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ABSTRACT 
 
The purpose of this study is to give a  Chebyshev polynomial 
approximation for the solution of the  second kind of Linear 
Fredholm integral equation. For this purpose, a new Chebyshev 
matrix method is introduced. This method is based on taking the 
truncated Chebyshev expansion of the function in the integral 
equations. Hence, the result matrix equation can be solved and the 
unknown Chebyshev coefficients can be found approximately. In 
addition, examples that illustrate the pertinent features of the 
method are presented, and the results of study are discussed. 

 
İkinci tip lineer fredholm integral denklemlerinin chebyshev polinom 

yaklaşımları 
 

Anahtar Kelimeler 
 Chebyshev polinomları 

Chebyshev serileri, Chebyshev 
polinom çözümleri 

Fredholm integral denklemi  
Yaklaşım metodları 

 

ÖZET 
 
Bu çalışmada ikinci tip linear Fredholm integral denklemlerinin 
Chebyshev polinomları ile çözümlerinin bulunması 
amaçlanmıştır. Bu amaçla yeni Chebyshev matris yöntemi 
geliştirilmiştir. Belirtilen yöntem denklemdeki bilinmeyen 
fonksiyonlarının kesilmiş Chebyshev  polinomlarının matris 
formlarının alınması  esasına dayanır. Böylece elde edilen 
denklem sistemi çözülerek  Chebyshev polinomlarının katsayıları 
bulunur. Yöntemin hassasiyeti çeşitli örneklerle açıklanmış ve 
sonuçlar tartışılmıştır. 
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1.INTRODUCTION 
 
Integral equation has been one of the 
principal tools in various areas of 
applied mathematics, physics and 
engineering. A computational approach 
to the solution of integral equation is an 
essential branch of scientific inquiry. It 
is well-known that integral equations 
are usually difficult to solve 
analytically and exact solutions are 
very scarce. Therefore, integral 
equations have been a subject of great 
interest of many researchers. The 
computational approach of solution of 
integral equations is an essential branch 
of the scientific inquiry. Indeed, in 
order to resolve integral equations, 
there were developed many methods: 
such as Wavelet-like bases method, 
Parallel iterative methods, collocation 
method, decomposition method, hybrid 
Taylor series method,  Petrov-Galerkin 
method, Adomian decomposition 
method [1-8]. 
 
In principle, analytical solution is the 
most desired result in theory and it is 
almost unobtainable for most practical 
problems. Although numerical methods 
can cope with a majority of 
complicated problems related to a 
system of integral equations, the 
obtained results cannot be expressed in 
simple form. In comparison with 
numerical methods, one of the 
advantages of approximate methods 
lies in that it can give a solution in an 
analytic form with an allowable error. 
As a result, up-to-date approximate 
methods remain of much interest in 
spite of advanced numerical methods 
accompanied with the help of modern 
computers. Since the beginning of 
1994,Taylor and Chebyshev matrix 
methods have also been used by Sezer 

et al. to solve linear differential and 
integro- differential equations[9-15].  
 
In this paper,  we present a novel 
approximate technique, based on 
Chebyshev series expansion, for the 
solution of second kind Fredholm 
integral equations of the form 

bxaxfdttytxkxy
b

a

≤≤=− ∫ ),()(),()( λ  (1) 

where the parameter λ  and the 
functions ),( txk  and )(xf   are given, 
and )(xy  is the unknown 
function[16,17]. Suppose that the 
solution )(xy  of (1) is approximated 
by its Chebyshev expansion  and the 
solution is expressed in the form 

∑
=

=
N

n
nn xTaxy

0
)()(    (2) 

where )(xTn   denotes the Chebyshev 
polynomials of the first kind, 

)0( Nnan ≤≤   are unknown 
Chebyshev coefficients, and N is 
chosen any positive integer.  

The rest of this paper  is organized as 
follows. Linear Fredholm integral 
equation and fundamental relations are 
presented in Section 2. The new 
scheme are based on Chebyshev matrix 
method. The method of finding 
approximate solution is described in 
Section 3. To support our findings, we 
present result of numerical experiments 
in Section 4. Section 5 concludes this 
article with a brief summary.  
 
2.FUNDAMENTAL RELATIONS 
 
To obtain the solution of equation(1) in 
the form(2) we first find the matrix 
form of each term in the equation and 
then differentiate it n times with respect 
to x  to analyse it as matrix 
representation. First we can convert the 
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solution )(xy   defined by a truncated 
Chebyshev series (2) and its derivative 

)()( xy k  to matrix forms 
AT )()( xxy =               (3)   

AT )()( )()( xxy kk =               (4) 
where 

)](...)()([)( 10 xTxTxTx N=T
 

T
Naaa ]...[ 10=A

 
On the other hand, it is well known 
[18] that the relation between the 
powers nx  and the Chebyshev 
polynomials )(xTn  is 
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x j
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By using the expression (5) and taking 
n=0,1,…,N we find the corresponding 
matrix relation as follows 

Txx DTX )()( =     (7) 
where ]1[)( Nxxx K=X  for  odd  N, 
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and for even N, 
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Then, by taking into account(7) we obtain 
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1))(()( −= Txx DXT      (10) 
and 

 
1)( ))(()( −= Tk(k) xx DXT  ,  ,...2,1,0=k  (11) 

To obtain the matrix )(x(k)X  in terms of the matrix )(xX , we can use the following relation: 
1)1( )()( BXX xx =  

21)2( )()()( BXBXX xxx )( ==  
32)3( )()()( BXBXX xxx )( ==  

 
k)(kk xxx BXBXX )()()( 1)( == −    (12) 

 
where 
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Consequently, by substituting the matrix forms (11) and (12) into (4) we have the matrix 
relation 

 
ADBX 1)( )()()( −= Tkk xxy   (14) 

 
3. METHOD OF SOLUTION 

 
We now ready to construct the fundamental matrix equation corresponding to Eq. (1), for 

this purpose, we first substitute (2) into Eq. (1) and then simplify. Thus we have the 
fundamental matrix equation 

 
 

                              ∫ −− +=
b

a

TT dtttxkxfx ADXADX 11 ))((),()())(( λ                             (15) 

or clearly 

                                 )())()(),(())(( 11 xfdtttxkx T
b

a

T =⎥
⎦

⎤
⎢
⎣

⎡
− −− ∫ ADXDX λ                           (16) 

 
 
Suppose that the solution )(xy  of (1) is approximated by its Chebyshev expansion(2). 
We first differentiate both sides of (1) with respect to x to get (N+1) equation and 
substitute (14) in the expression to get that for bxa ≤≤ , 
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Substitute )()( xNX  in the  integrals in Eqs.(17) to obtain that for bxa ≤≤ , 
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                 [ ] )()()()( )(11 xfx kT

k
Tk =− −− ADZDBX , Nk ,...,2,1,0=    (19) 

where 

Nkdtttxk
x

b

a
k

k

k ,...,2,1,0,))()),(( =
∂
∂

= ∫ XZ λ  

Now these equations given by (19) for Nk ,...,2,1,0=  become a linear system of N+1 
algebraic equations for N+1 unknowns Naaa ,...,10 . Hence, the fundamental matrix 
equation (19)  corresponding to Eq. (1) can be written in the form 

 
      FWA =  or  ][ FW; ,  ][ , jiw=W , Nji ,...,1,0, =             (20) 

where 
 

   T
N ]...[ 10 WWWW = ,  11 )()()( −− −= T

k
Tk

k x DZDBXW ,  k=0,1,…N          (21) 
 

TN xfxfxf )](...)()([ )()1()0(=F  
 

The fundamental matrix W  is depend 
on x variable. In application we choose 
any point 

,...2,1,0],,[ =∈= qbaxx q and we 
solve the problem in any point in the 
given interval. 
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Here, Eq. (20) corresponds to a system 
of ( 1)N +  linear algebraic equations 
with unknown Chebyshev coefficients  

Naaa ,...,, 10 . If  
1];[ +== Nrankrank FWW  , then we 

can write 
FWA 1)( −=                (22) 

Thus the matrix A  (thereby the 
coefficients 0 1, , , Na a aK ) is uniquely 
determined. Also the Eq.(1) has a 
unique solution. This solution is given 
by truncated  Chebyshev series 

∑
=

=
N

n
nn xTaxy

0
)()( .   

We can easily check the accuracy of the 
suggested method. Since the truncated 
Chebyshev series (2) is an approximate 
solution of Eq.(1), when the solution 

)(xyN  is substituted in Eq.(1), the 
resulting equation must be satisfied 
approximately; that is, for   

,...2,1,0],,[ =∈= qbaxx q  

0)()(),()()( ≅−−= ∫ xfdttytxkxyxE
b

a
NNq λ  

                                                    (23) 
and qk

qxE −≤ 10)(   ( qk  positive 

integer). If max 10 10qk k− −=  ( k  positive 
integer) is prescribed, then the 
truncation limit N  is increased until the 
difference  )( qxE  at each of the points 
becomes smaller than the prescribed 
10 k− . On the other hand, the error can 
be estimated by the function  

)()(),()()( xfdttytxkxyxE
b

a
NNN −−= ∫λ

                                                     (24) 

If  0)( →xEN , when N  is sufficiently 
large enough, then the error decreases. 
 
4.NUMERICAL RESULTS 
In this section, several numerical 
examples are given to illustrate the 
accuracy and effectiveness properties of 
the method. The absolute errors in 
Tables are the values of )()( xyxy N−  
at selected points. All computations 
were carried out using Maple10 on 
Personal Computer, and it took only 
several minutes to get all the computed 
results. 
 
Example 1. 
 
Let us first consider the  second kind 
Fredholm integral  equation  

∫ −+−=
1

0

)(1)( dttyeexy tx  

and seek the solution  )(xy   as a 
truncated Chebyshev series 

∑
=

=
N

n
nn xTaxy

0
)()(  

Here ,),( tetxk −= 1)( −= xexf , 1=λ , 
1,0 == ba  and exact solution 

xexy =)( . 
Then, fundamental matrix equation of 
the problem  is defined by  

FWA =                                     (25) 
 
where the matrices are defined by 

]1[)( 65432 xxxxxxx =X  
 

 
 
 
 

[ ]039540.0183461.0049988.0337007.0310914.0264241.0632120.00 −−−=Z  
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We take 1=x  for our computations and then, the fundamental matrix W of the equation 
and the matrix F is defined by 
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This system has the solution 
 
 
 

 
 

A=[ 1.277883  1.109965  0.2849241  0.03775392  0.007786744  0.0  0.000117981 ] 
Therefore, we find the approximate solution 
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y(x)= 1.277883T0(x)+ 1.109965T1(x)+ 0.2849241T2(x)+ 0.03775392T3(x)+ 
0.007786744 T4(x)+ 0.000117981T6(x) 

 
or the simplified form of the above result is 

 
6432 003775392.005663088.01510157.05096778.09967032.0000628.1)( xxxxxxy +++++=  

 
Taking N=6,8,10  the obtained solutions  are compared with the exact solution in 
Table1. 

 
Table1 Error analysis of Example 1 for the x value  

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.8
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1.6
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x

y

N=6
N=8
N=10
Exact Solution

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8
x 10-4

x

y

Ne=6
Ne=8
Ne=10

Fig.1.Numerical and exact solution of the 
Example1 for N=6,8,10 

Fig.2.Error function of Example1 for various N.

 
 
 
Fig.1 show the comparison between the 
exact solution and different for the N 
Chebyshev matrix method solutions of 
the system in Eq.(20). It seems that the 
solutions almost identical. One can 
obtain a beter approximation to the 
numerical solutions by adding new 

terms to the series in Eq.(2). Fig.2 show 
that the comparison between the errors 
fonctions for various N. It seems that 
the accuracy increases as the N is 
increased.  
 
 

x Exact 
Solution 

 
N=6 

 
Ne=6 

Present Method 
N=8              Ne=8 

 
N=10 

 
Ne=10 

0.0 1.000000 1.000628 0.628E-3 1.000012 0.120E-4 0.999979 0.210E-5 
0.1 1.105171 1.105552 0.381E-3 1.105178 0.700E-5 1.105169 0.200E-5 
0.2 1.221403 1.221655 0.252E-3 1.221409 0.600E-5 1.221401 0.200E-5 
0.3 1.349859 1.350049 0.190E-3 1.349864 0.500E-5 1.349856 0.300E-5 
0.4 1.491825 1.491987 0.162E-3 1.491830 0.500E-5 1.491822 0.300E-5 
0.5 1.648721 1.648874 0.153E-3 1.648727 0.600E-5 1.648719 0.200E-5 
0.6 1.822119 1.822268 0.149E-3 1.822124 0.500E-5 1.822117 0.200E-5 
0.7 2.013753 2.013901 0.148E-3 2.013758 0.500E-5 2.013751 0.200E-5 
0.8 2.225541 2.225691 0.150E-3 2.225546 0.500E-5 2.225540 0.100E-5 
0.9 2.459603 2.459752 0.149E-3 2.459609 0.600E-5 2.459602 0.100E-5 
1.0 2.718282 2.718431 0.149E-3 2.718288 0.600E-5 2.718282 0.00000 
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Example 2. 
 
Let us find the Chebyshev series 
solution of the following linear 
fredholm integral equation[9]  

∫
−

+=
1

1

)()cos()sin(
4
1)cos()( dttytxxxy πππ

 

The exact solution of this problem is 

)sin(
4
1)cos()( xxxy ππ += . Using the 

procedure in Section 3  and for N=12 
the matrices in Eq.(20) are computed. 
Hence linear algebraic system is gained. 
This system is approximately solved for 

the points )
12

cos( πix i=  as is taken in [9] 

using the Maple10.  
 
 
Table2 Error analysis of Example 2 for the x value  
x 
 

Exact solution Chebyshev Col.  
Matrix Met.[9] 
 N=12 

Chebyshev Col.  
Matrix Met.[9] 
N2=12 

Suggested Met. 
N=12 

Suggested Met. 
Ne=12 

x0 -1.000000 -1.000000 0.00000000 -1.000010 0.108180E-4 
x1 -0.967565 -0.967563 0.137676E-5 -0.967574 0.947280E-5 
x2 -0.810580 -0.810579 0.957284E-6 -0.810585 0.513040E-5 
x3 -0.406776 -0.406776 0.556751E-6 -0.406779 0.304030E-5 
x4 0.250000 0.250000 0.000000000 0.249996 0.325290E-5 
x5 0.868852 0.868851 0.131853E-5 0.868850 0.223577E-5 
x6 1.000000 1.000000 0.00000000 1.000000 0.00000000 
x7 0.505640 0.505638 0.244225E-5 0.505643 0.235770E-5 
x8 -0.250000 -0.250000 0.00000000 -0.249996 0.326630E-5 
x9 -0.804623 -0.804625 0.273100E-5 -0.804618 0.464110E-5 
x10 -1.014860 -1.014870 0.238170E-5 -1.014836 0.322237E-4 
x11 -1.020980 -1.020980 0.456618E-5 -1.020853 0.133479E-3 
x12 -1.000000 -1.000000 0.000000000 -0.999788 0.211757E-3 
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Chebyshev Col. Matrix Met. (Ne=12)
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Fig.3.Numerical and exact solution of the Example 2 Fig.4.Error function of Example2 for various N.
 
 
 
We display a plot of Chebyshev 
collocation method, presented method 
and Exact solution in Fig.3 and we 
compare these methods and presented 
method in Table2. It seems that the 

solutions almost identical. One can 
obtain a beter approximation to the 
numerical solutions by adding new 
terms to the series in Eq.(2). It is of 
interest to note that the method 
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discussed above works effectively for 
linear models. 
 
Example 3. 
 
Let us find the Chebyshev series 
solution of linear fredholm integral 
equation of the second kind 

 
 
 
 
 
 

∫ −++++−=
1

0

222 )2ln(
3
4

4
3

9
5)1ln(2)()

2
3()( xxxxdttytxxtxy  

and the exact solution 
is )1ln(2)( += xxy . The solution of the 
linear fredholm integral equation is 
obtained for N=6,8,10. For numerical 
results, see Table 3. We display  a plot 

of absolute difference exact and 
approximate solutions in Fig.5 and error 
functions for various N  is shown in 
Fig.6. 

 
Table 3 Error analysis of Example 3 for the x value  

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Exact Solution
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Fig.5.Numerical and exact solution of the 
Example3 for N=6,8,10 

Fig.6.Error function of Example3 for various N.

 
 

x Exact 
Solution 

 
N=6 

Present Method 
Ne=6              N=8                Ne=8 

 
N=10 

 
Ne=10 

0.0 0.000000 0.004003 0.4003E-2 0.000794 0.7940E-3 0.000165 0.1650E-3 
0.1 0.190620 0.192392 0.1772E-2 0.190904 0.2840E-3 0.190668 0.4800E-4 
0.2 0.364643 0.365364 0.7210E-3 0.364734 0.9100E-4 0.364655 0.1240E-4 
0.3 0.524728 0.524989 0.2610E-3 0.524753 0.2500E-4 0.524731 0.2900E-5 
0.4 0.672944 0.673020 0.7600E-4 0.672949 0.5000E-5 0.672945 0.8000E-6 
0.5 0.810930 0.810939 0.9000E-5 0.810929 0.1000E-5 0.810930 0.4000E-6 
0.6 0.940007 0.939992 0.1500E-4 0.940004 0.3000E-5 0.940007 0.1000E-6 
0.7 1.061257 1.061231 0.2600E-4 1.061254 0.3000E-5 1.061257 0.000000 
0.8 1.175573 1.175539 0.3400E-4 1.175570 0.3000E-5 1.175574 0.1000E-5 
0.9 1.283708 1.283665 0.4300e-4 1.283702 0.6000E-5 1.283707 0.1000E-5 
1.0 1.386294 1.386241 0.5300E-4 1.386289 0.5000E-5 1.386294 0.000000 



213 
 
 

Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi 26(3): 203-216 (2010) 

 
 

Example 4. 
 
Consider the linear fredholm integral 
equation of the second kind. 

∫
+−

+−=
1

0

3
12

3
52

)(
3
1)(

xtx
edttyexy  

 
To evaluate the accuracy of the 
approximations produced by the 
Chebyshev series expansion method, 

)(xy  is chosen such that the exact 

solution is xexy 2)( = . For numerical 
results,  see Table4. 
 
Fig.7 show the comparison between the 
exact solution and different for the N 
Chebyshev matrix method solutions of 
the system in Eq.(20). Fig.8 show that 
the comparison between the errors 
fonctions for various N. It seems that 
the accuracy increases as the N is 
increased. 

 
Table4 
Error analysis of Example 4 for the x value  
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Fig.7.Numerical and exact solution of the 
Example4 for N=6,8,10 

Fig.8.Error function of Example4 for various N.

 
 

x Exact 
Solution 

    
    N=6 

  
 Ne=6 

Present Method 
     N=8              Ne=8 

 
N=10 

 
Ne=10 

0.0 1.000000 1.145021 0.145021 1.008479 0.8479E-2 1.000318 0.318E-3 
0.1 1.221403 1.289439 0.68036E-1 1.224593 0.3190E-2 1.221498 0.950E-4 
0.2 1.491825 1.518694 0.26869E-1 1.492754 0.9290E-3 1.491843 0.180E-4 
0.3 1.822119 1.828232 0.61130E-2 1.822152 0.3300E-4 1.822113 0.600E-5 
0.4 2.225541 2.221587 0.39540E-2 2.225227 0.3140E-3 2.225528 0.130E-4 
0.5 2.718282 2.709202 0.90800E-2 2.717801 0.4810E-3 2.718263 0.190E-4 
0.6 3.320117 3.307721 0.12396E-1 3.319509 0.6080E-3 3.320095 0.220E-4 
0.7 4.055200 4.039758 0.15442E-1 4.054455 0.7450E-3 4.055173 0.270E-4 
0.8 4.953032 4.934126 0.18906E-1 4.952122 0.9100E-3 4.952998 0.340E-4 
0.9 6.049647 6.026554 0.23093E-1 6.048536 0.1111E-2 6.049606 0.410E-4 
1.0 7.389056 7.360848 0.28208E-1 7.387697 0.1359E-2 7.389007 0.490E-4 
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Example 5.  
 
Consider the linear fredholm integral 
equation  
1

2
0

sin( ) cos( )sin( ) ( ) x x xxt y t dt
x
−

=∫  

with the exact solution xxy =)( . 
Table5 shows the numerical results of 

Example5[19]. We compare Legendre 
wavelet, presented method and Exact 
solution in Table5. It seems that the 
solutions almost identical. One can 
obtain a beter approximation to the 
numerical solutions by adding new 
terms to the series in Eq.(2). 
 

 
 
Table5 Error analysis of Example 5 for the x value  

 
 
 
 
 
 
 
 
 
 
 
 
 
Example 6. 
 
Consider the linear fredholm integral 
equation 

1
1)(

11

0 +
−

=
+

∫ x
edttye

x
xt

   

with the exact solution ( ) xy x e= . 
Table6 shows the numerical results of 
Example6[20]. We display  a plot of 
Legendre wavelet, presented method 
and Exact solution in Fig.10 and we 
compare these methods and presented 
method in Table6. It seems that the 
solutions almost identical. One can 
obtain a beter approximation to the 
numerical solutions by adding new 

terms to the series in Eq.(2). It is of 
interest to note that the method 
discussed above works effectively for 
linear models. 
 
Table6 Absolute errors obtained for Example 6 

x 
 

Exact 
Solution 

Legendre 
wavelets 
met.[20] 

 
Present 
Method 

0.0 1.000000 1.001110 1.011882 
0.1 1.105171 1.110467 1.103574 
0.2 1.221403 1.221070 1.212385 
0.3 1.349859 1.350320 1.338317 
0.4 1.491825 1.492420 1.481369 
0.5 1.648721 1.650970 1.641542 
0.6 1.822119 1.821280 1.818834 
0.7 2.013753 2.012970 2.013247 
0.8 2.225541 2.226030 2.224780 
0.9 2.459603 2.460460 2.453434 

 
 

 
 

 
 

x Exact 
Solution 

 Legendre  
Wavelets 
met[19] 

Legendre 
 multi-wavelets 
 met.[19] 

 
Present Method 
 

0.0 0.00000000 0.0001183000 0.00003230000 0.00000000 
0.1 0.10000000 0.1000354200 0.10000845500 0.10000000 
0.2 0.20000000 0.2000119300 0.20001539000 0.20000000 
0.3 0.30000000 0.3000237700 0.30000957000 0.30000000 
0.4 0.40000000 0.4000011000 0.40000059440 0.40000000 
0.5 0.50000000 0.5000112100 0.50000198300 0.50000000 
0.6 0.60000000 0.6000053600 0.60000087410 0.60000000 
0.7 0.70000000 0.7000023500 0.70000023510 0.70000000 
0.8 0.80000000 0.8000005900 0.80000004456 0.80000000 
0.9 0.90000000 0.9000006900 0.90000001561 0.90000000 



215 
 
 

Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi 26(3): 203-216 (2010) 

 
 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1

1.5

2

2.5
Exact solution
Legendre wavelets met.
Present Met. (N=2)

 
Fig.9. Comparison of Legendre wavelets and  Chebyshev collocation method for Example 6 
 
 
Example 7. 
 
In this final example we consider the 
linear fredholm integral equation  

∫ ++=
1

0

2 )()1(2)( dttyxtxxy  

with the exact solution 

24
13

8
1)( 2 −−= xxxy . If the matrices 

are substituted in (20), it is obtained 
linear algebraic system.This system 
yields the approximate solution of the 
problem.  The result using the  
Chebyshev matrix method discussed in 
Section 3 is  the same with  the exact 
solution.  
 
5. CONCLUSION 
 
In recent years, the studies of linear 
fredholm integral equation have 
attracted the attention of many 
mathematicians and physicists. The 
Chebyshev matrix methods are used to 
solve the linear fredholm integral 
equation numerically. The method 
proposed in this paper can be applied to a 
wide class of Fredholm integral equations 

of the second kind  arising not only in 
radiative heat transfer but also in a number 
of other applications, e.g., potential theory, 
radiative equilibrium, and electrostatics. 
The approach leads to an approximate 
solution of the integral equation which can 
be expressed explicitly in a simple, closed 
form and which can be effectively 
computed using symbolic computing codes 
on any modern Personal Computer. To get 
the best approximating solution of the 
equation, we take more forms from the 
Chebyshev expansion of functions that 
is , the truncation limit  N must be 
chosen large enough. In addition, an 
interesting feature of this method is to 
find the analytical solutions if the 
equation has an exact solution that is a  
polynomial functions. 
 
As a result, the power of the employed 
method is confirmed. We assured the 
correctness of the obtained solutions by 
putting them back into the original 
equation with the aid of Maple, it 
provides an extra measure of confidence 
in the results. The method can also be 
extended to the system of linear  
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fredholm integral  equations, but some 
modifications are required. 
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