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ABSTRACT

The purpose of this study is to give a Chebyshev polynomial
approximation for the solution of the second kind of Linear
Fredholm integral equation. For this purpose, a new Chebyshev
matrix method is introduced. This method is based on taking the
truncated Chebyshev expansion of the function in the integral
equations. Hence, the result matrix equation can be solved and the
unknown Chebyshev coefficients can be found approximately. In
addition, examples that illustrate the pertinent features of the
method are presented, and the results of study are discussed.

Ikinci tip lineer fredholm integral denklemlerinin chebyshev polinom

Anahtar Kelimeler
Chebyshev polinomlari
Chebyshev serileri, Chebyshev
polinom ¢6ziimleri
Fredholm integral denklemi
Yaklasim metodlari

yaklasimlari

OZET

Bu calismada ikinci tip linear Fredholm integral denklemlerinin
Chebyshev  polinomlari ile ¢Oziimlerinin ~ bulunmasi
amaglanmigtir, Bu amagla yeni Chebyshev matris yontemi
gelistirilmigtir.  Belirtilen yontem denklemdeki bilinmeyen
fonksiyonlarinin kesilmis Chebyshev  polinomlarinin matris
formlarmin almmasi  esasina dayanir. Boylece elde edilen
denklem sistemi ¢oziilerek Chebyshev polinomlarmin katsayilar
bulunur. Yontemin hassasiyeti cesitli orneklerle aciklanmis ve
sonugclar tartisilmistir.
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1.INTRODUCTION

Integral equation has been one of the
principal tools in various areas of
applied mathematics, physics and
engineering. A computational approach
to the solution of integral equation is an
essential branch of scientific inquiry. It
is well-known that integral equations
are usually difficult to solve
analytically and exact solutions are
very scarce. Therefore, integral
equations have been a subject of great
interest of many researchers. The
computational approach of solution of
integral equations is an essential branch
of the scientific inquiry. Indeed, in
order to resolve integral equations,
there were developed many methods:
such as Wavelet-like bases method,
Parallel iterative methods, collocation
method, decomposition method, hybrid
Taylor series method, Petrov-Galerkin
method, Adomian  decomposition
method [1-8].

In principle, analytical solution is the
most desired result in theory and it is
almost unobtainable for most practical
problems. Although numerical methods
can cope with a majority of
complicated problems related to a
system of integral equations, the
obtained results cannot be expressed in
simple form. In comparison with
numerical methods, one of the
advantages of approximate methods
lies in that it can give a solution in an
analytic form with an allowable error.
As a result, up-to-date approximate
methods remain of much interest in
spite of advanced numerical methods
accompanied with the help of modern
computers. Since the beginning of
1994, Taylor and Chebyshev matrix
methods have also been used by Sezer

et al. to solve linear differential and
integro- differential equations[9-15].

In this paper, we present a novel
approximate technique, based on
Chebyshev series expansion, for the
solution of second kind Fredholm
integral equations of the form

b
YO)—-A[koctydt=f(x), a<x<b (1)

where the parameter A and the
functions k(x,t) and f(x) are given,
and y(X) is the  unknown

function[16,17]. Suppose that the
solution y(X) of (1) is approximated

by its Chebyshev expansion and the
solution is expressed in the form

y(x) = ZanTn () 2)

where T, (X) denotes the Chebyshev

polynomials of the first kind,
a,(0<n<N) are  unknown
Chebyshev coefficients, and N is

chosen any positive integer.

The rest of this paper is organized as
follows. Linear Fredholm integral
equation and fundamental relations are
presented in Section 2. The new
scheme are based on Chebyshev matrix
method. The method of finding
approximate solution is described in
Section 3. To support our findings, we
present result of numerical experiments
in Section 4. Section 5 concludes this
article with a brief summary.

2.FUNDAMENTAL RELATIONS

To obtain the solution of equation(1) in
the form(2) we first find the matrix
form of each term in the equation and
then differentiate it n times with respect
to X to analyse it as matrix
representation. First we can convert the
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solution y(X) defined by a truncated

Chebyshev series (2) and its derivative on Ao e 2N

y(k)(z(]) to matrix fgor)ms T =2 ;‘(n— JTJ ¢, -1<x<16)
y(x) = T()A 3) A

y 9 (x) = T (x)A 4) X7 =2 g(n—j 5ia(¥),—1<x<1(6)
where "

T(X) =Ty (X) T,(x) ... Ty (X)] By using the expression (5) and taking
A=[a, a,..a,] n=0,1,...,N we find the corresponding

On the other hand, it is well known matrix relation as follows

[18] that the relation between the X(x)=T()D’ (7)
powers X" and the Chebyshev where X(x)=[1 x...x"] for odd N,
polynomials T, (X) is

20(()) 0 0 0 0
0
(1
0 2 0 0 0 0
27 12] 0 2“(3) 0 0 (8)
D:

2 0 0 0 0
0
_I(IJ
0 2 0 0 0
0
L2 42
N AT o

Then, by taking into account(7) we obtain
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T(x) = X(x)(D")" (10)
and

TY(x) =X )M, k=012... (11)
To obtain the matrix X®(x) in terms of the matrix X(X), we can use the following relation:
X (x) = X(x)B'
X@(x) = X" (x)B = X(x)B?
X (x) =X (x)B = X(x)B’

X®(x) = X4 (x)B = X(x)B (12)
where
[0 0 0 ... O]
0 ... 0

B={0 2 0 .. 0 (13)

0O 0 0 N O
Consequently, by substituting the matrix forms (11) and (12) into (4) we have the matrix
relation

y“ () =X(x)B (D) A (14)
3. METHOD OF SOLUTION
We now ready to construct the fundamental matrix equation corresponding to Eq. (1), for

this purpose, we first substitute (2) into Eq. (1) and then simplify. Thus we have the
fundamental matrix equation

b
XX)DH) A= f(X)+ 1 j k(x,H)X(t)(D" )" Adt (15)
or charly
X)) (4 j k(x,D)X(t)dt)D" )™ |A = f(x) (16)

Suppose that the solution y(X) of (1) is approximated by its Chebyshev expansion(2).

We first differentiate both sides of (1) with respect to x to get (N+1) equation and
substitute (14) in the expression to get that for a< x<b,
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B b

B 0 N
X0 —(lf &(k(&t))x(t)dt)(lf) I}A= f'(X)

X7 (') —(ﬁf@a; (Oet)XOdH D' )I}A= f'()

b N
{X(N)(X)(DT)1 —(ﬂI;;N (k(X,t))X(t)dt)(DT)l}A = 1) (17)

a

Substitute X (x) in the integrals in Eqs.(17) to obtain that for a< x<b,

b
[X(X)B(DT Y -4 j %(k(x,t))X(t)dt)(DT ) }A = f'(x).

2

[X(X)B2 (D")" - (l'[a?(k(x,t))X(t)dt)(DT )" }A = (%)

b N
{X(X)BN (D7) —(ﬂj ;XN (k(X,t))X(t)dt)(DT)l}A = M (x) (18)
[X(0B*(MD)"' -z, (D) A = F9(%),k=012,.,N (19)

where
ak
o
Now these equations given by (19) for k =0,1,2,...,N become a linear system of N+1

algebraic equations for N+1 unknowns a,a,,...,a, . Hence, the fundamental matrix
equation (19) corresponding to Eq. (1) can be written in the form

b
Z, = [ (k(x)XMdt), k=0,12,..,N

WA =F or [W;F], W=[w,,],i,j=0,..N (20)
where
W=[W, W.. W, ", W, =X(x)B*(D")"'-Z,(D")", k=0,1,..N (21)

F=[fPx) fOX) ... fM]

The fundamental matrix W is depend X=X, €[a,b], g=0,12,...and we
on x variable. In application we choose

. solve the problem in any point in the
any point

given interval.
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Here, Eq. (20) corresponds to a system
of (N +1) linear algebraic equations
with unknown Chebyshev coefficients
a,,8,,...,ay . If

rankW = rank[W;F]= N +1 , then we
can write

A=(W)'F (22)
Thus the matrix A (thereby the
coefficients a,,a,,...,a, ) is uniquely
determined. Also the Eq.(1) has a

unique solution. This solution is given
by truncated Chebyshev  series

y(x) = Z a,T,(x).

We can easily check the accuracy of the
suggested method. Since the truncated
Chebyshev series (2) is an approximate
solution of Eq.(1), when the solution
Yy (X) 1s substituted in Eq.(1), the
resulting equation must be satisfied
approximately; that is, for
X=X, € [a,b], g=0,L2,...

b
E(x) =| Yy 00— A  k(x )y, (Dt — F (x) =0

(23)

and E(X,)< 107 (k, positive

q
integer). If max 107 =107 (k positive
integer) is prescribed, then the
truncation limit N is increased until the
difference E(X,) at each of the points

becomes smaller than the prescribed
107, On the other hand, the error can
be estimated by the function

Ey (0 = yy (00— A[ k(6D Y, ©)dt - £ (x)

24)

If Ey(X)—>0,when N is sufficiently
large enough, then the error decreases.

4.NUMERICAL RESULTS

In this section, several numerical
examples are given to illustrate the
accuracy and effectiveness properties of
the method. The absolute errors in

Tables are the values of |y(x)— Y (X)|

at selected points. All computations
were carried out using Maplel0 on
Personal Computer, and it took only
several minutes to get all the computed
results.

Example 1.

Let us first consider the second kind

Fredholm integral equation
1

y(x)=e* -1+ '[e’t y(t)dt
0

and seek the solution as a

y(x)

truncated Chebyshev series
N

yx) =Y a,T,(x)
n=0

Here k(x,t)=e™, f(X)=e* -1, A =1,
a=0b=1
y(x)=e".
Then, fundamental matrix equation of

the problem is defined by
WA =F

and exact solution

(25)

where the matrices are defined by
X(x)=[1 x x> x* x* x> x°]

Z0=[0.632120 0.264241 -0.310914 -0.337007 0.049988 0.183461 —0.039540]
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[0.367879 —0.264241+x —0.689085+2x>  0.337007—3x+4x> 0.950011—8x> +8x*
0 1 4x —3+12x2 —16x+32%°
0 0 4 24X —16+96x>
W= 0 0 0 24 192x
0 0 0 0 192
0 0 0 0
|0 0 0 0 0
—0.183461+5x—20x" +16x> —0.960460+18x> —48x* +32x° |
5-60x" +80x* 36x—192x* +192x°
—120x+320x’ 36—576x* +960x*
—120+960x> —1152x+3840x°
1920x —1152+11520%*
1920 23040x
0 23040 |
01 0 0 0 0 O] ! 0 0 0 0 0 0 |
0020000 0 1 0 0 0 0 0
0003000 /74 0 1/2 0 0 0 0
B=|0 0 00 400> D=0 3/4 0 1/4 0 0 0
000 00O0S50 3/8 0 1/2 0 1/8 0 0
000O0O0TU 06 0 5/8 0 5/16 0 1/16 0
000 00 0 O] 5/16 0 15/32 0 3/16 0 1/32]

We take X =1 for our computations and then, the fundamental matrix W of the equation
and the matrix F is defined by

[0.367879 0.735758 1.310914 1.337007 0.950011 0.816539 1.03954] M1.718282 7
0 1 4 9 16 25 36 2718282
0 0 4 24 80 200 420 2.718282
W= 0 0 0 24 192 840 2688 |F=|2.718282
0 0 0 0 192 1920 10368 2.718282
0 0 0 0 0 1920 23040 2.718282
| 0 0 0 0 0 0 23040 | [2.718282 |

This system has the solution

A=[ 1.277883 1.109965 0.2849241 0.03775392 0.007786744 0.0 0.000117981 ]
Therefore, we find the approximate solution
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y(x)=1.277883T(x)+ 1.109965T(x)+ 0.2849241T,(x)+ 0.03775392T;(x)+
0.007786744 T4(x)+ 0.000117981Te(x)

or the simplified form of the above result is

y(X) =1.000628 +0.9967032x + 0.5096778x> +0.1510157x’ +0.05663088x* +0.003775392x°

Taking N=6,8,10 the obtained solutions are compared with the exact solution in

Tablel.
Tablel Error analysis of Example 1 for the x value
X Exact Present Method
Solution N=6 N=6 N=8 N=8 N=10 N=10

0.0  1.000000 1.000628 0.628E-3 1.000012 0.120E-4 0.999979 0.210E-5
0.1 1.105171 1.105552 0.381E-3 1.105178 0.700E-5 1.105169 0.200E-5
0.2 1.221403 1.221655 0.252E-3 1.221409 0.600E-5 1.221401 0.200E-5
0.3 1.349859 1.350049 0.190E-3 1.349864 0.500E-5 1.349856 0.300E-5
0.4 1.491825 1.491987 0.162E-3 1.491830 0.500E-5 1.491822 0.300E-5
0.5 1.648721 1.648874 0.153E-3 1.648727 0.600E-5 1.648719 0.200E-5
0.6 1.822119 1.822268 0.149E-3 1.822124 0.500E-5 1.822117 0.200E-5
0.7 2.013753 2.013901 0.148E-3 2.013758 0.500E-5 2.013751 0.200E-5
0.8 2.225541 2.225691 0.150E-3 2.225546 0.500E-5 2.225540 0.100E-5
0.9 2.459603 2.459752 0.149E-3 2.459609 0.600E-5 2.459602 0.100E-5
1.0 2.718282 2.718431 0.149E-3 2.718288 0.600E-5 2.718282 0.00000

Fig.1.Numerical and exact
Examplel for N=6,8,10

Fig.1 show the comparison between the
exact solution and different for the N
Chebyshev matrix method solutions of
the system in Eq.(20). It seems that the
solutions almost identical. One can
obtain a beter approximation to the
numerical solutions by adding new

solution of the

Fig.2.Error function of Examplel for various N.

terms to the series in Eq.(2). Fig.2 show
that the comparison between the errors
fonctions for various N. It seems that
the accuracy increases as the N is
increased.
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Example 2.
Let us find the Chebyshev series
solution of the following linear

fredholm integral equation[9]
1

Y(X) = cos(zX) + % J- sin(7X) cos(zt) y(t)dt

-1

The exact solution of this problem is
Y(X) = cos(7X) + i sin(zX). Using the

procedure in Section 3 and for N=12
the matrices in Eq.(20) are computed.
Hence linear algebraic system is gained.
This system is approximately solved for

the points X;= cos(ll—;[) as is taken in [9]

using the Maplel0.
Table2 Error analysis of Example 2 for the x value
X Exact solution ~ Chebyshev Col. Chebyshev Col. Suggested Met.  Suggested Met.
Matrix Met.[9] Matrix Met.[9] N=12 Ne=12
N=12 N,=12
Xo -1.000000 -1.000000 0.00000000 -1.000010 0.108180E-4
X -0.967565 -0.967563 0.137676E-5 -0.967574 0.947280E-5
X5 -0.810580 -0.810579 0.957284E-6 -0.810585 0.513040E-5
X3 -0.406776 -0.406776 0.556751E-6 -0.406779 0.304030E-5
X4 0.250000 0.250000 0.000000000 0.249996 0.325290E-5
Xs 0.868852 0.868851 0.131853E-5 0.868850 0.223577E-5
X6 1.000000 1.000000 0.00000000 1.000000 0.00000000
X7 0.505640 0.505638 0.244225E-5 0.505643 0.235770E-5
Xg -0.250000 -0.250000 0.00000000 -0.249996 0.326630E-5
Xg -0.804623 -0.804625 0.273100E-5 -0.804618 0.464110E-5
X10 -1.014860 -1.014870 0.238170E-5 -1.014836 0.322237E-4
X11 -1.020980 -1.020980 0.456618E-5 -1.020853 0.133479E-3
X12 -1.000000 -1.000000 0.000000000 -0.999788 0.211757E-3

—— Chebyshev Col. Matrix Met. (N,=12)

Fig.3.Numerical and exact solution of the Example 2

We display a plot of Chebyshev
collocation method, presented method
and Exact solution in Fig.3 and we
compare these methods and presented
method in Table2. It seems that the

_ . Suggested Met.(N,=12)

Fig.4.Error function of Example2 for various N.

solutions almost identical. One can
obtain a beter approximation to the
numerical solutions by adding new
terms to the series in Eq.(2). It is of
interest to note that the method
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discussed above works effectively for
linear models.

Example 3.
Let us find the Chebyshev series

solution of linear fredholm integral
equation of the second kind

‘ 3 5 3 . 4
X)= | (t*x = =tx®)yt)dt + 2In(Xx + 1) + =X+ = x> —— xIn(2
y(x) !( SO nOCHT) X+ = xIn(2)

and the exact solution
is Y(X) =2In(Xx+1). The solution of the

linear fredholm integral equation is

of absolute difference

exact and

approximate solutions in Fig.5 and error

functions for various N

is shown in

obtained for N=6,8,10. For numerical Fig.6.
results, see Table 3. We display a plot
Table 3 Error analysis of Example 3 for the x value
X Exact Present Method
Solution N=6 N.=6 N=8 N=8 N=10 N=10
0.0 0.000000 0.004003  0.4003E-2 0.000794 0.7940E-3 0.000165 0.1650E-3
0.1 0.190620 0.192392  0.1772E-2 0.190904 0.2840E-3 0.190668 0.4800E-4
0.2 0.364643 0.365364 0.7210E-3 0.364734 0.9100E-4 0.364655 0.1240E-4
0.3 0.524728 0.524989  0.2610E-3 0.524753 0.2500E-4 0.524731 0.2900E-5
0.4 0.672944 0.673020  0.7600E-4 0.672949 0.5000E-5 0.672945 0.8000E-6
0.5 0.810930 0.810939  0.9000E-5 0.810929 0.1000E-5 0.810930 0.4000E-6
0.6 0.940007 0.939992  0.1500E-4 0.940004 0.3000E-5 0.940007 0.1000E-6
0.7 1.061257 1.061231  0.2600E-4 1.061254 0.3000E-5 1.061257 0.000000
0.8 1.175573 1.175539  0.3400E-4 1.175570 0.3000E-5 1.175574 0.1000E-5
09 1.283708 1.283665 0.4300e-4 1.283702 0.6000E-5 1.283707 0.1000E-5
1.0 1.386294 1.386241 0.5300E-4 1.386289 0.5000E-5 1.386294 0.000000
I I I I I I | | | “f : : : : : : : : :‘ N
I N T I N P R IR et
A R R S S O S N SO N SO
| | | | | | | |
I S R A S e
N R G R RN Ao
! ! ! /‘ ! ! ! ! Y\ | | | | | | | |
N | | | ! | | | ! ! > | | | | | | | | |
| | | | | | | | 2———\,———,———‘———‘——7‘777‘777‘777‘777‘777
S R~ St B el W N ]
| | | | | | | ! ! : [ | | | | | | |
R B R N R L O O S
“777/\77\77\77\777\;E R | NI | | | | | |
a T T I 11— N=10 r L N el Nl el el e e N i Il
I I I I I 1 [ ExactSoton |- | I~ | | | | |
| | | | | | | | | I s S ; [ R

Fig.5.Numerical and exact
Example3 for N=6,8,10

solution of the

Fig.6.Error function of Example3 for various N.
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Example 4.

Consider the linear fredholm integral
equation of the second kind.

( ) 1 j~e2x—§t (t)dt ez><+3
X)=—— +
y 3 y

To evaluate the accuracy of the
approximations produced by the
Chebyshev series expansion method,
y(X) 1is chosen such that the exact

solution is y(x)=e”*. For numerical
results, see Table4.

Fig.7 show the comparison between the
exact solution and different for the N
Chebyshev matrix method solutions of
the system in Eq.(20). Fig.8 show that
the comparison between the errors
fonctions for various N. It seems that
the accuracy increases as the N is
increased.

Table4

Error analysis of Example 4 for the x value
X Exact Present Method

Solution N=6 N=6 N=8 N=8 N=10 N=10

0.0 1.000000  1.145021 0.145021 1.008479  0.8479E-2 1.000318  0.318E-3
0.1 1.221403 1.289439  0.68036E-1  1.224593  0.3190E-2 1.221498 0.950E-4
0.2 1.491825 1.518694 0.26869E-1 1.492754 0.9290E-3 1.491843  0.180E-4
0.3 1.822119  1.828232 0.61130E-2  1.822152 0.3300E-4 1.822113  0.600E-5
0.4 2225541  2.221587 0.39540E-2  2.225227 0.3140E-3 2.225528  0.130E-4
0.5 2718282  2.709202 0.90800E-2 2.717801 0.4810E-3 2.718263 0.190E-4
0.6 3.320117  3.307721 0.12396E-1  3.319509 0.6080E-3 3.320095  0.220E-4
0.7 4.055200  4.039758 0.15442E-1 4.054455 0.7450E-3 4.055173  0.270E-4
0.8 4.953032 4.934126 0.18906E-1 4.952122 0.9100E-3 4.952998  0.340E-4
0.9 6.049647  6.026554 0.23093E-1 6.048536 0.1111E-2 6.049606 0.410E-4
1.0 7.389056  7.360848 0.28208E-1  7.387697 0.1359E-2 7.389007  0.490E-4

| 1
0.8 09 1

Fig.7.Numerical and exact
Example4 for N=6,8,10

solution of the

Fig.8.Error function of Example4 for various N.
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Example 5.

Consider the linear fredholm integral

equation
1

Example5[19]. We compare Legendre
wavelet, presented method and Exact
solution in Table5. It seems that the
solutions almost identical. One can
obtain a beter approximation to the

. sin(X) — X cos(X)
ISln(Xt)Y(t)dt = 2 numerical solutions by adding new
0 terms to the series in Eq.(2).
with the exact solution Yy(X)=X.

Table5 shows the numerical results of

Table5 Error analysis of Example 5 for the x value

X Exact Legendre Legendre
Solution Wavelets multi-wavelets Present Method

met[19] met.[19]
0.0  0.00000000 0.0001183000 0.00003230000 0.00000000
0.1 0.10000000 0.1000354200 0.10000845500 0.10000000
0.2 0.20000000 0.2000119300 0.20001539000 0.20000000
0.3 0.30000000 0.3000237700 0.30000957000 0.30000000
0.4 0.40000000 0.4000011000 0.40000059440 0.40000000
0.5  0.50000000 0.5000112100 0.50000198300 0.50000000
0.6  0.60000000 0.6000053600 0.60000087410 0.60000000
0.7  0.70000000 0.7000023500 0.70000023510 0.70000000
0.8  0.80000000 0.8000005900 0.80000004456 0.80000000
0.9  0.90000000 0.9000006900 0.90000001561 0.90000000

Example 6.

Consider the linear fredholm integral

equation

X+1

1
J'e“y(t)dt _& -
0

terms to the series in Eq.(2). It is of

interest

to note

that

the

method

discussed above works effectively for
linear models.

Table6 Absolute errors obtained for Example 6

X+1 X Exact Legendre
. . . Solution  wavelets  Present
with the exact solution Yy(x)=e". met.[20]  Method
. 0.0 1.000000 1.001110 1.011882
Table6 shows the numerlcal results of o1 1105171 1110467 1103574
Example6[20]. We display a plot of 0.2 1221403 1.221070 1.212385
Legendre wavelet, presented method 03 1.349859 1350320 1.338317
. . . 0.4 1.491825 1.492420 1.481369
and Exact solution in Fig.10 and we 0s L648721 1650970  1.641542
compare these methods and presented 0.6 1.822119 1.821280 1.818834
method in Table6. It seems that the 0.7 2.013753  2.012970 2.013247
. . . 0.8 2225541  2.226030 2.224780
solutions almost identical. One can 09 5150603 2460460 2453434

obtain a beter approximation to the
numerical solutions by adding new
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2.5

15 ——— AL

T T
—— Exact solution 78
—— Legendre wavelets met.

0.5 0.6 0.7 0.8 0.9

Fig.9. Comparison of Legendre wavelets and Chebyshev collocation method for Example 6

Example 7.

In this final example we consider the
linear fredholm integral equation

y(X) = x> + 2j(1 +xt)y(t)dt

with the exact solution

13

y(x) =X’ _%X_ﬂ' If the matrices

are substituted in (20), it is obtained
linear algebraic system.This system
yields the approximate solution of the
problem. The result using the
Chebyshev matrix method discussed in
Section 3 is the same with the exact
solution.

5. CONCLUSION

In recent years, the studies of linear

fredholm integral equation have
attracted the attention of many
mathematicians and physicists. The

Chebyshev matrix methods are used to
solve the linear fredholm integral
equation numerically. The method
proposed in this paper can be applied to a
wide class of Fredholm integral equations

of the second kind arising not only in
radiative heat transfer but also in a number
of other applications, e.g., potential theory,
radiative equilibrium, and electrostatics.
The approach leads to an approximate
solution of the integral equation which can
be expressed explicitly in a simple, closed
form and which can be effectively
computed using symbolic computing codes
on any modern Personal Computer. To get
the best approximating solution of the
equation, we take more forms from the
Chebyshev expansion of functions that
is , the truncation limit N must be
chosen large enough. In addition, an
interesting feature of this method is to
find the analytical solutions if the
equation has an exact solution that is a
polynomial functions.

As a result, the power of the employed
method is confirmed. We assured the
correctness of the obtained solutions by
putting them back into the original
equation with the aid of Maple, it
provides an extra measure of confidence
in the results. The method can also be
extended to the system of linear



10.

1.

12.
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fredholm integral equations, but some
modifications are required.
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