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ABSTRACT 
 
We study the transport properties of quasi-two dimensional electrons confined to a modulation doped AlGaAs/GaAs 
heterostructure. Schrödinger and Poisson equations are solved self consistently to obtain the potential profile formed 
at the heterojunction. In addition, empty or occupied quantized energy levels, charge carrier concentrations in each 
occupied level, wave functions corresponding to each level are also calculated. No adjustable parameters are used, it 
is sufficient to provide only the material parameters and doping profiles across the junction. Once the wave 
functions are obtained, electron scattering rates based on Born approximation are calculated using a combination of 
analytical and numerical methods. The scattering rates calculated are those due to remote ionized impurities, 
acoustic phonons and polar optic phonons. Phonons are assumed to be 3-dimensional and interface roughness 
scattering and carrier-carrier scatterings are not included. The drift velocities of electrons along the heterojunction 
plane are obtained as a function of applied electric field at various temperatures and material parameters using 
ensemble Monte Carlo method. Mobility calculations are carried out as a function of temperature and as a function 
of the applied field to the electrons. The subband and valley populations of electrons are also obtained. It is found 
that the two dimensional nature of confined electrons remains only at low temperatures and at low applied fields, at 
higher fields the electrons are quickly transferred to higher levels and eventually they become three dimensional 
electrons. High mobility values are obtained at the temperatures and field values where the two dimensional nature 
of the system is preserved.  
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ALGAAS/GAAS YAPISI İÇİN 2BEG’NIN MONTE CARLO YÖNTEMİ İLE 

ELEKTRON İLETİMİ VE MOBİLİTE HESAPLARI 
ÖZET 

Modülasyon katkılı AlGaAs/GaAs tipi çokluyapıların arayüzeyinde oluşan iki boyutlu elektron gazının (2BEG) 
iletim özellikleri çalışıldı. Çoklueklem arayüzeyinde oluşan potansiyel profilini elde edebilmek için Schrödinger ve 
Poisson denklemleri sayısal olarak kendi içinde uyumlu olarak çözüldü. Boş veya dolu enerji seviyelerine ek olarak 
dolu enerji seviyelerinde bulunan elektron yoğunluğu ve her seviyeye karşılık gelen dalga fonksiyonları 
hesaplanmıştır. Çözümde hiç bir uyum parametresi kullanılmamış, sadece malzeme parametrelerinin verilmesi 
yeterli olmuştur. Dalga fonksiyonları elde edildikten sonra iki boyutlu elektronların saçılma oranları Born yaklaşımı 
temel alınarak analitik ve sayısal yöntemlerle hesaplanmıştır. Gözönüne alınan saçılma mekanizmaları eklem ara 
yüzeyi dışındaki (uzak) iyonize safsızlıklardan saçılma, akustik ve polar optik fonon saçılmalarıdır. Fononların üç 
boyutlu olduğu kabul edilmiş, taşıyıcı-taşıyıcı ve pürüzlü arayüzey saçılmaları göz önüne alınmamıştır. Monte Carlo 
yöntemi kullanılarak elektronların çoklueklem düzlemine paralel olarak sürüklenme hızları uygulanan alanın bir 
fonksiyonu olarak değişik sıcaklık ve malzeme parametre değerlerinde bulunmuştur. Sıcaklığın ve elektronlara 
uygulanan alanın bir fonksiyonu olarak mobilite hesapları yapılmıştır. Ayrıca elektronların kesikli alt bant ve üç 
boyutlu vadi dolulukları da elde edilmiştir. Elektronların iki boyutlu doğasının sadece düşük sıcaklıklar ve düşük 
alanlarda sağlanabildiği, yüksek alanlarda elektronların çabucak daha yüksek seviyelere geçerek üç boyutlu  (3D) 
oldukları bulunmuştur. Sistemin iki boyutlu doğasının korunduğu sıcaklık ve alan değerlerinde yüksek mobilite 
değerleri elde edilmiştir. 
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1. INTRODUCTION 
 
Electronic properties of systems confined to lower dimensions have been studied immensely for a long time[1-3]. 
The transport properties of two-dimensional systems have widely been studied to build high performance electronic 
devices such as MODFETs (Modulation Doped Field Effect Transistors) which is also called HEMTs (High 
Electron Mobility Transistors) and optical devices such as lasers and quantum well photo detectors[4]. A typical 
example is high electron mobility transistors which take advantage of the separation between the electrons and their 
donor impurities. The conductive channel consists of a single heterojunction, thus the electronic states are quantized, 
and the electron motion is quasi two-dimensional. This two dimensional electron gas (2DEG) exhibits good 
transport properties and high electron velocities. A typical method to use in order to understand device physics and 
to explore possible future device architectures is the Monte Carlo technique[3,5,6]. In this paper we provide an 
understanding of two dimensional electron transport along the hetero interface formed at a AlGaAs/GaAs junction at 
various temperatures. The velocity of carriers, the occupancy of quasi two dimensional subband energy levels at the 
heterojunction and the occupancy of three dimensional valleys in GaAs are provided. Mobility of carriers as 
function of temperature and applied field are also presented. The paper is organized as follows: In section II a brief 
account of the self consistent method used in this study and scattering rates that are used in Monte Carlo calculations 
are presented. Section III presents the results and a discussion. Conclusions are provided in Section IV.  
 

2. THEORY 
 
The geometry of the sample studied is shown in Figure 1. The z-direction is assumed to be the growth direction, 
namely it is assumed to be perpendicular to the GaAs/AlGaAs layers. The one-dimensional, one electron 
Schrödinger equation at the AlGaAs/GaAs heterojunction can be written as[7,8] 
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where )(zΨ is the wave function corresponding to quantized levels, E is the energy, V is the one dimensional 
potential at the hetero interface, h is Planck’s constant divided by 2π and m*(z) is the effective mass of the electrons 
whose variation along the direction perpendicular to the interface is taken in to account. The one dimensional 
Poisson equation at the heterojunction can be written as 
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where εs is the dielectric constant of the material, ε0 is the permittivity of free space, φ is the electrostatic potential, 
ND is the ionized donor concentration, n(z) is the total two dimensional electron density and NA is the density of 
ionized acceptors at the junction. The potential V(z) is related to the electrostatic potential φ(z) as  
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where ∆Ec represents the conduction band discontinuity at AlGaAs/GaAs hetero interface. The wave function 

)(zΨ  in equation (1) and the electron density n(z) in equation (2) are related by 
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where Ek is the eigen energy and EF is the Fermi energy level. 
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Equations (1) and (2) are discretized using finite difference approximations for derivatives[8,9,10] and an iterative 
method is used to solve them self consistently. A first guess for V(z) is used to find eigen functions )(ziΨ and 
energy eigen values Ei from (1) and (2). Then electron density n(z) and the electron density ni in each level are found 
from equations (4). Next, a new electrostatic potential φ(z) is determined from the solution of Poisson equation (2) 
using the computed value of n(z) and the doping profiles. Finally a new potential V(z) is obtained from equation (3). 
This procedure is repeated until the potential does not vary beyond a predetermined error tolerance. From these 
solutions one obtains quantized energy levels (empty or occupied), charge carrier concentrations in each occupied 
level, wave functions corresponding to each level and the potential profile formed at the interface[8,9]. A typical 
heterostructure and the corresponding potential profile together with the wave functions for the ground and first 
excited states are shown in Figures 1 and 2, respectively.  
 
The calculation of scattering rates in a quasi-two-dimensional electron gas can be made if the following matrix 
elements are properly calculated for the subband wave functions. The scattering rate of electrons in the Born 
approximation is given by[11]  
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where k is the electron wave vector before scattering, k′ is the electron wave vector after scattering, ||q  is the 

phonon wave vector on the heterojunction plane such that 222
|| yx qqq += and 22

||
2

zqqq += , qz is the component 

of phonon wave vector in the z-direction and H′ is the perturbation Hamiltonian corresponding to the scattering 
mechanism under consideration. The delta function in equation (5) represents energy conservation and the term ħω0 
is the energy of phonons considered. It is now necessary to compute the squared scattering matrix elements 
appearing in equation (5). For the acoustic phonon scattering due to deformation potential it is given by[11] 
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where the proportionality constant dΖ  is termed the acoustic deformation potential, TL is the lattice temperature, kB 
is Boltzmann’s constant, cL is the materials elastic constant, ω0 is the angular frequency of optical phonons assumed 
to be constant and Ω is the volume of the crystal under consideration, and ||k and ||k ′  are respectively, the in plane 
component of electron wave vector before and after the scattering. Acoustic phonon scattering is assumed to be 
elastic, i.e. the ħω0 term in equation (5) is neglected since the energy of acoustic phonons is much less than 
electron’s energy. The term Gm,n(qz) in equation (6) represents the matrix element in the restricted direction (z-
direction) and is given by 
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where the range of integration in z-direction does not necessarily extend to ±∞ since subband wave functions 
effectively vanish outside a certain region. 
 
Insertion of equation (6) into equation (5) and integration over possible final states, taking into account the energy 
and momentum conservation, results in the following scattering rates from the m-th subband to the n-th subband 
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for the acoustic phonons where Φ(m,n) is given by 
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Longitudinal optic phonon scattering of two dimensional carriers is given by[12] 
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where ∆ =Em-En±ħω  where Ei is the energy of i-th subband and  the constant pre factor γ  is defined as 

( ) 222* 2/2 hπω=γ Pem  with P  given by ( )( )2/12/1/1/1 0 m+ε−ε= ∞ NP s . The factor ( )2/12/10 m+N  
represents the phonon density within the crystal. The upper sign represents absorption, which reduces the phonon 
population from (N0+1) to N0, while the lower sign represents emission of a phonon, which increases the number of 
phonons from N0 to (N0+1). 
 
Finally for remote impurity scattering rate from k|| to k′||=k||+q|| can be written as[13] 
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where )( ||qtot

nmφ is the total induced potential due to remote impurities including screening effects, )2( D
impn is the 

density of remote impurities per unit area and the range of integration extends up to Fermi wave vector (kF)|| [7,13].  
 
The integrations in equations (7, 9, 10 and 11) are carried out numerically[10]. Using these calculated scattering 
rates, the drift velocity of electrons along the interface (parallel to the interface) under an applied electric field is 
investigated by using ensemble Monte Carlo technique[11]. For electrons whose energy increase under the applied 
field and as a result transfer to three dimensional high energy valleys, three dimensional scattering rates are used. 
Only the Γ and L valleys of GaAs are considered. The scattering rates considered for the three dimensional electrons 
are as follows: acoustic, polar and non-polar optical phonon scatterings [14-17]. The selection of scattering 
processes are carried out as usual [11,17] for a typical Monte Carlo calculation. 
 

3. RESULTS AND DISCUSSION 
 
Our model of modulation-doped GaAs/Al0.3Ga0.7As structure, its self-consistently calculated potential profile and 
the wave functions for the ground and first excited states are shown in Figures 1 and 2, respectively. A potential 
difference of 0.5 V is assumed to be applied to 150 Å thick GaAs cap to compensate for the depletion charge layer. 
The cap is followed by a 200 Å thick doped AlGaAs layer on which a 100 Å un-doped AlGaAs layer  
is located which is called the spacer. The GaAs base is made as large as possible to obtain convergent results in 
numerical calculations. The material parameters used in the calculations are as given in Table 1.  
Figure 2 shows the calculated subband wave functions at 4.2 K for the lattice matched GaAs/Al0.3Ga0.7As 
heterostructure with AlGaAs layer donor doping of 1x1018 cm-3. The energy levels at this temperature are found to 
be 33 and 41 meV with respect to potential well minima, respectively for the ground and first excited states. In order 
to see the effects of various scattering mechanisms on the ‘two dimensional electron gas’ transport properties, 
ensemble Monte Carlo simulations are carried out for various electric field values in the range 0.1 to 6 kV/cm 
applied to the carriers parallel to the hetero interface. Intra and inter subband scattering of electrons between the two 
dimensional ground and first exited states are considered. Electrons whose energy exceeds the maxima of the 
conduction band energy on the GaAs side in Figure 2 are assumed to be three dimensional and treated as such. This 
assumption can be justified due to the closer spacing of the energy levels at high energies, which forms a quasi 
continuum as in the case of bulk material. Only the two valleys of the conduction band, namely Γ and L valleys of 
bulk GaAs are considered, the effect of X valley is neglected. Non-parabolicity effects of the bands are considered 
except for the scattering by polar optical phonons for which the parabolic band model is used. 
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Figure 1. Structure of the quasi two dimensional channel in the modulation doped GaAs/Al0.3Ga0.7As hetero 
structure. The dielectric constants of AlGaAs and GaAs are 13.1 and 12.9, respectively. 
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Table 1. The material parameters used in the calculations. The geometry of the sample is shown in Figure 1. m0 is 

the mass of free electron (9.1x 10-31 kg). 
 

Dielectric constant of GaAs 12.9 
Dielectric constant of AlGaAs 13.1 
Deformation potential for acoustic phonons Zd (GaAs) (eV) 7.0 
Deformation potential for non polar optical phonons Deq 
(GaAs) (eV/m) 

1x1011 

Inter valley deformation potential for polar optical phonons 
Dij (GaAs) (eV) 

1x1011 

Optical phonon energy, ħω0  (eV) 0.0354 
Effective mass, m* m*

Γ=0.067 m0 
m*

L=0.35 m0 
Doping concentration, (cm-3) ND=1x1018 , NA=0 

 
 
The trajectory of the electron subjected to two-dimensional scattering mechanisms is followed as a function of time 
and the electron is placed in the 3D system after the electron’s energy exceeds the edge of the conduction band. The 
scattering mechanisms included in the simulation for the two dimensional (2D) system are acoustic phonon 
scattering[11], polar optical phonon scattering[12], and remote impurity scattering[7,13]. The scattering mechanisms 
considered for the three dimensional electrons are acoustic, polar and non-polar optical phonon scatterings [14-17]. 
Self-consistently calculated electronic states were used in the calculation of the 2D scattering rates.  
 
Velocity-time characteristics for GaAs/Al0.3Ga0.7As modulation doped heterostructures for different applied electric 
fields are shown in Figure 3. It can easily be seen from the figure that velocities exhibit large transient overshoots at 
high fields before the steady state values are reached. This is due to the disparity of the momentum and energy 
relaxation times as functions of electron energy. Transient overshoot is typically observed when the electric field 
applied is so high that electrons can reach the high-energy region, where the momentum relaxation time is smaller 
than the energy relaxation time. Later energy relaxation becomes effective so that the distribution function spreads 
and the drift velocity decreases.  
 
We also note that the velocity overshoot in GaAs/Al0.3Ga0.7As is observed when the electric field is higher than 
about 0.5 kV/cm as seen in Figure 3. At lower fields it takes a long time to reach the steady state velocity where the 
velocity makes a couple of oscillations before reaching the steady state value. Further notice that there is a transition 
region through which the characteristic behavior of the velocity-time changes especially for applied field values 
above 3 kV/cm. This is apparent for example for an applied field of 4 kV/cm in Figure 3 where there are two peaks 
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in velocity. The first peak in velocity is due to the two dimensional electrons and the second peak is due to electrons 
mainly in the Γ valley. The second peak begins to decrease from the moment the L valley begins to be populated. 

 
Let us now consider Figure 3 in some more detail. For all applied field values in that figure, there are two regions 
for the rate of velocity increase as a function of time until the maximum velocity value is attained. For example, 
consider the velocity curve that corresponds to an applied field of 0.5 kV/cm. The velocity increases at a specific 

Figure 3. Average velocity of electrons as a function of time at various applied fields parallel to the hetero 
interface. Note that overshoot effects become apparent at fields above about 0.5 kV/cm. At lower 
fields, it takes a long time compared to higher fields to reach the steady state velocity. The rate of 
velocity increase has two regimes, the first one is due to electrons in the ground and first subbands, 
and the second part is mainly due to electrons in the Γ and L valleys.

0 2 4 6
Time (ps)

0

1

2

3

4

5

Ve
loc

ity
( 1

0
7 cm

/ s
)

6 kV/cm

5 kV/cm

4 kV/cm
3 kV/cm

2 kV/cm

1 kV/cm

0.5 kV/cm
0.4 KV/cm

0.3 kV/cm
0.2 kV/cm

0.1 kV/cm

Figure 2. Potential profile (thick line) and wave functions corresponding to ground (thin line) and first 
excited (dashed line) states. 

0.0E+0 1.0E+3 2.0E+3

Position ( Å )

-0
.2

0.
0

0.
2

0.
4

0.
6

V
(e

V
)

W
av

e
F

un
ct

io
n

(A
rb

. U
ni

ts
)



Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi 21 (1-2), 13-23, 2005 
 

19

0 2 4 6
Time (ps)

0

1

2

3

4

5

V
el

oc
ity

(1
07 cm

/s
)

0

20

40

60

80

100

%
Po

pu
la

tio
n

1-st subband

Band

L Band

�

2-nd subband

velocity

2 kV/cm

4 kV/cm

5 kV/cm

Figure 4. Sub band and Γand L valley occupancies as a function of time at 4.2 K at applied field values 
of 2 (short dashed lines) 4 (dashed dotted lines) and 5 kV/cm (solid lines). The average 
velocity of electrons is also depicted to show the correspondence between level and valley 
occupancies and electron velocity. Notice the development of a second peak in velocity as the 
applied field increases. 

rate up to about 2 ps, and then it increases at a different rate after that time until it reaches its maximum value. The 
former rate is mainly due to electrons in the two dimensional system and the latter is mainly due to electrons that are 
transferred from two dimensions to the three dimensional Γ valley. This mentioned behavior exists in all curves 
depicted in Figure 3. Consider the velocity curve for an applied field of 2 kV/cm in Figure 3. The same curve is 
shown in Figure 4 together with the electron occupancies of two dimensional energy levels and 3D Γ and L valleys 
of GaAs. As can be seen in Figure 4, the velocity increases until all electrons are transferred from the ground and 
first subbands to the 3D Γ valley at a certain rate (up to 0.5 ps), and at a different rate after all electrons are 
transferred to the Γ valley. When the velocity has reached its maximum value in Figures 3 or 4 for an applied field 
F=2 kV/cm, all electrons were already in Γ valley and hence the velocity overshoot observed for the present value of 
applied field is solely due to electrons in the Γ valley. The L valley is almost empty at this field value. But as the  
applied field value increases, the two dimensional electrons reach high velocity values in a short time and are 
transferred from two dimensional system to 3D very quickly. When they become 3D in Γ valley, depending on the 
field value, either the velocity decreases and reaches the steady state value as for example in the case of an applied  
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Figure 5.  Average electron velocity-electric field curves at different temperatures. The average velocity 
decreases as the applied field increases, a phenomenon known as negative differential 
resistance. 
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Figure 6. Mobility of electrons as a function of temperature at an applied electric field of 0.5 kV/cm in 
the absence of remote impurity scattering. High mobility values are attainable only at low 
temperatures and low applied field values. This is precisely when the system has strictly a two 
dimensional character. 
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field of 3 kV/cm in Figure 3, or it continues to increase but at a lower rate and then decrease again as in the case of 
an applied field of 5 kV/cm in Figure 3. There is a transition region of applied field for these two different 
behaviors. Consider the velocity curve in Figure 3 for F=4 kV/cm where two peaks appear in velocity time 
characteristic (or dashed dotted line in Figure 4).  The two dimensional electrons linearly accelerate with time and 
reach a maximum velocity. After the Γ valley begins populating, the velocity decreases for a while and begins to 
increase again and forms the second peak in velocity up until the L valley begin to populate. After this point the 
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Figure 7. The mobility of electrons as a function of applied field at 4.2 K in the absence (diamonds) and 
in the presence (triangles) of remote impurity scattering. Remote impurity scattering can reduce 
the mobility as seen here by a factor of ten. The mobility decreases as the applied field and/or the 
temperature increases. 
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velocity starts to decrease again and after a while reaches a steady state value. At higher fields, for example at an 
applied field of 5 kV/cm shown in Figure 3 (or solid line in Figure 4) electrons accelerate linearly with time until the 
two dimensional levels are completely emptied. After the electrons fully become three dimensional by transferring 
to the Γ valley, their velocity continues to increase linearly but at a lower rate compared to the two dimensional 
case. Although the electrons spend less time in the Γ valley compared to the case of 4 kV/cm applied field, there is 
still no decrease in velocity when the electrons are in the Γ valley in this case since the applied field is high enough  
 

 
to cause the electrons continue to speed up on the average. The decrease in velocity at high F values always occurs 
after the L valley begins to populate as can be seen in Figure 4. The velocity begin to decrease immediately after the 
L valley starts getting populated for all cases considered because the effective mass of the electron increases in the L 
valley. The variation of electron velocity as a function of applied electric field is shown in Figure 5 at various 
temperatures. For each temperature the velocity increases almost linearly at low fields, reaches a maximum value 
and then starts to decrease, a property known as negative differential resistance. The maximum speed attained at a 
given field value decreases as the temperature increases. This can be attributed to the increase in scattering rates due 
to optical phonons. A small shift of the field to higher values at which the maximum speed is achieved as 
temperature increases can also be seen in Figure 5. This shift is due to again the increase in optical phonon 
scattering rates as temperature increases since higher field values are required to attain the maximum speed. Except 
for low field values, the velocity-field characteristics shown in Figure 5 are all due to electrons transferred to the Γ 
and L valleys of GaAs since the two dimensional nature of the system considered is maintained only at very low 
temperatures and low applied field values. When steady state is reached particles are distributed in Γ and L valleys 
only and the ground and first subbands are emptied completely as can be seen in Figure 4. The occupancy of ground  
subband decreases sharply shortly after the field is applied and electrons are transferred to higher levels and valleys. 
Therefore the system is in fact two dimensional for a short duration at moderate field values and it completely 
becomes a three dimensional system after a while. Therefore a truly two dimensional system is achievable only at 
low applied field values (< 0.5 kV/cm) and low temperatures (< 100 K) such that an insignificant amount of 
electrons are transferred to the Γ and L valleys.  
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Mobility calculations of the system under consideration is carried out at various temperature and applied field values 
also. The variation of electron mobility as a function of temperature is shown in Figure 6 where remote impurity 
scattering is not taken into account. The applied field is 0.5 kV/cm so that the system is mainly two dimensional for 
temperatures up to about 100 K. Beyond this temperature most of the carriers are transferred to the Γ valley and 
hence the system becomes three dimensional. The mobility is as high as 4x104 cm2/V·s at low temperatures but it 
approaches the bulk value at room temperature since the system becomes completely three dimensional at these 
temperature values. The variation of mobility as a function of applied field at 4.2 K is shown in Figure 7 in the 
absence and in the presence of remote impurity scattering. High mobility values are attainable only at low 
temperatures and low applied fields. As the temperature or applied field increases the mobility decreases and 
approaches its room temperature bulk values. To see the effect of remote impurity scattering on mobility, the 
mobility values in the presence of remote impurity scattering for a spacer thickness of 100 Å (see Figure 1) is also 
calculated as shown in Figure 7. Mobility values without remote impurity scattering are almost ten times higher at 
low field values. To reduce the effect of remote impurity scattering, the spacer thickness must be increased, but if 
the spacer is too thick then it becomes hard to create a potential well at the junction where the electrons would be 
held in two dimensions. Therefore an optimum value of spacer thickness must be chosen where there are enough 
number of electrons in the two dimensional system and the donor impurities left by the free electrons are 
considerably far away from the junction not to interfere with the motion of two dimensional electrons. 
 

4. CONCLUSIONS 
 

We presented a numerical study of the transport properties of a two dimensional electron gas formed at a 
AlGaAs/GaAs heterojunction under an applied field along the interface plane. The potential profile is obtained by 
the numerical self consistent solution of Schrödinger and Poisson equations. At most two subbands are populated at 
temperatures and material parameters of interest in this study. Velocity overshoot effects are clearly observed for 
fields above 0.5 kV/cm. Further the negative differential resistance phenomena resulting from the inter valley 
scattering for GaAs type materials is also visible at all temperatures studied. Subband level and valley electron 
occupancies are obtained as functions of transient time at various applied fields and the results are seen to be 
compatible with average electron velocity variation. The system considered in this study maintains its two 
dimensional character only at low temperatures and low applied fields. Mobility calculations are also carried out and 
it is seen that high mobility values are attainable only at low temperatures and low applied field values. To see the 
effect of remote impurity scattering, two mobility calculations are carried out for a fixed value of spacer thickness. It 
is seen that the mobility can be ten times higher when remote impurity scattering is not in effect. Further work along 
these lines for quantum wells is in progress.  
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