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Abstract 

 

Interrogation of the vibration data collected from the sensors embedded throughout the structure without relying on a finite 

element model of the system for monitoring the health of structural systems has received significant attention in the recent years 

especially with the current advancements in sensor technology. The data-driven methods explored within this context falls into 

the realm of statistical pattern recognition field requiring extraction of damage detection features and a statistical decision-

making process for identification of damage. Machine learning algorithms provide statistical means for making such decisions.  

In this study, an unsupervised machine learning approach, one-class support vector machine (OC-SVM), requiring training data 

only from the undamaged state of the structure is explored for damage detection purposes. The coefficients of the autoregressive 

(AR) model are extracted as damage sensitive features and used as the required training data. The trained classifier is then used 

with the data obtained from the same structure at different damage states for classification. Damage detection in the form of 

recognizing outliers or anomalies not belonging to the target class, is followed by damage localization within the given sensor 

resolution using statistical means. To this end, Itakura distance measuring the distance between two sets of linear predictor 

coefficients of the AR processes, is utilized as damage location indicator. Numerical simulations are performed on a truss and a 

beam structure with several damage scenarios including realistic levels of measurement noise and modeling error. Results show 

that the proposed approach can successfully detect existence of damage and the statistical measure shows promising performance 

for further localization of the damaged region. 

 

Keywords: Structural Health Monitoring, Unsupervised Learning, Support Vector Machines, Time Series Modelling, Statistical 

Pattern Recognition 

 

 

 

1.  INTRODUCTION 

 

Monitoring the health of civil engineering systems due to 

deterioration under normal operating conditions or after an 

extreme event is vital to take the necessary preventive 

measures to protect these systems against collapse, reducing 

maintenance cost and prolonging their service lives. 

Structural Health Monitoring (SHM) aims to assure the 

structural safety of civil infrastructure by evaluating the 

integrity of these systems and providing warning signs as 

soon as the condition of the structure deteriorates. Several 

approaches that estimate the state of the structure with 

different levels of refinement have been proposed in the 

literature. According to Rytter [1], damage characterization 

includes four stages: (1) damage detection, (2) damage 

localization, (3) damage quantification, and (4) prediction of 

the remaining service life. 
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Vibration-based damage identification is a subdiscipline of 

the SHM field that accomplishes these tasks through 

measured vibration responses of the structure. The vibration-

based damage detection can be classified in two general 

classes of model-based and data-driven approaches [2]. 

Data-driven approaches utilizing solely the recorded 

vibration data stand out as the more convenient and 

accessible alternative in regards to their ease of 

implementation over the model-based approaches requiring 

refined finite element model of the structure. Especially for 

complex structural systems with a large number of degrees 

of freedom, obtaining a refined finite element model of the 

structure is a difficult, computationally expensive task and 

from the material heterogeneity and mechanical behavior 

aspects, may not even be feasible or practical. Data-driven 

approaches also establish a model, but this is usually a 

statistical representation of the system. Released from the 

physical model requirement, data-driven damage detection 

depend on statistical analysis to determine the significance 
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of the changes in the data and have the potential to be 

constructed in a fully automated manner with minimum user 

interaction. 

 

Time series modeling and outlier analysis can be listed 

among the statistical approaches available for structural 

diagnosis based on collected vibration data. With these 

approaches, diagnosis stage usually starts by a data 

processing step where data collected from a sensor network 

deployed throughout the structure are transformed into 

features that are sensitive to damage. This transformation 

retains only the information necessary for diagnosis while 

discarding any other information. To this end, Worden et al. 

[6] performed an outlier analysis on a spring–mass–dashpot 

system for damage detection. Sohn et al. [3] and Sohn and 

Farrar [4] applied time-series modeling and utilized the 

residual error of the prediction model as a damage sensitive 

feature. Wandji [5] exploited autoregressive (AR) modeling 

to propose a goodness-of-fit test to distinguish damaged data. 

Mattson and Pandit[6] used the standard deviation of the 

residual of the AR model of vibration data as damage 

detecting feature. In another study by Nair et al.[7], the 

coefficients of the AR model of the ambient vibration 

response data was explored as damage sensitive features and 

damage states were identified through hypothesis testing. 

Kar and Mohanty [8] utilized time domain signals and 

diagnosed ball bearing faults by employing Kolmogorov–

Smirnov (K-S) test. Distance between autoregressive 

moving average (ARMA) models were investigated by 

Zheng and Mita [9] for damage detection. Nair and 

Kiremidjian [10] detected damage by investigating the 

migration of extracted AR coefficients in which the feature 

vector is modeled by a Gaussian mixture model. In a later 

study, Gul and Catbas [11] predicted the data of the damaged 

structure, utilizing the autoregressive models with 

exogenous input (ARX) developed for the healthy structure, 

and proposed the difference between the predictions and the 

measured values as the damage feature. Roy et al. [12] 

explored combination of ARX model coefficients, K-S test 

statistical distance and the model residual error as damage 

sensitive features for the potential of detection and localizing 

damage. Entezami et al. [13] developed  damage indices for 

damage localization that are based on damage sensitive 

features extracted from time series modeling of the measured 

vibration data. 

 

Following the feature extraction from each data set, 

comparison of these features with the baseline values 

facilitates to arrive at a damage decision. In this context, the 

process can essentially be viewed as a statistical pattern 

recognition problem that is part of machine learning 

concerned with classification [14]. More specifically, this 

means, once these features are extracted at the initial nominal 

state of the structure, a machine learning approach can be 

employed to train a relationship between these features and 

the baseline state. 

 

Despite many implementations of the time series models and 

machine learning techniques in the context of SHM majority 

of the algorithms available in the literature are custom-made 

for certain data sets. The lack of unsupervised techniques 

capable of detecting structural damage without relying on 

any prior knowledge about the structure’s condition; the lack 

of strategies capable of detecting structural damage 

automatically in a robust manner and the lack of algorithms 

suitable for performing real-time detection can be listed 

among the obstacles several issues remain as aspects 

hindering the practical application of these damage detection 

algorithms to civil engineering structures. This study aims to 

address these issues and provide a technique that can be 

implemented in an unsupervised, automated and 

decentralized manner that will be suitable for real-time 

SHM. 

 

For cases where training data are available only from a single 

condition, the baseline or the undamaged state, the 

unsupervised machine learning approaches can be adopted to 

train the decision-making algorithm. This fits very well for 

civil engineering applications since each structural system is 

unique with its own structural and dynamic properties 

requiring its own individual training data. It is not practical 

or even possible to expect that labeled training data are 

acquired and made available for various damage scenarios . 

One-class support vector machine (OC-SVM) classifier, also 

known as novelty detection approach, is an unsupervised 

learning algorithm classifying just one-class objects. It has 

been used successfully in many applications such as image 

retrieval, audio surveillance, biometric traits and more 

recently in SHM applications. The recent applications of 

machine learning methods utilized for vibration-based 

damage detection in civil structures are reviewed in [15, 16]. 

 

In the proposed approach, the extracted features from the AR 

model are utilized to train the OC-SVM. With the learned 

relationship, the trained classifier exploits the data obtained 

from the same structure at different states and arrives at a 

damage decision, by classifying the data as either belonging 

to the learned state (undamaged) or not (damaged). This 

completes the first stage of the damage characterization 

problem. For the next stage of damage localization, in the 

extracted feature space of AR coefficients, a statistical 

distance metric is employed. This metric, defined as Itakura 

distance, initially developed to measure the similarities 

between AR models of the voice segments [17]. This metric 

is calculated for each sensor location and the larger value is 

interpreted as an indication to the proximity of damage. 

 

The proposed methodology is investigated numerically on 

two different structural systems: a truss and a beam type 

structure. Several damage scenarios are simulated including 

reduction in member rigidities and fracture of the members 

for the truss system and loss of connection rigidities for the 

beam model. The acceleration responses under ambient 

excitation data are simulated at the designated sensor 

locations. Modeling error and measurement noise are 

incorporated into the numerical work for simulating field 

data. 

 

2.  MATERIALS AND METHODS 

 

2.1.  Time Series Modeling for Feature Extraction  

 

Among the time series models available for fitting a 

mathematical model to time series data, AR model stands out 

as the most widely used time series model for extracting 

damage sensitive system. The AR models assume the 
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measurements have noise, and modeling error is sampled 

from Gaussian distribution. 

 

For a linear, stationary, and univariate time series, the AR 

model is formulated as follows: 

 

𝑦(t)= ∑ ai
p

i=1 y(t-i)+e(t)                     (1) 

 

where y(t) is the measured vibration response at a single 

sensor at time t, ai=[a1, a2,…, ap] represents the AR model 

coefficients, p is the order of the model, and e(t) is the 

residual error at time that corresponds to the difference 

between the measured and the predicted time series data 

obtained by the AR model [18, 19]. 

 

By fitting an AR model to time-domain response data 

acquired from each sensor at the nominal state of the 

structure, one can extract the AR parameters for the 

corresponding sensor location representing the healthy state. 

Measured data from the same set of sensors at an unknown 

state of the structure are also processed to extract the AR 

parameters fitting to that undetermined state. These 

parameters are compared as damage sensitive features to be 

compared for classification using a support machine 

algorithm described in the following section. 

 

2.2.  One-Class Support Vector Machine  

 

The OC-SVM is a specialized version of the standard support 

vector machines with the objective of finding an optimal 

hyperplane in which most of the training samples are 

included in a minimum volume and separating and 

distinguishing one-class objects from all others. Objects 

falling outside the constructed hyperplane are considered as 

outliers. 

 

Scholkopf et al. [20, 21] proposed the OC-SVM algorithm to 

train the classifier using only the features belonging to the 

target class. The decision function for the hypersphere that 

encloses the maximum number of training samples takes the 

following form 

 

𝑓(𝑥) = 𝑠𝑔𝑛{∑ 𝛼𝑖𝐾(x, 𝑥𝑖) − 𝜌𝑚
𝑖=1 𝑖

}      (2) 

 

where m is the number of training samples and i are the 

Lagrange multipliers obtained from optimization of the 

following set of equations: 

 

𝑚𝑖𝑛𝛼 {
1

2
𝛼𝑖𝛼𝑗𝐾(𝑥𝑖 , 𝑥𝑗}  (3) 

 

subject to 

 

0 ≤ 𝛼𝑖 ≤
1

𝜈𝑚
   (4) 

∑ 𝛼𝑖 = 1𝑚
𝑖    (5) 

 

 in equation (2) is the distance of the hypersphere from the 

origin.  is the percentage of the samples considered as 

outliers and K( ) defines the OC-SVM kernel that allows 

projection of samples from the original to the feature space. 

Among the various kernels, radial basis function is the most 

used kernel allowing to determine the radius of the 

hypersphere through the kernel parameter  as follows: 

 

𝐾(𝑥, 𝑥𝑖) = exp (−𝛾𝑑(𝑥, 𝑥𝑖))  (6) 

 

such that 

 

𝑑(𝑥, 𝑥𝑖) = ‖𝑥 − 𝑥𝑖‖2   (7) 

 

2.3.  Statistical Control Metrics: Itakura Distance 

Measure for Damage Localization  

 

Following the decision on existence of structural damage, a 

metric implemented for damage localization is needed for 

completion of the damage identification process. The 

available literature proposes parametric-based damage 

indices that uses the parameters of the prediction models for 

identifying damage location and [13, 22, 23] or some other 

measures correlating locations of a sensor network with the 

damage features [9, 24-26]. In this study, a statistical 

measure defined as Itakura distance [17] is explored as a 

possible means for fusing the information from all sensors 

deployed throughout the structure and localizing damage. 

The theoretical basis for this statistical measure are 

summarized below. 

 

Suppose that x(t) and y(t) are two time series corresponding 

to the baseline state (target class) and damaged state 

(outlier), respectively. Assume that the coefficients of the 

corresponding two AR processes of order p are given by  

 

𝑎𝑥 = [1 𝑎𝑥1 𝑎𝑥2     … 𝑎𝑥𝑝]   (5a) 

𝑎𝑦 = [1 𝑎𝑦1 𝑎𝑦2     … 𝑎𝑦𝑝]   (5b) 

 

The means square error (MSE) for the baseline process 

corresponding to x(t) is 

 

𝑀𝑆𝐸𝑥𝑥 = 𝑎𝑥
𝑇  𝑅𝑥𝑎𝑥  (6) 

 

where Rx is the autocorrelation matrix of signal x(t) of size 

p+1.  

 

Supposing that x(t) pass through the AR model parametrized 

by ay, the MSE of the signal is 

 

𝑀𝑆𝐸𝑥𝑦 = 𝑎𝑦
𝑇 𝑅𝑥𝑎𝑦   (7) 

 

The Itakura distance indicating how far the outlier state 

parametrized by ay, is from the baseline state parametrized 

by ax, is defined as 

 

𝐷𝐼𝑥,𝑦 = 𝑙𝑜𝑔
   𝑎𝑦

𝑇𝑅𝑥𝑎𝑦

   𝑎𝑥
𝑇𝑅𝑥𝑎𝑥

  (8) 

 

Similarly, how well the signal y(t) is modeled by the AR- 

parameters of x(t), is given by 

 

𝐷𝐼𝑦,𝑥 = 𝑙𝑜𝑔
   𝑎𝑥

𝑇𝑅𝑦𝑎𝑥

   𝑎𝑦
𝑇𝑅𝑦𝑎𝑦

  (9) 

 

Combining the two distances to obtain a symmetric distance 

measure, one gets the Itakura distance (DI) as 
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𝐷𝐼 =
1

2
(𝐷𝐼𝑥,𝑦 + 𝐷𝐼𝑦,𝑥)  (10) 

 

2.4.  Methodology 

 

The proposed damage detection and localization 

methodology is depicted in Figure 1. 

 

 
Figure 1. Damage identification methodology 

 

The methodology starts by the training stage of the OC-SVM 

for the baseline (undamaged) state of the structure. The 

measured acceleration signals in response to ambient 

excitations from the structure at this state are processed 

including detrending and normalization procedures leading 

to the extraction of AR parameters. After sufficient data 

required for training is collected, the OC-SVM classifier is 

attained for each sensor location as the predictive model. The 

completion of the training stage is followed by the prediction 

stage for the data collected from the structure later at an 

unknown state. With the new datasets of unknown state, AR 

parameters are identified and these newly identified features 

are tested with the previously established predictive model. 

This comparison with the OC-SVM classifier outputs a 

binary decision regarding the classification of data as 

belonging to the baseline (undamaged) state or not. Once 

damage is detected damage localization stage is invoked by 

calculating the localization index, namely Itakura distance, 

for all sensor locations. The sensor with the highest value of 

the localization index is marked as the sensor closest to the 

possible damaged location. 

3.  NUMERICAL EVALUATION 

 

This section presents the numerical simulations conducted 

on two different structures to investigate the performance of 

the proposed damage detection algorithm and the 

localization metric. The two structures, 14-degree-of-

freedom (DOF) truss and 24 DOF fixed-ended beam 

considered in this study are depicted in Figures 1(a) and 2(a), 

respectively. For both systems, masses are assumed to be 

lumped at the degrees of freedom and damping is assigned 

to be proportional, 2% for all modes. At the undamaged state, 

the members have identical rigidities. 

 

The locations of the acceleration sensors together with the 

damage scenarios simulated for these structures are also 

depicted in these figures. Note that for each system, input 

motion is taken as ambient excitations acting in the vertical 

direction that are assumed to be unmeasured and output 

measurements as the acceleration responses simulated in the 

same direction as the input. This leads to the deployment of 

7 acceleration sensors for the truss and 8 sensors for the 

fixed-ended beam, for output measurements as shown in 

Figures 1(b) and 2(b). The simulated damage scenarios in the 

form of loss of member and connection rigidity are 

summarized in Table 1 for both structural systems. The 

analytically computed natural frequencies of these systems 

for the simulation cases are determined through eigenvalue 

analysis and the first four modes are listed in Table 2. 

 

 
Figure 1. (a) 14 DOF truss model, (b) Damage scenarios and 

sensor locations for input and output 

 

 
Figure 2. (a) Fixed-ended beam model, (b) Damage 

scenarios and sensor locations for input and output 
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Table 1. Summary of the damage scenarios 

Configuration TRUSS FIXED-FIXED BEAM 

DC 1 Bar 10 - 30% loss of axial rigidity  Section 34- 30% loss of flexural rigidity 

DC 2 Bar 17 - 90% loss of axial rigidity Section 34- 90% loss of flexural rigidity 

DC 3 Bar 19 - 90% loss of axial rigidity Plastic hinge at joint 7 

DC 4 Bar 6  - 50% loss of axial rigidity Plastic hinge at joint 10 

 

Table 2. Natural frequencies of the systems considered in the study 

Configuration TRUSS FIXED-FIXED BEAM  
f1 (Hz) f2 (Hz) f3 (Hz) f4 (Hz) f1 (Hz) f2 (Hz) f3 (Hz) f4 (Hz) 

Healthy 4.152 11.238 18.300 24.891 2.000 5.495 10.715 17.531 

DC 1 4.123 11.185 18.162 24.777 1.990 5.316 10.496 17.336 

DC 2 3.242 6.771 17.029 24.878 1.519 5.153 8.676 13.868 

DC 3 3.969 10.663 17.326 24.870 0.604 3.834 4.193 10.821 

DC 4 4.152 11.176 17.970 24.398 1.378 4.455 9.257 15.706 

 

In both cases, the input ambient excitations are modeled as 

Gaussian white noise processes and the output acceleration 

measurements are simulated with a sampling time of 0.04 

sec. for a duration 300 sec. which is deemed sufficient to 

capture the frequency range of interest (2-25 Hz). A total of 

100 simulations are performed at the nominal (healthy) state 

of the structures, 50% of which are used as the baseline 

training data for the one-class classifier. To gain a statistical 

sense of performance, 100 simulations for each damage 

scenario are examined. In the simulated acceleration 

measurements, sensor noise is contemplated using a random 

number generator with a level ranging between 2-10 % of the 

RMS of the response measured on DOF 1 such that 

 

𝑆𝑁𝑅 = 𝜎𝑛𝑜𝑖𝑠𝑒
2 𝜎𝑠𝑖𝑔𝑛𝑎𝑙

2⁄ …...  (13) 

 

where 𝜎𝑠𝑖𝑔𝑛𝑎𝑙
2 , 𝜎𝑛𝑜𝑖𝑠𝑒

2  are the variance of the simulated 

acceleration and the noise signals and SNR is the desired 

signal to noise ratio. 

 

In order to mimic the variability in the recorded 

measurements due to operating conditions of existing 

structural systems, modeling error is also introduced to the 

simulations by assigning the modulus of elasticity of the 

members as the true values multiplied by a random scalar 

that is uniformly distributed between [0.9 and 1.1]. 

 

4. RESULTS AND DISCUSSION 

 

Damage detection performance of the trained OC-SVM for 

the truss system and the beam in the 2-dimensional, and the 

5-dimensional feature space are summarized in Tables 3 and 

4, respectively. In the results presented healthy configuration 

is the baseline state for which training data was available and 

DC stands for the ‘damage case’. Examination of the data 

shows that, even with only two features, the damage 

detection performance of the OC-SVM is excellent for the 

truss system with the exception of a single sensor location 

for a specific damage scenario, namely sensor 7 for DC 2. 

Increasing the feature space slightly, from 2 to 5, for this 

specific case results in significant improvement. For the 

remainder of the data, the performance of the 2-dimensional 

versus 5-dimensional feature space data are comparable. For 

the fixed-ended beam simulations, although sensors close to 

the damage locations detect the existence of damage, the 

ones further away failed to label the damage cases as ‘not 

belonging’ to the target state. 

 

Table 3. Percent accuracy in damage detection of the truss 

system using OC-SVM 

2 Features 

Config. S 1 S 2 S 3 S 4 S 5 S 6 S 7 

Healthy 96 98 94 94 98 94 94 

DC 1 97 100 100 100 100 88 100 

DC 2 100 100 100 92 100 100 30 

DC 3 100 100 100 100 100 99 97 

DC 4 97 100 100 100 100 96 100 

 

5 Features 

Config. S 1 S 2 S 3 S 4 S 5 S 6 S 7 

Healthy 98 98 96 92 94 96 94 

DC 1 100 100 100 100 100 100 95 

DC 2 100 100 100 96 100 100 87 

DC 3 100 100 100 100 100 100 92 

DC 4 100 100 100 100 100 100 99 

 

Table 4. Percent accuracy in damage detection of the fixed 

ended beam using OC-SVM 

2 Features 

Config. S1 S2 S3 S4 S5 S6 S7 S8 

Healthy 90 82 82 74 82 82 96 94 

DC 1 94 93 96 79 48 27 90 52 

DC 2 65 46 89 89 72 99 66 43 

DC 3 33 83 30 41 64 94 100 66 

DC 4 20 12 11 87 24 99 99 32 

 

5 Features 

Config. S1 S2 S3 S4 S5 S6 S7 S8 

Healthy 94 94 88 74 80 80 94 92 

DC 1 92 98 98 93 97 99 98 66 

DC 2 91 100 99 99 98 99 99 86 

DC 3 49 99 99 92 63 100 100 67 

DC 4 43 100 91 83 90 100 96 69 
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Figure 3. Training, validation, damage data and OC-SVM decision boundary for the truss system 

 

 
Figure 4. Training, validation, damage data and OC-SVM decision boundary for the fixed ended beam 

 

 
Figure 5. Normalized Itakura distance (a) truss system, (b) fixed-ended beam 

 

Although increasing the feature space leads to some 

improvement for these misclassifications, it is not 

consistently significant enough for all the simulation cases to 

conclude with that generalization. 

 

For visualizing the distribution of the damaged state data in 

relation to the decision boundary, the 2-dimensional feature 

space data including the training data, the support vectors 

and the decision boundary generated by the trained OC-SVM 

for selected sensors are provided for truss and beam systems 

in Figures 3 and 4, respectively. Damage localization using 

Itakura distance measure is carried out for both systems and 

the normalized values of the metric are plotted in Figure 5. 

 

(a) (b)
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Although the plots are not sharp and distinctive enough to 

pinpoint the damaged region, the sensor giving the largest 

value of 1 is considered as the region closest to damage. The 

localization results based on these normalized values are 

tabulated in Table 5. For both systems, three out of the four 

damage scenarios, true damage locations are included in the 

identified set of probable damage locations. This is an 

expected accuracy for a data driven methodology utilizing an 

unsupervised learning approach and not exploiting a finite 

element model or data from different damage states. With its 

limited information, solely data obtained at the nominal state 

of the structure, perfect spatial discrimination cannot always 

be guaranteed. Regardless, it is evident that the approach. 

holds great promise for addressing the most important task 

of damage existence. 

 

Table 5. Damage localization results 

TRUSS 

Config Probable Location True Location 

DC 1 Sensor 1: Bar 1, 10, 15, 2 Bar 10 

DC 2 Sensor 7: Bar 8, 13, 17 Bar 17 

DC 3 Sensor 3: Bar 3, 4, 12, 17, 19 Bar 19 

DC 4 Sensor 1: Bar 1, 10, 15, 2 Bar 6 

 

FIXED-ENDED BEAM 

Config Probable Location True Location 

DC 1 Sensor 2 2, 3 

DC 2 Sensor 3 4, 5 

DC 3 Sensor 6 6 

DC 4 Sensor 7 8 

 

5. CONCLUSIONS 

 

Machine learning algorithms, with their capability of lending 

themselves easily for automation and implementation to 

different structural systems and sensor networks, have great 

potential for applications in the field of structural health 

monitoring. Considering the requirements of the ageing and 

degrading civil infrastructure, reliable detection of damage 

existence has the utmost importance within the damage 

identification problem. Although it is the first stage of the 

damage identification problem, it is the most important one 

since it precedes all other stages of locating and assessing the 

severity of damage and estimating the remaining service life.  

This study addresses this problem and presents a 

methodology for detection of structural damage using an 

unsupervised machine learning approach. The proposed 

approach exploits learning the undamaged state through a 

OC-SVM for deciding on the existence of damage and it 

couples this decision-making algorithm with a statistical 

distance measure for further localizing the damage. 

Simulations are performed on a beam and a truss system, two 

structure classes inherently different from each other, to test 

the robustness of the technique incorporate most of the 

complications that are encountered in actual applications, 

i.e., measurement noise on output-only measurements, 

modeling error, limited sensors and damages with different 

severity. The results demonstrate that the utilized machine is 

able to accurately detect damage by means of a low-

dimensional feature vector obtained using the AR parameters 

of the output data. Damage localization by means of Itakura 

distance metric, include the true damage locations in the 

identified list of potential damage locations except for the 

two minor damage scenarios investigated in this study. 

 

The proposed approach provides an unsupervised approach 

for damage detection that works solely on ambient vibration 

data collected under normal operation conditions. It 

overcomes the need to rely on a physical model and any 

apriori knowledge about the structure’s condition. The 

strategy is capable of detecting structural damage 

automatically in a robust manner and operates with a 

localization index providing spatial information regarding 

damaged region within the provided sensor resolution. 

 

The applicability of the method to damage scenarios 

including multiple components, changing boundary 

conditions and failure mechanisms include complications 

from the localization aspect of the damage identification 

problem that await future research. 
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