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ABSTRACT
In this paper, it is aimed to examine the effectiveness of the intelligent
optimization algorithms to optimize the camera parameters with respect to the
calibration method introduced by Luca Lucchese (LL). The motivation of the
intelligent optimization algorithms is that they are so effective, flexible and
easy adaptable for the real complex problems. The selected optimization
algorithms are Artificial Bee Colony (ABC), Differential Evolution (DE),
Genetic Algorithm (GA) and Particle Swarm (PSO). These algorithms except
ABC have been used effectively for many complex problems. ABC has recently
o developed and its effectiveness has not been tested for a type of the camera
Artificial Bee Colony calibration problem. But it is highly capable of generating good solutions for
(ABC) many benchmark functions such as Rosenbrock and Rastrigin with both low
and very high dimensions. The other artificial intelligent optimization
algorithms are also the first time being used in this camera calibration problem.
In order to show the effectiveness of these intelligent optimization algorithms,
their results have been compared with the conventional derivative-based
Levenberg-Marquardt (LM).
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Kamera kalibrasyonunda zeki optimizasyon yontemlerinin etkinligi

OZET

Bu ¢aligmanin amaci, literatiirde Luca Lucchese’in dnerdigi kamera kalibrasyon
metoduna ait model parametrelerinin optimizasyonunda zeki optimizasyon
yontemlerinin etkinliklerinin incelenmesidir. Bu algoritmalar, ger¢cek karmasik
diinya problemlerinin ¢6ziimiinde oldukc¢a etkili, esnek ve kolay adapte
edilebilir olduklart i¢in tercih edilmislerdir. Secilen algoritmalar, Yapay Ar1

Anahtar Kelimeler Kolonisi (ABC), Diferansiyel Gelisim (DE), Genetik Algoritma (GA) ve
Luca Lucchese Kamera Pargacik Siirli Optimizasyonu (PSO) algoritmalaridir. Bu algoritmalardan ABC
Kalibrasyonu hari¢ digerleri birgok gergek diinya probleminin ¢oziimiinde kullanilmistir.

Yapay Ari Kolonisi (ABC) | ABC algoritmas1 yeni gelistirilmis oldugu igin literatiirde Rosenbrock ve
Rastrigin gibi az ve ¢ok boyutlu bir ¢cok temel fonksiyon iizerinde test edilmis
fakat heniiz etkinligi bu tip bir kamera kalibrasyon probleminde
aragtirlmamustir. Diger zeki optimizasyon yontemleri de bu tip bir kamera
kalibrasyon problemi i¢in ilk defa kullanilmaktadir. Algoritmalarin etkinlikleri,
sonuglar Levenberg-Marguardt yontemiyle karsilastirilarak ortaya konulmustur.

* Sorumlu yazar (Corresponding author) e-posta: cozkan@erciyes.edu.tr
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1. INTRODUCTION

Camera calibration is an important step in many
fields such as computer vision and image processing.
The main idea in the camera calibration is to
determine the camera transformation parameters from
2D image points to the corresponding 3D space
points. Thus, camera calibration is especially used to
extract metric information from 2D images [1]. The
number of camera parameters can change depending
to the type of camera calibration approach.

Basically there are two types of camera parameters:
(i) internal parameters that create mathematically the
inner geometry of a camera when the image exposed,
they are principal point coordinates, effective focal
length and distortions, (ii) external parameters that
define the angular attitudes in terms of roll, pitch and
yaw angles and the positional displacements with
respect to an object coordinate system. Although
these two types of parameters can be computed
through the redundant measurements during the
calibration, it is the main purpose to determine the
internal parameters for a calibration process. In the
close range and the industrial photogrammetric
computer vision applications, depending on the
widely usage of the digital cameras, internal and
external parameters are generally determined together
in a multi-view geometry in a kind of self calibration.

The calibration mathematical models can be
assembled as linear or nonlinear models [2].
Although the linear calibration algorithms such as
Direct Linear Transformation [3] are easy to apply to
the problem, the mathematical model does not
represent the real physical model because of ignoring
some parameters like lens distortions. Thus, the
solution becomes lack of stability and accuracy. So,
these models can be only approximate solutions. The
parameters of the linear models can be easily
estimated by a least squares method. In addition to
the parameters of linear models, nonlinear calibration
models take into account the lens distortions as radial
and tangential, aspect ratio as well. Although the
nonlinear solutions are more realistic and robust
physical models with additional parameters, they
require iterative optimization algorithms for
parameter estimation. So, the computational
complexity of nonlinear models is higher than the
linear systems. The most widely used method for
solution of these systems is the Levenberg-Marquardt
(LM) algorithm. In order to converge a solution, very
good initial values of parameters are required in LM.

Many calibration methods have been developed so
far [1, 3-6]. They differ from each other based on
which parameters are taken into account. Although
there are different approaches to the calibration
problem, the wunderlying mathematical model
generally used is the colinearity principle, i.e. the
colinearity equation is the basic equation on which
the most of the calibration methods depend. It can be
defined the object point, projection center and the
corresponding image point must be collinear. The
colinearity equation sets the physical model of a light
ray from the object space coordinates to the
corresponding image coordinates in terms of the
camera lens system.

Another calibration method (LL) considered in this
study was introduced by Luca Lucchese [5]. In this
method, the way of homography is from the image
frame to reference image frame whereas it is usually
from space to image coordinates at many methods.
Another difference comes up with using calibration
board. 3D object coordinates are not used in LL. The
coordinates of the virtual reference image are derived
from 3D coordinates of calibration board with the
constant distance.

In this study, Artificial Bee Colony (ABC),
Differential Evolution (DE), Genetic Algorithm (GA)
and Particle Swarm (PSO) Algorithms are used to
calibrate LL model in comparison with Levenberg-
Marquardt method. Besides ABC algorithm is the
first time being used in a camera calibration problem
DE, GA and PSO that have been used for other
calibration models such as Tsai [7-9] are the first
time being used for LL model. ABC and PSO are the
member of population based swarm intelligence
algorithms [10, 11] while DE and GA are population
based evolutionary algorithms [12, 13]. All of them
are heuristic and iterative algorithms [11, 14-16].

Artificial bee colony algorithm

ABC algorithm is inspired by the behavior of the bee
colonies to find out food sources. All of the bees are
represented with their positions and by changing
parameters of positions they try to find optimal
solution. ABC works iteratively and iterations
continue until minimum objective value equal or
smaller then the goal. There are three types of bee in
ABC: (i) employed bee that is going to the food
source visited by itself previously, (ii) onlooker bee
that waits on the dance area for making decision to
choose a food source and (iii) scout bee that carries
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out random search [14]. Half of the colony consists of
employed bees and the other part of the colony
consists of onlooker bees. In each food source there is
only one employed bee. During the iterations
positions of food sources are changed by bees. At the
beginning of the algorithm employed bees go to their
starting positions randomly and measure fitness of
positions. After that onlooker bee chooses its starting
point by fitness of food source of employed bee. The
food source of the most convenient fitness value has
a higher probability of choosing by onlooker. Bees
start search from this initial point for iteration.

Although in a food source there is only one employed
bee number of onlooker bees can change because
onlooker bees don’t have ownership of food source.
In other words, the number of employed bees is equal
to the number of food sources around the hive. In
search process, randomly chosen parameters of the
position of randomly chosen food source is
subtracting from own parameters. Results are
multiplied by a number produced in [-1,1] interval
and the products are added to the parameters. If
fitness value of new position produced with this way
is more convenient than previous food source is
chanced. At each iteration searching new position of
a food source is executed by bees at this food source.
The employed bee whose food source is exhausted by
the employed and onlooker bees becomes a scout.
Limit and colony size values are the parameters of
ABC to be tuned. The main steps of the algorithm
can be given like this:

(1) Initialize.
(i) REPEAT.

(a) Place the employed bees on the food sources
in the memory;

(b) Place the onlooker bees on the food sources
in the memory;

(¢) Send the scouts to the search area for
discovering new food sources.

(iii) UNTIL (requirements are met).

In standard ABC for a food source just one position
parameter is changed. But it is seen that this approach
is not sufficient for the calibration problem.
Therefore additionally a perturbation rate parameter
is employed [17]. This parameter determines the
change probability for each parameter.

2. METHODOLOGY

a. Images

Bouguet’s images available on the internet were
employed [4]. Images contain black-and-white
checkerboard of high contrast with a size of 3cm.
Thanks to this feature control points can be
determined on the images by using Harris Corner
Detector [18-20].

b. Camera Parameters

Internal parameters define where a light ray that came
into the camera falls onto the image plane. The
contact point of the optical axis of lens to the image
plane are called principal point and quantized with x,
and y, image coordinate pairs. Because of the
imperfection of the optical system of a real digital
camera, principal point very seldom coincides with
actual physical center of its image plane [5, 21].
According to the perspective projection, a 3D point is
mapped into 2D image point as Eq 1.

X
z
Y (D
z

In perspective projection f; and f, are also internal
parameters. Effective focal length f is the distance
between image plane and the optical center of lens
and described as f=f,w and f=f;h where w and h is
width and height of a pixel respectively. Also fi/f,
ratio defines aspect ratio[5, 21-23].

The lens distortions are separated into two types as
radial and tangential distortions. The former one
arises because of the deficient curvature of the lens
surface and the latter one is caused by misalignment
of lens center. So, tangential distortion has two
components along the directions of x and y. However
the radial distortion is mainly affected by the radial
distance from the principal point. Because of the
distortions, pixel coordinates of the control points do
not coincide with the correct places. Therefore a
straight line can be seen as a bending line. Radial and
tangential distortions are expressed Eq. 2 and Eq. 3,
respectively.
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In the above equations, ki, k, and kj are the radial distortion coefficients, p;, p, and p; are the tangential
distortion parameters and x4 and y4 define image coordinate have distortions. r and q parameters are

= (xg=%,)" +(Ya - p)°

q:l+p3r2

“

External parameters determine the position and the orientation of a camera according to a specific coordinate
system. Roll, pitch and yaw angles are three of external parameters with that rotation matrix R

L, Ip I3 cos0cos
R=|1, 1, I;|=|-sinOcosw+cosOsin@sinw

L I3 Iy sin Osin m + cos Osin cos ®

sin B cos @ —sin@

cosOcosm+sinBsinesin®  cos@sin®
—cosOsin®+sinOsin@cosm® cosPcos®

®)

Translation elements along x, y, and z directions are other external parameters showed as a vector

T=[T,.T,.T,]

X2y’ -tz
c.  Luca Lucchese Method

Calibration method introduced by Lucchese looks
like Tsai or Zhang methods. The main difference
comes from the calibration pallet used. This model
uses an imaginer reference image as a calibration
pallet rather than a real pallet. It is assumed that the
reference image is generated by an ideal pinhole
camera (C,) having parallel CCD axes to pallet and
having orthogonal optical axis to pallet intersected at
center [5]. This ideal camera located at a distance L+f
from the pallet. The L distance is chosen arbitrary
with a condition of comprising whole imaginary
pallet. This ideal camera does not have any
distortions and its focal length is the same as the real
camera.

As seen in Figure 1, image I, acquired by ideal
camera C, placed with L distance from pallet P and in
O'X'Y'Z" object coordinates. On the other hand

(6)

image I4 is generated by C4 camera at different place
from C,. in OXYZ coordinate system. In LL. method,
images are generated from different positions and
orientations. In Figure 1, o'’x’y’ is the coordinate
system of reference image and 0Xy is the coordinate

system of real images. Because of imperfection of
lens, real image center of oxy coordinate system is
not coincide with center of 60Xy coordinate system.

Camera parameters are obtained via perspective
projection of all images to reference image.
Transformation between O'X'Y'Z' and OXYZ is
considered as a two stages process (Figure 2). Image
Iy obtained by C4 has warp and distortions. At the
first stage, lens distortions are corrected and I, image
is generated by radial and tangential distortion
equations.
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Figure 1. Camera calibration geometry of LL [5].
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Afterwards, I, is related to the reference image I, through perspective projection as Eq. 1.
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Figure 2. Geometric Transformation [5].

In Eq. 8, coefficients of (a;;,a12,821,222,b1,b2,¢1,¢5) are the forward homography coefficients, which depends on
the camera parameters.
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In matrix form forward homography coefficients are inverse of the backward homography coefficients. They are

obtained through
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The calibration with LL method has 10 internal
parameters that are the same for all images and have
6 external parameters that are different for all images.
Therefore numbers of parameters to calculate can be
obtained with

p=m*6+10 (11)
where m is the number of image.

3. APPLICATION

Objective function that is necessary for optimization
algorithms contains calibration method. This function
gets parameters produced by optimization algorithm
and compute perspective projection of image
coordinates. As a result of calibration method
candidate pallet coordinates are produced. The
flowchart of the application in this paper was
illustrated in Figure(3).

Since the ultimate usage of the calibration parameters
is to compute the object space coordinates of image
points, we have two types of computed data of x and
y coordinates. The performance measure of the
problem is the root mean squares error (RMSE) of x
and y directions

1o , 1o ,
RMSE =\/—2(xi -x))’+=X(y;i-y)?  (12)
ni=1 ni=

Where n is the number of control points, x and y are
the image coordinates of the control points, x* and y°
are the computed virtual reference image coordinates.
Whole system error is computed with RMSE value.
Parameters with the minimum value of RMSE
measure are considered as the solution of the
problem.

In this study, all images are included to calibration
procedure in a multi-view geometry. In that case,
since all images were sensed by the same camera, the
internal parameters must be the same for all images.
So, the optimization algorithms try to estimate 10
internal parameters for whole images and 6 external
parameters for each image. Thus, for 25 images there
are totally 160 unknowns. This interdepency among
images through internal parameters makes problem
quite complex to handle.

Since the calibration problem handling in this paper
is a nonlinear functional optimization problem,
Levenberg-Marquardt  optimization method is
employed. LM is a derivative based functional
optimization method between Gauss-Newton and
Steepest Decent [24]. Because of the linearization of
the observation equations, solution is obtained in a
manner of iteration. So, the initial values of the
unknown parameters are required to be able to start
the iteration. The closer the initial values to the real
values are, the less iteration is processed and the
more stable the solution is. The initial values required
for LM are determined by the same way given in [5].

The external parameters adjusted by LM are not
given in a tabular format as in other optimization
methods because of the huge table size. The internal
parameters adjusted by LM are given in Table 2 in
purpose of comparison. The LM results for
homography are visualized in Figure4 for image 2.
“x” markers represent the corner points on the real
image, i.e. forward homography from real image to
reference image and the “+” markers represent the
corner points of the reference image. The quality of
the homography can also be easily seen from the
graphics

Obiective function \
ihiage Palet
Coordinates Coordinates
Y Y

Computed
Pallat
Coordinates

Camera calibration method

Gslalt E}mr

Gai"Camera
Parameters o .
- Optinization Algorthm o

F
Algarithm
Parametars

Figure 3. Structure of the used calibration system
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Figure 4. LM homographies of image 2.



347

Erciyes Universitesi Fen Bilimleri Enstitiisii Dergisi 26 (4) 340-350 (2010)

The specific algorithm parameters of ABC, DE, PSO
and GA algorithms were determined after many trial
and error processes. The detailed explanations about
these algorithm parameters can be found in many
references. The values of some of them are given in
Table 1. Population or colony size (N) for all
algorithms was set 50 and all the algorithms were run
for 2000 iterations. These model values should be
tuned as precisely as possible for guarantying them to
run effectively.

Unlike LM which needs the initial values for the
unknowns, ABC, DE, GA and PSO need only
specific working intervals for the unknowns. These
intervals must cover for all unknown values in order
that search space would be too large to find a
solution. But if they are too large, it makes the
algorithm converge an acceptable solution very
difficult. In order to obtain the optimal interval
values, firstly each image is separately optimized. For
the internal parameters, optimal intervals are obtained

Table 1. Parameters of ABC, DE, PSO and GA algorithms.

taking the minimum and maximum values coming
from single frame solutions. For the external
parameters, the optimal intervals are computed by
adding and subtracting an adequate little value to the
external parameters from single frame solutions.
Consequently, the search space including the real
values is made narrower. Thus, it is supposed to
obtain more stable solutions. After more realistic
interval values are computed from these individual
operations, the main optimization process is done
with these intervals for 160 unknowns for 15 parallel
runs and the results with smallest RMSE values were
chosen. Table 2 shows the optimized internal
parameters comparing to LM with RMSE values.

According to the RMSE values, none of the
intelligent algorithms gave an comparable solution to
LM. Among them, ABC and DE have the higher
performances respectively. Homographies of image 2
for ABC were computed and visualized in Figure 5

ABC DE PSO GA
Pertubation Crossover Ineteria .
Rate 0.9 Rate Weights (0.9-0.6)  CrosoverFunction Scattered
Scale Scale Accelerator . . . .
Factor 0.6 Factor 0.6 Weights (2.1-2.1)  Selection Function  StochasticUniform
Limit (Nxp)/2 Mutation Function Gaussian
Crossover Rate 0.9

Table 2. The optimized internal parameters from ABC, DE, GA, PSO.

ABC DE GA PSO LM
Xy 0.198 3.490 0.028 1.530 -16.517
Y, 2.725 -5.550 14.700 2.740 -2.889
k 9.76x10"7 -7.89x10 1.15x10 7.26x10"7 2.97x10™7
k> 3.45x10™" 1.55x10™"° -1.34x10"° 5.89x10™"" 6.05x10™"
ks -5.11x10"° -4.55x107° 1.31x107" -8.97x107'° -8.66x10™"
P -5.14x10 -2.77x10°% 1.48x10% -2.73x10% 4.79x10°%
P2 2.41x10% 2.98x10" 5.75x10% -4.46x10" -3.87x10°%
D3 4.64x10" -6.69x10% -4.00x10°% 3.40x10” -5.31x107%
f, 633.89 261.41 596.59 602.00 656.64
f, 654.35 278.19 833.49 615.66 657.85

RMSE 15018 17166 27425 141987 249
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Figure 5. ABC homographies of image 2.

4. CONCLUSIONS

In this paper the usage possibilities of intelligent
optimization algorithms, ABC, DE, GA and PSO
have been examined with respect to the recently
proposed camera calibration approach of LL.
Especially as a novel method ABC has not been used
in any calibration problem yet. Both the error values
and the graphical homographies show that intelligent

optimization methods do not give satisfactory results.
For especially high dimensional problems, this
situation is not surprising for DE, GA and PSO. But
in recent literatures ABC has showed very good
performances for different benchmark problems.
Although there are some algorithm parameter
combinations to be tuned for these algorithms it can
be accurately concluded these algorithms are not as
stable and robust as Levenberg-Marquardt. In spite of
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the fact that it is very hard to explain these
deficiencies because of the heuristic natures of these
algorithms, the redundancies and scale differences
among the internal parameter may cause the failure of
these algorithms. The distortion parameters have
relatively too small values and consequently very
sensitive to little changes, as well. So, this situation
may cause instabilities and increasing search time,
i.e. finding global minimum is either impossible or
very difficult. Another reason may be because of the
fact that the physical reality of the digital imagery
can be modeled mathematically well enough by
nonlinear colinearity equations with distortions.

Despite the numerical effectiveness of LM, since
the camera calibration problem is nonlinear, LM
needs very good initial values for convergent stable
solutions. So, it can be concluded that ABC can be
employed as an initializing tool for LM in the camera
calibration problem in terms of LL model.
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