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Abstract:The use of Artificial Neural Networks (ANNs) for the control of robots has recently become an active research topic in 
control engineering. This paper is presented a review of current research in control of robotic systems based on ANN techniques. 
The main concepts of ANNs are presented and the mathematical background of supervised learning in multilayer networks is 
outlined in first section. A brief summary on adaptive control of dynamic systems is given second section. The application of 
ANNs to control systems is discussed in the last section.  
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KONTROLDA YAPAY SİNİR AĞLARI UYGULAMLARI 

Özet Yapay Sinir Ağlarının (YSA), robotların kontrolu için kullanımı son zamanlarda kontrol mühendisliğinde etkili araştırma 
konusu olmuştur. Bu makalede, YSA esaslı robot sistemlerin kontrolunda yaygın araştırma incelenmesi sunulmuştur. İlk 
bölümde, YSA’nın temel kavramı ve çok katmanlı  danışmalı öğrenmeli sinir ağının matematik ifadesi verilmiştir. Dinamik 
sistemlerin adaptif kontrolu kısa özet halinde Bölüm 2’de değinilmiştir. En son bölümde YSA’nın kontrol sistemlerine 
uygulanması detaylıca sunulmuştur. 

Anahtar kelimeler:  Sinir ağları, robot, kontrol sistemleri, adaptif kontrol. 

1. Artificial Neural Networks  

ANNs are made up of simple, highly interconnected processing units called neurons each of which performs two 
functions: aggregation of its inputs from other neurons or the external environment and generation of an output from 
the aggregated inputs. The output from a neuron is fed to other neurons to which it is connected via weighted links. 
Through this simple structure, ANNs have been shown to be able to approximate most continuous functions to any 
degree of accuracy, by the choice of an appropriate number of neurons and output activation.  

1.1 Artificial Feedforward Neural Networks 

Artificial Feedforward Neural Networks (AFNNs) are made up of one or more hidden layers between the input and 
output layers, as illustrated in Figure 1. The functionality of the network is determined by specifying the strengths of 
the connection paths called weights and the neuron activation function. The input layer distributes inputs to the first 
hidden layer. The inputs then propagate forward through the network and each neuron computes its output according 
to 
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where xim is the output of the ith neuron in the mth layer, Wijm is the weight of the connection between the jth 
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neuron of the (m-1)th layer and the ith neuron of the mth layer and bim is the bias of the ith neuron in the mth layer. 
bim can be regarded as the weight of the connection between a fixed input of unit value and neuron i in layer m. The 
function g(.) is called the neuron activation function.  
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Figure 1. Feedforward network 
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is the activation for the ith neuron in the mth layer. The function g(.) is assumed to be differentiable and to have a 
strictly positive first derivative. 

For neurons in the hidden layers, the activation function is often chosen to be 

g z
e

( ) =
+ −
1

1 z  (3) 

Because the activation is non-linear, the neurons are said to be non-linear neurons. Since in system modelling 
applications the dynamic range of the output data may be greater than 1, the activation function of the output nodes 
is chosen to be linear and the output nodes are said to be linear neurons. Thus, the ith output node performs a 
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weighted sum of its inputs as follows: 

y W xi ij
O

j
m 1

j 1
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= −
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−

∑  (4) 

where m represents the output layer and Wij
O  is the weight of the connection between the jth neuron of the 

last hidden layer and the ith neuron of the output layer. 

Only networks with one hidden layer are considered in the present study, because the results of Cybenko [1989] and 
Funahashi [1989] show that this is sufficient to approximate all continuous functions. Let Θ= [θ1..........θn]T 
represent all the unknown weights and the biases of the network, where n denotes the dimension of the parameter 
vector Θ and is defined as n= nH (nI+1) + nH nO, where nI, nH, and nO refer to the number of neurons in the input 

layer, in the hidden layer and in the output layer respectively. The ith output of a network with a single layer of 
hidden units can then be defined by: 

 

yi= W x Wij
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where xI = [x1
I...........xnI

I]T is the input vector to the network, Wjk
I is the weight of the connection between the kth 

neuron of the input layer and the jth neuron of the hidden layer and bj
H is the bias of the jth neuron in the hidden 

layer. 

1.2 Artificial Recurrent Neural Networks 

Artificial Recurrent Neural Networks (ARNNs) are different from feedforward ones in that their structure 
incorporates feedback. In general, the output of every neuron is fed back with varying gains (weights) to the inputs 
of all neurons (fully connected network). The structure is inherently dynamic, which gives the network powerful 
representation capabilities.  

A well-known dynamic recurrent neural network is the Hopfield neural network, which was originally reported in 
the context of an associative method for pattern recognition [Hopfield, 1982]. The Hopfield neural network is a 
single-layer fully connected neural network. Most of its original applications required that the network performs as a 
stable system with multiple asymptotically stable equilibrium points [Hopfield, 1986].  

The next class of recurrent neural networks, known as recurrent Backpropagation (BP) neural networks, was 
introduced by Pineda and other researchers [Pineda, 1987; Pineda, 1988; Pearlmutter, 1990; Sato, 1990]. Their work 
has shown that the BP algorithm can be extended to arbitrary neural networks as long as they converge to stable 
states. The learning algorithm for these networks is usually called recurrent BP or generalised BP. Figure 2 depicts 
the architecture of a recurrent BP neural network. 
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Figure 2. Configuration of a recurrent network 

Another approach to learning a temporal sequence involves the so-called Tapped Delay Lines Neural Network 
(TDLNN), proposed by various researchers, including Lapedes and Farber [1987], Elman and Zipser [1988] and 
Narendra and Parthasarathy [1991]. However, there are drawbacks to the use of TDLNNs for sequence recognition 
such as the need for networks with many inputs and the consequent difficulty in training [Mozer, 1989]. 

Jordan [1986; 1989], Elman [1990] and Fuji and Ura [1991] have proposed "sequential" networks for temporal 
sequence recognition. In a network of this type, there are both feedforward and feedback connections. The 
recurrency due to the feedback connections gives the network a dynamic memory capacity. In most cases, the 
feedback connections have fixed weights and do not appreciably complicate the training and the BP algorithm may 
be used to modify the network weights at each time step. This type of recurrent network has been used in a number 
of applications [Jordan, 1989; Fuji and Ura, 1991]. 

2. Other Artificial Neural Networks 

Various ANNs have been used to realise neural control schemes. Usually, the specific ANN that must be adopted 
will depend on the dynamic characteristics of the system. If the system is time dependent, the ANN must possess the 
capability to model temporal input-output relationships. Recurrent networks have inherent feedback and hence 
possess a suitable structure for temporal data. On the other hand, multilayer networks provide static non-linear 
mappings and hence have been used mostly for modelling time-invariant non-linear systems. The most popularly 
used paradigm is the multilayer feedforward network with the BP training algorithm. Although its original structure 
is for static representation, it can be adapted for dynamic modelling by introducing delay elements and feedback 
from the output layer to the input layer. 
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Another important ANN model is the Cerebellar Model Arithmetic Computer (CMAC). The CMAC network was 
proposed by Albus [1975a; 1975b] to model the functional methods that a physiological cerebellum uses to co-
ordinate motor neurons in animals. CMAC is an associative memory network and can be used to model high-
dimensional non-linear systems. CMAC is not limited to control problems and can be regarded as a model-free 
function estimator, like other types of ANNs. The stability and convergence properties of CMAC are also well 
established [An et al., 1994] and the growth of interest in CMAC, especially in robotic control applications, arises 
primarily from its desirable characteristics such as simple structure, Least Mean Square training rule, fast training 
speed and localised generalisation of knowledge.  

2.1 Learning Algorithm 

2.1.1 Backpropagation Algorithm 

The Backpropagation (BP) algorithm is described in detail in Rumelhart and McClelland [1986]. Essentially, the 
algorithm includes propagating the differences between the desired and actual values of the outputs of the NN from 
the output layer through the hidden layer(s) to the input layer to compute the changes to the weights of the 
connections between the different layers. This is done so as to reduce those differences and make the NN produce 
the desired outputs. 

2.1.2 Problems with the BP Algorithm 

Despite many successful applications of the BP algorithm, there can be problems with networks adopting it 
[Wasserman, 1989]. The most troublesome problem is the long and uncertain training process, which sometimes 
even fails to converge. Convergence failures generally arise from network paralysis, local minima and temporal 
instability [Wasserman, 1989]. 

1. Network Paralysis: As the network trains, the values of the weights may become very large. This can force all or 
most of the neurons to operate at high output levels, where the derivative of the activation function (which is usually 
a sigmoid) is very small. Since the error propagated backwards for training is proportional to this derivative, the 
training process can be brought to a standstill. This is termed network paralysis. There is little theoretical 
understanding of this problem although various heuristics may be adopted to avoid it or to recover from its effects 
[Wasserman, 1989]. 

2. Local Minima: Local minima can arise if the error surface is in a convoluted and high-dimensional space. In such 
a situation, the network may become trapped in the neighbourhood of a local minimum, because BP is driven by the 
gradient of the surface which is flat at a minimum point. 

3. Temporal Instability: This refers to the disruption of previously learnt information by new training data. The 
standard BP algorithm requires that all vectors in the training set be presented to the network before weight 
adjustment. Thus if new data were to be added, the training procedure would need to be repeated with the complete 
data set. The training process may oscillate if the network operates in a changing environment where it might never 
have the same input twice. 
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3. Adaptive Control Systems 

The last decades have seen some extensive research and major breakthroughs in adaptive control [Craig et al., 
1987]. The objective of adaptive control is to adjust the controller parameters in order to achieve a desired response 
of an unknown or time-variant system with or without an estimated model and/or reference model. If properly 
implemented, it can reduce the variability of parts being produced and increase productivity giving substantial 
economic benefits. 

3.1 Traditional Adaptive Control Methods 

Adaptive control has been a major topic of technical inquiry in the control community since the mid 1950s [Landau, 
1979; Astrom, 1989]. Research in adaptive control was motivated by a desire to perform real-time control of 
partially or completely unknown systems. This attractive idea led to some early ingenious, but intuitive schemes. 
One of these initial approaches was simultaneously to estimate the unknown parameters of the system and generate 
control signals [Kalman, 1958]. However, these earlier schemes did not guarantee the system’s stability. As system 
dynamics change, such a system can become unstable or lead to an unsatisfactory performance. Recently, parametric 
adaptive control strategies based on rigorous stability theorems have been developed to overcome the limitations of 
earlier schemes [Landau, 1979; Astrom, 1989]. 

Current adaptive control strategies can be divided into two categories: indirect and direct. The indirect approach is 
based on on-line system identification of the plant and simultaneous adjustment of control parameters. Self-tuning 
adaptive control strategies, which have become very popular, fall into this category. Self-tuning regulators seek to 
generate control laws for unknown systems, which would converge to the optimal strategies if the dynamics of the 
system are known.  

In general, these adaptive controllers consist of three parts: a recursive parameter estimator, a design calculator and 
a feedback controller with adjustable parameters. Many different versions of self-tuning control are now available, 
mainly differing in controller design principles and on-line parameter estimation method. Some of the widely used 
design principles in self-tuning control entail pole-zero placement, minimum variance control and Linear Quadratic 
Gaussian Control (LQGC). One important requirement of the self-tuning control method is that on-line 
identification must yield an accurate estimate of the 'locally linearized' process model, when the system is non-
linear, so that the control design strategy can generate accurate control parameters. 

The Direct approach does not require explicit model identification. Instead, a desired process model is specified and 
the controller parameters are adjusted so as to minimise the error between the model and actual system outputs. 
Model Reference Adaptive Control (MRAC) falls into this category. Many different variations of this approach can 
be found in the literature [Landau, 1979]. 

3.2 Contributions of Artificial Neural Networks 

Artificial Neural networks (ANNs) have demonstrated the capabilities of modelling a large class of non-linear 
systems and representing input-output relationships robustly. They can be trained to generate correct control signals 
and hence offer a great potential for adaptive control of non-linear systems. Also, the parallel processing nature of 
neural networks provides the capability of processing large amounts of information in real-time once a network has 
been trained.  
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The literature describes many types of neural adaptive controllers, corresponding to the conventional adaptive 
controllers outlined in current section. Narendra and Parthasarathy [1991, 1994] have presented several schemes for 
NN control. Different types of neural networks have been considered [Narendra and Parthasarathy, 1990]. The 
major underlying issue is how to train the network robustly and reliably when the system is rapidly time varying. 
The popular BP algorithm has been the primary choice for ANN training, in spite of the previously mentioned 
drawbacks. 

3.3 Applications to Robotics 

In the robotics community, there is currently a growing interest in using ANN technology [Ge et al., 1997; Er et al., 
1997]. NNs offer several potential advantages over conventional control. For example, calculations are in principle 
carried out in parallel, yielding speed advantages, and programming can be done by training, rather than defining 
explicit instructions. Almost all ANN applications in robot control involve identifying the robot dynamics or inverse 
dynamics and incorporating this knowledge into the robot controller [Miller et al., 1990; Narendra and 
Parthasarathy, 1990; Pham and Oh, 1992; Pham and Yildirim, 1995c]. The approaches used differ in the methods of 
incorporating the NN into the controller and of training and adaptation. The basic idea is to employ a neural network 
to learn repeatedly characteristics of a robot and then use this knowledge to generate control inputs. The major 
advantage of the neural control approach is that it can produce a learning controller for a robot that can operate in an 
uncertain environment. A basic inverse model control scheme for a robot is shown in Figure 3. 
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Figure 3. Inverse model control of a robot 

3.4 Adaptive Artificial Neural-Control Architectures 

Psaltis et al. [1988] proposed three different learning architectures for adaptive neural controllers: indirect learning, 
generalised learning and specialised learning. 

The indirect learning scheme provides a means of generating a feedforward control law with the inverse model of 
the plant. A schematic of this learning architecture is shown in Figure 4. If a correct inverse model is established, the 
output of the overall  

system can track the input commands closely. The training is carried out to minimise the error between the output of 
the artificial neural controller τ and the output of the inverse neural model of the plant τm. However, this scheme 

alone cannot lead to a satisfactory controller design, since the neural network model may not necessarily represent 
the actual system. This is because the network has the tendency of converging to a single value of τ when the input 
and output values of the plant are used for training. 
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The generalised learning method attempts to produce an inverse neural model for the plant by adopting a specified 
input space and generating corresponding output responses. This learning architecture is schematically shown in 
Figure 5. A major difficulty of this architecture is that one must choose an input set τ during training to generate 
outputs ϕa, which are sufficiently close to the desired input ϕd. This scheme, if used for adaptive control, can lead to 
an improperly trained network and may require persistent excitation, which can adversely affect the performance of 
a system [Psaltis et al., 1988]. 

The specialised learning method is an alternative method of training the network, as depicted Figure 6. Training 
involves using the desired responses ϕd as input to the network. The network then learns to find plant inputs τ that 
drive the system outputs ϕa to the desired ϕd, by using the error between desired and actual responses of the plant. 

This architecture addresses the main objections to the previous architectures; it can specially learn in the region of 
interest and it may be trained on-line by fine tuning itself, while actually performing useful work. The weakness of 
this architecture is that modifying the weights based on the total error must involve the plant, which normally is only 
approximately known.  
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Figure 6. Specialised learning scheme 
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Figure 4. Indirect learning scheme 
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Figure 5. General learning scheme 
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The specialised learning scheme can be represented as an adaptive feedforward control scheme as shown in Figure 
7. This type of controller, however, will have little ability to reject disturbances. If a feedback controller is used 
along with the feedforward controller, as shown in Figure 8, disturbance rejection will be improved. The feedback 
controller can be a conventional PID controller or a non-linear neural controller and the feedforward controller is a 
neural controller. As learning proceeds, the error signal will be reduced and the role of the feedforward controller 
increases. 
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Figure 8. Feedforward adaptive control with neural network 

 

A non-linear version of self-tuning control has been proposed that adopts a NN as a plant identifier [Chen and Pao, 
1989], as shown in Figure 9. 
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Figure 9. Self-tuning control with a neural network  
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Figure 10. Indirect model reference adaptive control with 
neural networks  

Similarly, a non-linear model reference adaptive control architecture employing a NN in place of the linear 
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controller has been described [Narendra and Parthasarathy, 1990]. In this case, the non-linear NN replaces the linear 
controllers. While both direct and indirect approaches have been used for the linear case, only the indirect method 
with a NN has been implemented so far. The non-linear plant dynamics is first identified by a NN and then the 
parameters of the controller are adjusted as shown in Figure 10. 

4. Conclusion 

This paper has discussed the basic concepts and characteristics of ANNs. Recent research in system identification 
and control using ANNs has been reviewed. General adaptive control schemes and various artificial neural control 
architectures have been described.  
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