
Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22(1-2) 26-36 (2006)
http://fbe.erciyes.edu.tr/

ISSN 1012-2354

MINIMAL SORTING NETWORK REALIZATION ON FPGA FOR GENETIC
PROGRAMMING

Şerife SUNGUNa, Yavuz ŞENOL*b, Mustafa GÜNDÜZALPb

a Computer Engineering Dept., Dokuz Eylul University, 35100 Bornova, İzmir, TURKEY

b Electrical and Electronics Eng.Dept., Dokuz Eylul University, 35160 Buca, İzmir, TURKEY

ABSTRACT

This paper describes how the minimal sorting network (MSN) for selection operation of genetic programming can
be implemented on Flex10K FPGA by using MaxPlus II tool of Altera.Four different implementations of sorting
network have been realised to accelerate the time-consuming process of sorting individuals in the tournament in
ascending order of their fitness values.Especially in the fourth one, with the help of the parallel processing capability
of the reconfigurable computing on FPGA, total number of comparison-exchange operations has been successfully
reduced. Therefore, the fitness measurement process of the genetic programming has been accelerated.

Keywords: Minimal sorting network (MNS), Reconfigurable computing, Genetic programming, FPGA.

GENETİK PROGRAMLAMA İÇİN FPGA ÜZERİNDE EN KÜÇÜK SIRALAMA
AĞININ GERÇEKLENMESİ

ÖZET

Bu makale, Altera MaxPlusII aracını Flex 10K FPGA üzerinde kullanarak genetik programlamanın seçim işlemi
için en küçük sıralama ağının nasıl gerçeklenebileceğini anlatmaktadır. Zaman alıcı bir işlem olan turnuvadaki
bireylerin uygunluk değerlerinin azalan bir düzende sıralanması işleminin hızlandırılmasını sağlamak amacıyla
sıralama ağının dört farklı uygulaması gerçeklenmiştir.Özellikle dördüncü sırada gerçeklenen ağ ile FPGA
üzerindeki yeniden yapılandıralabilir bilişimin paralel işleme yeteneği yardımıyla karşılaştırma-yerdeğiştirme
işlemlerinin toplam sayısı başarılı bir şekilde azaltılmıştır. Böylece, genetik programlamada uygunluk ölçüm işlemi
hızlandırılmıştır.

Anahtar kelimeler: En küçük sıralama ağı, Yeniden yapılandırılabilir bilişim, Genetik programlama, FPGA.

*E-posta: yavuz.senol@eee.deu.edu.tr

Minimal Sorting Network Realization on FPGA for Genetic Programming

27

1. INTRODUCTION

Genetic Programming (GP) is the answer to the question, how a computer can learn to solve problems without being
explicitly programmed 1. . This is the definition of the automatic programming 2. and it is performed by genetically
breeding a population of computer programs using the principles of Darwinian natural selection and biologically
inspired operations. The genetic algorithm starts with a population having certain number of individuals N. The next
step is to choose M individuals to use in a tournament (M<<N). A fitness value is assigned to each individual in the
tournament using the fitness measure. Then, the individuals are ranked in ascending order with respect to fitness
measure. Finally, the new M/2 individuals are generated form fittest M/2 individuals by using genetic operators,
reproduction, crossover, mutation, to replace with the M/2 worst individuals. The process of ranking the individuals
and separating the M/2 fittest individual is performed by selection operation. The execution of the algorithm goes
on until to find a program or individual that solves the problem.

Computationally intensive part of GP is the fitness measurement of each individual in each generation of the
evolving population since each individual is to be run for many different combinations of inputs. Implementation of
the GP on traditional Von Neuman type architecture requires M times calculations of fitness measurements of each
individual for a tournament 3. .

The intense computational requirement of GP applications can be met with dynamic Field Programmable Gate
Arrays (FPGA) 4. that are massively parallel computational devices. Now, there is a need for a sorting algorithm to
realise the ranking of fitness values in selection operation that is the consequence of competition among individuals
in a population. The hardware implementations of general purpose sorting algorithms 5. bring many difficulties,
inefficiencies, and also increase the complexity of the system. The minimal sorting network 6. that is an algorithm
for sorting small number of items is the best way of realisation of ranking process. In addition, the use of FPGA
allows the parallel implementation of the algorithm. Therefore, the complete run time of the population evolution
has been dramatically reduced.

Section 2 describes reconfigurable computing and the technology of FPGA. Section 3 gives definition of minimal
sorting network. Section 4 gives realisation of minimal sorting algorithm in three subsections. Section 5 describes
the results. Finally, section 6 gives the conclusion.

2. FPGA
Field Programmable Gate Array technology has emerged as the principle technology behind
reconfigurable/configurable computing (RCC) due to it’s electronically re-programmable characteristics 7. , wide
cross-section of computing structures containing memory and logic, speed and density.

An FPGA blurs the distinction between hardware and software. The "hardware" fabricated by a foundry is general
purpose; consequently they are mass produced and affordable. The logic of an FPGA is customized by loading a
"configuration," which is similar to a software program. The resulting FPGA combines the best features of both
hardware and software. It is faster and smaller than truly general-purpose hardware. It has also smaller Non-
recurring Engineering (NRE) costs and transition costs, since it can be easily recustomized — without modifying the
hardware — by designing and loading a different configuration. A reconfigurable computer could be upgraded, or
even reconfigured for a completely different function, from a remote location.

FPGAs have an architecture similar to Mask-Programmable Logic Devices in that they consist of an array of logic
cells and wire segments 7. . The functionality of the logic cells and the inter-connection between the blocks are user
programmable. The programming process of FPGAs is more closely related to traditional Programmable Logic
Devices (PLD) than Mask-Programmable technologies. On the other hand, the routing and logic implementation of
a FPGA is more varied than that available from a PLD. The central advantage of FPGA technology lies in their real-
time re-programmability and an ability to provide an explicit hardware representation of the application algorithm,
thus supporting fine grained parallelism and application specific instructions.

FPGAs typically consist of a regular matrix of programmable interconnect with at least two types of interconnection
resources linking logic cells to logic cells or logic cells to I/O blocks. Manufacturers differ in their respective
approaches to programmability, logic cell structure and routing methodology. Depending on the logic cell, the

Ş. Sungun, Y. Şenol, M. Gündüzalp / Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22(1-2) 26-36 (2006)

28

device density and functionality varies. Moreover, the device logic cell will also influence the flexibility of the
routing and predictability of any timing analysis.

3. MINIMAL SORTING NETWORK
A sorting network is an algorithm for sorting items. Sorting process is performed with a sequence of
comparison-exchange operations that are executed in a fixed order.

Figure 1 shows a sorting network for four items that are a, b, c and d. The numbers within the circles represent states
for each comparison-exchange operation.

Figure 1. Minimal sorting network for four items.

The items, a, b, c and d to be sorted are given at the left end of the horizontal lines. The first vertical line connecting
two upper horizontal lines indicates that items a and b are to be compared and exchanged, if necessary, so that the
larger one is always at the bottom. This step and the next consecutive three steps cause the largest and smallest items
to be routed down and up, respectively. The fifth step ensures that the remaining two items end up in the correct
order and therefore correctly sorted output is obtained at the end of the fifth step. A five-step network is known to be
minimal for four items 5. .

Sorting networks are independent of their data in the sense that they always perform the same fixed sequence of
comparison-exchange operations. Sorting networks are also more efficient for sorting small numbers of items than
the well-known non-oblivious sorting algorithms such as Quicksort 8. .

4. MINIMAL SORTING ALGORITHM
To efficiently sort a small number of items, we neither attempt to directly map a general purpose-sorting algorithm
into hardware or use a brute force hardware implementation. Instead, the concept of minimal sorting networks is
used 6. , where the principle objective of a Minimum Sorting Algorithm (MSA) is to sort items by using the minimal
number of pairwise comparison-exchange operations. In the case of 4 items the minimum number of such operations
is five. Table 1 summarises the processing steps of the MSA.

Table 1. Example of 4 items sort using MSN.

Items Initial
Values T1 T2 T3 T4 T5

Sorted
Items

A 7 5 4 4

B 5 7 6 5 5

C 6 4 5 6 6

D 4 6 7 7

a

b b

d

c

d

a

c

a

b

c

d

b

c

1

2

3

4
5

Minimal Sorting Network Realization on FPGA for Genetic Programming

29

As an example, consider the case in which the four items take the following values: a(7), b(5), c(6), d(4). Table 1
illustrates the progress of the search for this example. However, from a hardware perspective this is expensive,
because exchange operations of long integer values require more hardware components. If the index values that are
pointing to the corresponding items are used then the implementation will be independent of item value sizes. This
process is summarised in Table 2 for 4 items.

As described in section 1 there are four fitness values for individuals in each tournament. This well suit to the MSA
to select the best two individuals. Two bits index is enough for four fitness measurements.

One way of sorting items using index values can be implemented as given in Figure 2. Here, counters represent
fitness values that are the items to be sorted. Each counter has an associated 2-bit address {00, 01, 10, 11}. The
contents of counters are loaded into A and B inputs of the comparator in the order given in Figure 1. The main
operation in this implementation is the comparison of fitness values A, and B and exchange of corresponding index
values, that are represented as a, b, c, and d. If A is greater than B, the output of the comparator is set to true (T), and
then the index values of corresponding counters are swapped.

Table 2. Example of 4 items sort using MSN and indexed location.

Items Index
Values T1 T2 T3 T4 T5

Sorted
Items

7 0 1 3 3 4

5 1 0 2 1 5

6 2 3 1 2 6

4 3 2 0 0 7

F represents false situation and in this case, there is no swap. TR is a dummy register that is used during the swap
operation of index values. The content of the first value is saved into TR before it is loaded with the new value. The
final piece of hardware, state machine, represents the control circuitry responsible for coordinating the entire process
(pairwise loading of counter values to the ‘m’ bit comparator and manipulating the order of the counters’ indexes in
the registers accordingly). Thus, the contents of registers from a to d following the execution of the sort algorithm
indicates the required ascending ordered results.

Figure 2. Minimum sorting network hardware.

 Bus
Registers indicating
Sort solution (indexes of counters)

Counter
<00>

Counter
<01>

Counter
<10>

Counter
<11>

A

B

A
>
B

a

b

c

d

 TR

Control Unit
With

State Machine

T/F

Ş. Sungun, Y. Şenol, M. Gündüzalp / Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22(1-2) 26-36 (2006)

30

Although it is not illustrated in Figure 2 the comparator and four m-bit counters are linked by a suitable bus
structure. This requires a pair of 4 to 1 multiplexer for each bit of counters, one for A and one for B input of the
comparator. It is also possible to use m-bit tri-state bus in place of multiplexers.

4.1 Implementation of MSN on FPGA, Sorter-1

The specific action of the controller unit given in Figure 2 is expressed as a Finite State machine using the algorithm
in Figure 3. This algorithm provides a particularly efficient mapping to the FPGA reconfigurable computing
platform, especially when the one-hot methodology is used 9. . For one-hot implementation of the sorter in Figure 3
eleven D flip-flops labelled with states names are required. Table 3 contains the information needed to produce the
inputs to the one-hot flip-flops. Then the MSA described in the previous section is implemented on FPGA platform
to sort fitness values of each tournament with four individuals.

NO

YES

YES

YES

YES

NO

NO

NO

NO

YES
A > B

A ← b
B ← c

A > B

A ← b
B ← d

A > B

A ← a
B ← c

A > B

A ← c
B ← d

A > B

A ← a
B ← b

BEGIN

T = a
a = b b = T

T = c
c = d d = T

T = a
a = c c = T

T = b
b = d d = T

T = b
b = c c = T END

1

2

4

3

5

6

8

0

9

11

10

7

T0

T1

T4

T5

T9

T8

T12

T13

T16

T17

T20

T2

T3

T6

T7

T10

T11

T18

T19

T14

T15

State
Numbers

State
Numbers

Timing
codes

Timing
codes

Figure 3. Sorting Algorithm for four values (Sorter–1).

Instead of the registers containing the fitness values of four individuals, the index addresses of them are used in the
sorting process. By doing so, the sorting device becomes domain size independent.

The hardware realization of selection operation of GP by using MSN here named as Sorter-1 was obtained on
Flex10K device using MaxPlusII platform. This realization is summarised in Figure 3. The realized unit then was
tested for several input values. The following timing results were obtained when the clock period is equal to T.

Minimal Sorting Network Realization on FPGA for Genetic Programming

31

Time requirement : 20 T (the worst case, If all comparison results are TRUE)
: 15 T (the best case, If all results are already sorted)

Table 3. State transition data for one-hot implementation of the Sorter-1.

 N E X T

S T A T E

P R E S E N T

S T A T E

C O N D I T I O N

F L I P - F L O P F U N C T I O N

1 0 11 =D

2 1 C O M P 712 . QC O M PQD +=

 7

3 2 C O M P 822 . QC O M PQD +=

 8

4 3 C O M P 934 . QC O M PQD +=

 9

5 4 C O M P 1 045 . QC O M PQD +=

 1 0

6 5
1 156 . QC O M PQD +=

 1 1

7 1 C O M P C O M PQD .17 =

8 2 C O M P C O M PQD .28 =

9 3 C O M PQD .39 =

1 0 4 C O M P C O M PQD .41 0 =

1 1 5 C O M P C O M PQD .51 1 =

4.2 Sorter-2 Design

In MSN algorithm of the Sorter-1 the use of temporary register TR for swapping the index addresses causes the
design to spend 5 extra T clock periods. This waste of time can be eliminated by exploiting the advantage of
consecutive synchronous operation of D flip-flops. In new design Q output of the first D flip flop connected to the
input of the second D flip flop. The Q output of the second D flip flop is also connected to the D input of the first
one. Both are derived with the same clock. With this realization, each of the state numbers 7, 8, 9, 10 and 11 can be
performed within a single clock period T instead of two clock periods. The logical explanation and illustration of the
new design is given in Table 4 and, Figure 4 respectively.

Table 4. Transition table for swap function.

C O M P . IN P U T N E X T R E G IS T E R V A L U E S P R E S E N T

S T A T E A B

N E X T

S T A T E a b c d

1 A b 7 B A

2 C d 8 B A

3 A c 9 B A

4 B d 1 0 B A

5 B c 1 1 B A

Ş. Sungun, Y. Şenol, M. Gündüzalp / Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22(1-2) 26-36 (2006)

32

Figure 4. Block diagram of swap device (for sorter-2).

4.3 Sorter-3 and Sorter-4 Design
In sorting algorithm 2, c and d are compared after a and b comparison. Due to the use of a single comparator. By
using an additional comparator and a multiplexer within the logic circuit, two individual discrete comparison steps
can be performed at the same time instance in parallel. This new sorting algorithm was realized with a new sorter
named as sorter 3. With this modification it is possible to have the shortest response time to sort the fitness cases.
The processing states for sorter 3 can be seen in Figure 5.

Figure 5. Processing states for Sorter-3.

As seen in Figure 5 a-b and c-d comparisons (state-1) are performed at the same time in parallel. The comparison
results are shown as Comp-X and Comp-Y, respectively. T2, T4 and T6 time instances are used for swap operations
according to the comparison results. The swap operation takes place only if the first item is greater than the second.
Whether the swap takes place or not, time instances reserved for swap operation are always consumed. Therefore,
the total time spent for completing sorting process is always equal to 6 clock cycles. It is also possible to realize a
more efficient sorter in terms of time consumption. However, this can be obtained with a cost of more complicated
system. This idea was also realised with a new sorter and that is called as Sorter-4. In addition, this idea is possible
for only 25% of whole processing time of comparisons. The more the numbers are in order the shorter execution
time for sorter-4.

a

1
0

A

B

Sb

1
0

B

A

Sc

b

c

d

mux

BUS A

mux

BUS B

0
1
2
3
 S1 S0

mux

a
b
c
d

SA1 SA0

BUS A

0
1
2
3
 S1 S0

mux

a
b
c
d

SB1 SB0

BUS B

swap swap swap

a
b b

d

c

d

a

c

a

b

c

d

b

c

1

1

3 5

2 4 6

Minimal Sorting Network Realization on FPGA for Genetic Programming

33

Figure 6. Sorter 3.

State transitions shown in Figure 6 are given in Table 5 with corresponding swap operations. Table 6 gives the
explanations of symbols used for Sorter 3.

Table 5. Transition table for swap function of Sorter-3.

NO

YES

YES

NO

A > B

A ← a
B ← c

A > B

A ← a
B ← b

BEGIN

END

1

2

4

3

5

6

T1

T2

T3

T4

State
Numbers

Timing
codes

NO

NO

A > B

A ← b
B ← d

A > B

A ← c
B ← d

YES
Swap(c,d)

Swap(b,d)

A > B

A ← b
B ← c

YES

Swap(b,c)
YES

7

NO

T5

T6

T7

Swap(a,b)

Swap(a,c)

COMP-X

INPUT

COMP-Y

INPUT

NEXT REGISTER

VALUES

PRESENT

STATE

Ax Bx Ay By

NEXT

STATE

a b c d

1 a b c d 2 Bx Ax By Ay

3 a c b d 4 Bx By Ax Ay

5 b c 6 By Ay

Ş. Sungun, Y. Şenol, M. Gündüzalp / Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22(1-2) 26-36 (2006)

34

 A
COMP-1
B

CompX a
0
1

B y
A x

S b
0
1

A x
B y

S c

b

c

d

mux

A Y

mux

 B x
E a

E b

E c

E d

0
1

a

b A x

SA x

0
1

c

b Bx

SBx

0
1

d

c By

SBy

0
1

b

c Ay

SAy

DATA-Ax

DATA-Bx

A
COMP-2
B

DATA-A Y

DATA-B Y

CompY

SAx = T5 Sb = T1 Ea = (T2+ T4) CompX
SBx = T1 Sb = T1 Eb =T2 . CompX + (T4+ T6) CompY
SAy= T1 Ec = T2 . CompY + (T4+ T6) CompX
SBy = T5 Ed =(T2+ T4) CompY

Figure 7. Block diagram of swap device (for sorter-3).

Table 6. Explanation of symbols used for Sorter-3 circuit.

Symbol Explanation Bit
number

CompX, CompY Outputs of Comparator with A and B inputs (“1” if
A>B) 1

DATA-Ax,DATA-Bx DATA-AY,DATA-
BY Ax, Bx, Ay, By are address of tournament results 4

a, b, c, d Address index registers 2

Ea, Eb, Ec, ve Ed Enable for writing to address registers 1

Ax, Bx
Address of data which is sent to inputs (A and B) of the
first comparator (Comp-1) 2

Ay, By
Address of data which is sent to inputs (A and B) of the
second comparator (Comp-2) 2

SAx,SBx,SAy,SBy
Selection input of multiplexer determining address of
the data to comparator 1

5. RESULTS

In this work an optimal 5-step 4-sorter was designed that has less steps than the sorting network described in 1962
O’Conner and Nelson patent on sorting networks. MSN has been realised in four different ways and named as the
sorter-1, sorter-2, sorter-3, and sorter-4 respectively. Figure 8 shows the comparison results in terms of swap
numbers and execution times. It is clearly seen that in all cases the sorter-4 takes less execution time than all other
sorters. Moreover, the sorter-3 is always executed at constant time duration since all swap operations execution
times are spent without considering the requirement of swap operation. The minimum execution time for sorter-4 is
1.1µsec. The success of sorter-4 totally depends on how the numbers are located. This is illustrated as optimistic and

Minimal Sorting Network Realization on FPGA for Genetic Programming

35

pessimistic in Figure 8. For two swap operations the pessimistic corresponds to the scenario where two swaps takes
place at different steps. Whereas the optimistic assumes that two swap operations are located at the same step.

0

0,5

1

1,5

2

2,5

3

3,5

0 1 2 3 4 5 average
SWAP NUMBERS

µS
SORTER-1

SORTER-2

SORTER-3

SORTER-4
(pessimistic)
SORTER-4
(optimistic)

Figure 8. Comparison of the sorters.

6. CONCLUSION

This paper gives the realisation of minimal sorting network for selection operation of genetic programming. The
implementation of MSN was realised on Flex10K FPGA by using MaxPlus II tool of Altera. Firstly, 5-step 4-sorter
was implemented as described by O’Conner and Nelson, and the sorter was named as sorter1. With the advantage of
using FPGA’s sorter-1 was improved by eliminating the use of the temporary register as described in section 5.2.
Finally, parallel processing capability of FPGA’s allowed further improvement of the sorter-1. The final sorter that
has the minimum execution time for obtaining fully ordered numbers was named as sorter-4. All designed sorters
are independent of item sizes.

ACKNOWLEDGMENTS

We acknowledge TUBITAK for supplying the computational facilities, on which this research was conducted by
TUBITAK research grant 199E023.

REFERENCES
1. Banzhaf, W, Nordin, P., Keller, R.E., Genetic Programming-An Introduction on the Automatic Evolution of
 Computer Programs and Its Applications, pp. 106-123, Morgan Kaufmann Publishers, San Francisco, 1998.
2. Koza, J.R, Andre, D., Evolution of Both the Artchitecture and the Sequence of Work-Performing Steps of a
 Computer Program Using Genetic Programming with Architecture-Altering Operations, AAAI Fall Symposium
 on Genetic Programming, pp 50-60, November 10-12, 1995.
3. Heywood, M.I., Zincir-Heywood, A.N., Register Based Genetic Programming on FPGA Computing Platforms,
 EuroGP2000, 3rd European Conference on Genetic Programming, Lecture Notes in Computer Science. (vol.
 1802), pp 44-59, 2000.
4. Zhang, X , Ng, K.W. A Review of High-Level Synthesis for Dynamically Reconfigurable FPGAs, Elsevier
 Science-Microprocessors and Microsystems, 24, 199-211, 2000.
5. Koza, J.R., Evolving Computer Programs using Rapidly Reconfigurable Field-Programable Gate Arrays and
 Genetic Programming, FPGA'98 Sixth International Symposium on Field Programmable Gate Arrays, pp. 209-
 219, February 22-24, 1998.
6. Knuth, D.E., The Art of Computer Programming: Sorting and Searching, volume 3. Addison-Wesley Publishing

Ş. Sungun, Y. Şenol, M. Gündüzalp / Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22(1-2) 26-36 (2006)

36

 Company, Reading: MA, 1973.
7. Salcic, Z., Smailagic, A. Digital Systems Design and Prototyping Using Field Programmable Logic, 2nd ed.,
 Kluwer Academic Publishers, 2000.
8. Koza, J.R., Genetic Programming II – Automatic Discovery of Reusable Programs, The MIT Press, London,
 1998.
9. Alfke,P., New,B., Implementing State Machines in LCA devices, In The Programmable Logic Data Book
 XAPP027.001, San Jose, CA: Xilinx, Inc., pp 8-172 - 8-172, 1996.

