amalgamations

Recall that the idealization of an R-module M denoted by R(+)M is the com-
mutative ring R ×M with coordinate-wise addition and multiplication defined as
(r1,m1)(r2,m2) = (r1r2, r1m2 + r2m1). For an ideal I of R and a submodule N
of M , I(+)N is an ideal of R(+)M if and only if IM ⊆ N . It is well known

that if I(+)N is an ideal of R(+)M , then
√

I(+)N =
√
I(+)M and in partic-

ular,
√
0R(+)M =

√
0(+)M . If S is a multiplicatively closed subset of R, then

clearly the sets S(+)M = {(s,m) : s ∈ S, m ∈ M} and S(+)0 = {(s, 0) : s ∈ S}
are multiplicatively closed subsets of the ring R(+)M .

Next, we determine the relation between S-n-ideals of R and S(+)M -n-ideals of
the R(+)M .

Proposition 16. Let N be a submodule of an R-module M , S be a multiplicatively
closed subset of R and I be an ideal of R where IM ⊆ N . If I(+)N is an S(+)M -
n-ideal of R(+)M , then I is an S-n-ideal of R.

Proof. Clearly, S ∩ I = ϕ. Choose an S(+)M -element (s,m) of I(+)N and let

a, b ∈ R such that ab ∈ I. Then (a, 0)(b, 0) ∈ I(+)N and so (s,m)(a, 0) ∈
√
0(+)M

or (s,m)(b, 0) ∈ I(+)N . Hence, sa ∈
√
0 or sb ∈ I and I is an S-n-ideal of R □

Proposition 17. Let S be a multiplicatively closed subset of a ring R, I be an ideal
of R disjoint with S and M be an R-module. The following are equivalent.

(1) I is an S-n-ideal of R.
(2) I(+)M is an S(+)0-n-ideal of R(+)M .
(3) I(+)M is an S(+)M -n-ideal of R(+)M .

Proof. (1)⇒(2). Suppose I is an S-n-ideal of R, s is an S-element of I and note
that S(+)0∩ I(+)M = ϕ. Choose (s, 0) ∈ S(+)0 and let (a,m1), (b,m2) ∈ R(+)M

such that (a,m1)(b,m2) ∈ I(+)M . Then ab ∈ I and so either sa ∈
√
0 or sb ∈ I. It

follows that (s, 0)(a,m1) ∈
√
0(+)M =

√
0R(+)M or (s, 0)(b,m2) ∈ I(+)M . Thus,

I(+)M is an S(+)0-n-ideal of R(+)M .
(2)⇒(3). Clear since S(+)0 ⊆ S(+)M .
(3)⇒(1). Proposition 16. □

Remark 2. The converse of Proposition 16 is not true in general. For example,
if S = {1,−1}, then 0 is an S-n-ideal of Z but 0(+)0̄ is not an (S(+)Z6)-n-ideal
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of Z(+)Z6. For example, (2, 0̄)(0, 3̄) ∈ 0(+)0̄ but clearly (s,m)(2, 0̄) /∈
√
0(+)Z6 =√

0Z(+)Z6
and (s,m)(0, 3̄) /∈ 0(+)0̄ for all (s,m) ∈ S(+)Z6.

Let R and R′ be two rings, J be an ideal of R′ and f : R → R′ be a ring
homomorphism. The set R ⋊⋉f J = {(r, f(r) + j) : r ∈ R, j ∈ J} is a subring of
R×R′ called the amalgamation of R and R′ along J with respect to f . In particular,
if IdR : R → R is the identity homomorphism on R, then R ⋊⋉ J = R ⋊⋉IdR J =
{(r, r + j) : r ∈ R, j ∈ J} is the amalgamated duplication of a ring along an ideal
J . Many properties of this ring have been investigated and analyzed over the last
two decades, see for example [9], [10].

Let I be an ideal of R and K be an ideal of f(R) + J . Then I ⋊⋉f J =
{(i, f(i) + j) : i ∈ I, j ∈ J} and K̄f = {(a, f(a) + j) : a ∈ R, j ∈ J , f(a) + j ∈ K}
are ideals of R ⋊⋉f J , [10]. For a multiplicatively closed subset S of R, one can easily
verify that S ⋊⋉f J = {(s, f(s) + j) : s ∈ S, j ∈ J} and W = {(s, f(s)) : s ∈ S} are
multiplicatively closed subsets of R ⋊⋉f J . If J ⊆

√
0R′ , then one can easily see

that
√

0R⋊⋉fJ =
√
0R ⋊⋉f J .

Next, we determine when the ideal I ⋊⋉f J is (S ⋊⋉f J)-n-ideal in R ⋊⋉f J .

Theorem 5. Consider the amalgamation of rings R and R′ along the ideals J of
R′ with respect to a homomorphism f . Let S be a multiplicatively closed subset of
R and I be an ideal of R disjoint with S. Consider the following statements:

(1) I ⋊⋉f J is a W -n-ideal of R ⋊⋉f J .
(2) I ⋊⋉f J is a (S ⋊⋉f J)-n-ideal of R ⋊⋉f J .
(3) I is a S-n-ideal of R.
Then (1) ⇒ (2) ⇒ (3). Moreover, if J ⊆

√
0R′ , then the statements are equiva-

lent.

Proof. (1)⇒(2). Clear, as W ⊆ S ⋊⋉f J .
(2)⇒(3). First note that (S ⋊⋉f J)∩(I ⋊⋉f J) = ∅ if and only if S∩I = ∅. Suppose

I ⋊⋉f J is an (S ⋊⋉f J)-n-ideal of R ⋊⋉f J . Choose an (S ⋊⋉f J)-element (s, f(s))
of I ⋊⋉f J . Let a, b ∈ R such that ab ∈ I and sa /∈

√
0R. Then (a, f(a))(b, f(b)) ∈

I ⋊⋉f J and clearly (s, f(s))(a, f(a)) /∈
√

0R⋊⋉fJ . Hence, (s, f(s))(b, f(b)) ∈ I ⋊⋉f J
and so sb ∈ I. Thus, s is an S-element of I and I is an S-n-ideal of R.

Now, suppose J ⊆
√
0R′ . We prove (3)⇒(1). Suppose s is an S-element of

I and let (a, f(a) + j1)(b, f(b) + j2) = (ab, (f(a) + j1)(f(b) + j2)) ∈ I ⋊⋉f J for
(a, f(a) + j1), (b, f(b) + j1) ∈ R ⋊⋉f J . If (s, f(s))(a, f(a) + j1) /∈

√
0R⋊⋉fJ =√

0R ⋊⋉f J , then sa /∈
√
0R. Since ab ∈ I, we conclude that sb ∈ I and so

(s, f(s))(b, f(b) + j2) ∈ I ⋊⋉f J . Thus, (s, f(s)) is a W -element of I ⋊⋉f J and
I ⋊⋉f J is a W -n-ideal of R ⋊⋉f J . □

Corollary 5. Consider the amalgamation of rings R and R′ along the ideal J ⊆√
0R′ of R′ with respect to a homomorphism f . Let S be a multiplicatively closed

subset of R. The (S ⋊⋉f J)-n-ideals of R ⋊⋉f J containing {0} × J are of the form
I ⋊⋉f J where I is a S–n-ideal of R.
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Proof. From Theorem 5, I ⋊⋉f J is a (S ⋊⋉f J)-n-ideal of R ⋊⋉f J for any S-n-ideal
I of R. Let K be a (S ⋊⋉f J)-n-ideal of R ⋊⋉f J containing {0} × J. Consider the
surjective homomorphism φ : R ⋊⋉f J → R defined by φ(a, f(a) + j) = a for all
(a, f(a) + j) ∈ R ⋊⋉f J . Since Ker(φ) = {0} × J ⊆ K, I := φ(K) is a S-n-ideal of
R by Proposition 12. Since {0} × J ⊆ K, we conclude that K = I ⋊⋉f J . □

Let T be a multiplicatively closed subset of R′. Then clearly, the set T̄ f =
{(s, f(s) + j) : s ∈ R, j ∈ J, f(s) + j ∈ T} is a multiplicatively closed subset of
R ⋊⋉f J .

Theorem 6. Consider the amalgamation of rings R and R′ along the ideals J of R′

with respect to an epimorphism f . Let K be an ideal of R′ and T be a multiplicatively
closed subset of R′ disjoint with K. If K̄f is a T̄ f -n-ideal of R ⋊⋉f J , then K is a
T -n-ideal of R′. The converse is true if J ⊆

√
0R′ and Ker(f) ⊆

√
0R.

Proof. First, note that T ∩ K = ϕ if and only if T̄ f ∩ K̄f = ϕ. Suppose K̄f is a
T̄ f -n-ideal of R ⋊⋉f J and (s, f(s) + j) is some T̄ f -element of K̄f . Let a′,b′ ∈ R′

such that a′b′ ∈ K and choose a, b ∈ R where f(a) = a′ and b = f(b′). Then
(a, f(a)), (b, f(b)) ∈ R ⋊⋉f J with (a, f(a))(b, f(b)) = (ab, f(ab)) ∈ K̄f . By as-
sumption, we have either (s, f(s) + j)(a, f(a)) = (sa, (f(s) + j)f(a)) ∈

√
0R⋊⋉fJ or

(s, f(s) + j)(b, f(b)) = (sb, (f(s) + j)f(b)) ∈ K̄f . Thus, f(s) + j ∈ T and clearly,
(f(s)+ j)f(a) ∈

√
0R′ or (f(s)+ j)f(b) ∈ K. It follows that K is a T -n-ideal of R′.

Now, suppose K is a T -n-ideal of R′, t = f(s) is a T -element of K, J ⊆
√
0R′ and

Ker(f) ⊆
√
0R. Let (a, f(a) + j1)(b, f(b) + j2) = (ab, (f(a) + j1)(f(b) + j2)) ∈ K̄f

for (a, f(a) + j1), (b, f(b) + j2) ∈ R ⋊⋉f J . Then (f(a) + j1)(f(b) + j2) ∈ K and so
f(s)(f(a) + j1) ∈

√
0R′ or f(s)(f(b) + j2) ∈ K. Suppose f(s)(f(a) + j1) ∈

√
0R′ .

Since J ⊆
√
0R′ , then f(sa) ∈

√
0R′ and so (sa)m ∈ Ker(f) ⊆

√
0R for some integer

m. Hence, sa ∈
√
0R and (s, f(s))(a, f(a) + j1) ∈

√
0R⋊⋉fJ . If f(s)(f(b) + j2) ∈ K,

then clearly, (s, f(s))(b, f(b) + j2) ∈ K̄f . Therefore, K̄f is a T̄ f -n-ideal of R ⋊⋉f J
as needed. □

In particular, S × f(S) is a multiplicatively closed subset of R ⋊⋉f J for any
multiplicatively closed subset S of R. Hence, we have the following corollary of
Theorem 6.

Corollary 6. Let R, R′, J , S and f be as in Theorem 5. Let K be an ideal of R′

and T = f(S). Consider the following statements.
(1) K̄f is a (S × T )-n-ideal of R ⋊⋉f J .
(2) K̄f is a T̄ f -n-ideal of R ⋊⋉f J .
(3) K is a T -n-ideal of R.
Then (1) ⇒ (2) ⇒ (3). Moreover, if J ⊆

√
0R′ and Ker(f) ⊆

√
0R, then the

statements are equivalent.

We note that if J ⊈
√
0R′ , then the equivalences in Theorems 5 and 6 are not

true in general.
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Example 5. Let R = Z, I = ⟨0⟩ = K, J = ⟨3⟩ ⊈
√
0Z and S = {1} = T . We have

I ⋊⋉ J = {(0, 3n) : n ∈ Z}, K̄ = {(3n, 0) : n ∈ Z}, S ⋊⋉ J = {(1, 3n+ 1) : n ∈ Z},
T̄ = {(1− 3n, 1) : n ∈ Z} and

√
0R⋊⋉J = {(0, 0)}.

(1) I is a S-n-ideal of R but I ⋊⋉ J is not a (S ⋊⋉ J)-n-ideal of R ⋊⋉ J . Indeed,
we have (0, 3), (1, 4) ∈ R ⋊⋉ J with (0, 3)(1, 4) = (0, 12) ∈ I ⋊⋉ J . But
(1, 3n+ 1)(0, 3) /∈

√
0R⋊⋉J and (1, 3n+ 1)(1, 4) /∈ I ⋊⋉ J for all n ∈ Z.

(2) K is a T -n-ideal of R but K̄ is not a T̄ -n-ideal of R ⋊⋉ J . For example,
(−3, 0), (−4,−1) ∈ R ⋊⋉ J with (−3, 0)(−4,−1) = (12, 0) ∈ K̄. However,
(1− 3n, 1)(−3, 0) /∈

√
0R⋊⋉J and (1− 3n, 1)(−4,−1) /∈ K̄ for all n ∈ Z.

By taking S = {1} in Theorem 5 and Corollary 6, we get the following particular
case.

Corollary 7. Let R, R′, J , I, K and f be as in Theorems 5 and 6.

(1) If I ⋊⋉f J is an n-ideal of R ⋊⋉f J , then I is an n-ideal of R. Moreover, the
converse is true if J ⊆

√
0R′ .

(2) If K̄f is an n-ideal of R ⋊⋉f J , then K is an n-ideal of R′. Moreover, the
converse is true if J ⊆

√
0R′ and Ker(f) ⊆

√
0R.

Corollary 8. Let R, R′,I, J , K, S and T be as in Theorems 5 and 6.

(1) If I ⋊⋉ J is a (S ⋊⋉ J)-n-ideal of R ⋊⋉ J , then I is a S–n-ideal of R. Moreover,
the converse is true if J ⊆

√
0R′ .

(2) If K̄ is a T̄ -n-ideal of R ⋊⋉ J , then K is a T -n-ideal of R′. The converse is
true if J ⊆

√
0R′ and Ker(f) ⊆

√
0R.

As a generalization of S-n-ideals to modules, in the following we define the notion
of S -n-submodules which may inspire the reader for the other work.

Definition 2. Let S be a multiplicatively closed subset of a ring R, and let M be
a unital R-module. A submodule N of M with (N :R M) ∩ S = ∅ is called an S

-n-submodule if there is an s ∈ S such that am ∈ N implies sa ∈
√
(0 :R M) or

sm ∈ N for all a ∈ R and m ∈ M.
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