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1. INTRODUCTION

Using strategy sets with constraint and preference correspondences defined on subsets of
Hausdorff topological vector spaces, we present in this paper a variety of equilibrium results
for abstract economies. These equilibrium results are deduced from recent fixed point results
in the literature (see [8, 9, 10]) and our theory improves and generalizes corresponding results
in the literature (see [1, 4, 5, 6, 11, 12] and the references therein).

Now, we recall some fixed point results [8, 9, 10] in the literature. First, we recall the follow-
ing notions from the literature. For a subset K of a topological space X, we denote by Covx (K)
the directed set of all coverings of K by open sets of X (usually we write Cov(K) = Covx (K)).
Given two maps F, G : X — 2" (here 2¥ denotes the family of nonempty subsets of Y) and
a € Cov(Y), F and G are said to be a—close if for any € X there exists U, € o, y € F(z) N Uy
and w € G(z) N U,.

Let @ be a class of topological spaces. A space Y is an extension space for ) (written Y €
ES(Q)) if for any pair (X, K) in @ with K C X closed, any continuous function fy : K — Y
extends to a continuous function f : X — Y. A space Y is an approximate extension space for
Q (written Y € AES(Q)) if for any o € Cov(Y') and any pair (X, K) in  with K C X closed,
and any continuous function fy : K — Y there exists a continuous function f : X — Y such
that f|x is a—close to fo.

Let V be a subset of a Hausdorff topological vector space E. Then, we say V is Schauder
admissible if for every compact subset K of V' and every covering o € Covy (K) there exists a
continuous functions 7, : K — V such that

(i). mq and i : K — V are a—close,
(ii). m(K) is contained in a subset C' C V with C € AES (compact).
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X is said to be ¢g— Schauder admissible if any nonempty compact convex subset Q2 of X is
Schauder admissible.

An upper semicontinuous map ¢ : X — CK(Y) is said to Kakutani (and we write ¢ €
Kak(X,Y)); here CK(Y) denotes the family of nonempty, convex, compact subsets of Y.

Theorem 1.1. Let I be an index set and { X}, be a family of sets each in a Hausdor(f topological vector
space E;. Foreach i € I, let K; be a nonempty compact subset of X; and suppose F; : X = [[,c; Xi —
K; is upper semicontinuous with nonempty convex compact values (ie. F; € Kak(X, K;)). Also
assume K = [[,c; K; is a Schauder admissible subset of the Hausdorff topological vector space £ =
[Iic; Ei- Then, there exists a v € K with x; € Fy(x) for i € I (here x; is the projection of x on X;).

Remark 1.1. One could repace K a Schauder admissible subset of E in Theorem 1.1 (and the other
results in this paper) with other admissible subsets of E described in [7].

Let Z and W be subsets of Hausdorff topological vector spaces Y; and Y3 and G a multi-
function. We say G € DKT(Z,W) [2] if W is convex and there exists amap S : Z — W with
co(S(z)) C G(z) forz € Z, S(x) # 0 for each z € Z and the fibre S (w) = {2 € Z: w € S(2)}
is open (in Z) for each w € W.

Theorem 1.2. Let I be an index set and { X, };cr be a family of convex sets each in a Hausdorff topo-
logical vector space E;. For each i € I suppose F; : X = [[,c; Xy — X;and F; € DKT(X, X;).
In addition assume for each i € I there exists a convex compact set K; with F;(X) C K; C X;. Also
suppose X is a q-Schauder admissible subset of the Hausdorff topological vector space E = [[,.; Ei.
Then, there exists a x € X with x; € F;(x) fori € I.

Remark 1.2. If I is a finite set, then the assumption that "X is a g—Schauder admissible subset of
the Hausdorff topological vector space E” can be removed. In fact we have: Let {X,;}Y , be a family
of convex sets each in a Hausdorff topological vector space E;. For each i € {1,...,N} suppose F; :
X = Hfil X; = X;and F; € DKT(X, X;). In addition assume for each i € {1,..., N} there exists
a convex compact set K; with F;(X) C K; C X;. Then, there exists a v € X with x; € F;(x) for
ie{l,..,N}

Let Z and W be subsets of Hausdorff topological vector spaces Y; and Y> and F' a multifunc-
tion. We say F' € HLPY (Z,W) [3, 4] if W is convex and there exists a map S : Z — W with
co(S(z)) C F(x)forz € Z,S(z) # 0 foreachz € Zand Z = | {int S~'(w) : w € W}; here
ST w)={2€Z: we S}

Theorem 1.3. Let I be an index set and {X;};cr be a family of convex sets each in a Hausdorff topo-
logical vector space E;. For each i € I suppose F; : X = [[,c; Xi — X;and F; € HLPY (X, X;).
In addition assume for each i € I there exists a convex compact set K,; with F;(X) C K; C X,. Also
suppose X is a q-Schauder admissible subset of the Hausdorff topological vector space E = [],.; E.
Then, there exists a v € X with x; € F;(z) fori € I.

Remark 1.3. If I is a finite set, then the assumption that “X is a ¢-Schauder admissible subset of the
Hausdorff topological vector space E” can be removed. In fact we have: Let {X;}N | be a family of
convex sets each in a Hausdorff topological vector space E;. For each i € {1, ..., N} suppose F; : X =
Hf;l X, —» X, and F; € HLPY (X, X;). In addition assume for each i € {1,..., N} there exists a
convex compact set K; with F;(X) C K; C X,. Then, there exists a x € X with z; € F;(x) for
ie{l,..,N}.

We now state a result from the literature [11] which will be used in Section 2.
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Theorem 1.4. Let X and Y be two topological spaces and A an open subset of X. Suppose F; : X —
2Y, Fy 1 A — 2V (here 2Y denotes the family of nonempty subsets of Y') are upper semicontinuous such
that Fy(x) C Fy(x) forall x € A. Then, the map F : X — 2Y defined by

Fi(z), z¢ A
F(I){F2Ex§7 xiA

is upper semicontinuous.

2. ABSTRACT ECONOMY RESULTS

Let I be the set of agents and we describe the abstract economy as I' = (X;, 4;, B;, P;)ic1,
where A;, B; : X = Hie 1 Xi — 2F: are constraint correspondences, P; : X — 2Fi is a pref-
erence correspondence and X; is a choice (or strategy) set which is a subset of a Hausdorff
topological vector space E;. We are interested in finding an equilibrium point for I" i.e. a point
r € X with z; € B;(x) and co A;(z) N co Pi(x) = 0 (or z; € B;(x) and A;(z) N Pi(x) = 0) for
iel.

Theorem 2.5. Let I' = (X, A;, B;, P,)icr be an abstract economy with { X, }icr a family of nonempty
sets each in a Hausdorff topological vector space E; (here I is an index set). Foreachi € I, let A;, B;, P; -
X =[l,e; Xi — 25 and assume the following conditions are satisfied:

(2.1) Ui={xeX: coA(x)NcoPi(x)# 0} is paracompact and open in X
(2.2) cd Bi(= B;) : X — CK(E;) is upper semicontinuous

(2.3) there exists a nonempty compact subset K; of X; with B; : X — CK(K;)
' and K =[],c; K; is a Schauder admissible subset of E = [],.; E;

iel

and

(2.4) x; ¢ coA;(x) Nco Py(x) if x € Uy; here x; is the projection of x on E;.

Fori e Iand x € X, let H;(x) = co A;(z) N co P;(z) and suppose

(2.5) Hi(z) C Bi(x) for xz € U;

and

26) { there ex_ii;ts a Sl 2 U; — 2Fi with co S;(x) C H;(z) for x € U;
and S; " (y) is open (in U;) for each y € E;.

Then there exists a x € X with for each i € I, we have x; € B;(z) and co A;(z) N co Py(x) = 0.

Proof. Note for each i € I from (2.6), we have H; € DKT(U,, E;) so from [2] there exists a
continuous (single valued) selection f; : U; — E; of H; with f;(x) € co(S;(x)) C H;(z) for

x € U;. Foreachi € I, let
) i fz(a:), xr € Ui
Gi(z) = { E(I), z U
Note for each i € I that {f;(z)} C co(S;(z)) C Hi(x) C B;(z) (see (2.5)) if = € U;, so Theorem
1.4 guarantees that G; : X — CK(E;) is upper semicontinuous. Also for each ¢ € I, we have
Gi(z) C Bi(z) C K, forz € X so G; € Kak(X, K;). Now, Theorem 1.1 guarantees a z € K
with z; € G;(x) fori € I. If x € U, forsome i € I, then x; = f;(x) € H;(x) = co A;(x) Nco Pi(x),
which contradicts (2.4). Thus for each i € I, we must have = ¢ U; and then we have z; € B;(7)
and co A;(x) Nco P;(x) = 0. O
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Remark 2.4.
(i). Ifi € I and H; ' (y) is open (in X) for each y € E;, then U; in (2.1) is automatically open in
X. This is immediate once one notices that U; = Uyep, H; *(y).

(ii). Of course there are other obvious analogues of Theorem 2.5 if the assumptions on co A; N co P;
are replaced by assumptions on co A; N P; or ©o A; N P; or o A; N¢o P; or ¢o A; N co P; or
A;NecoP;or A;Neo P, or A; N P or co A; Nco P; and the assumptions on B; are replaced by
assumptions on B;.

Remark 2.5. For each i € I suppose there exists a map S; : X — E; (which may have empty values)
with co S;(x) C Hy(x) for x € X, the fibres S; *(y) are open (in X) for each y € E; and also assume
if x € U;, then S;(x) # 0. Then, (2.6) holds with S; replaced by S;|u,. Let S} denote S;|u,. Fori € I
note S¥ : U; — 2Fi, co S*(x) C H;(z) for x € U; and for y € E; note

(SH ') ={zeliryesi@)}={re X : yeSi(@)}nU;=5"(y) NV
so (S¥)~L(y) which is open in Uj.

Theorem 2.6. Let I = (X, A;, B;, P;)icr be an abstract economy with {X, };cr a family of nonempty
sets each in a Hausdorff topological vector space E; (here I is an index set). For each i € I, let
Ai, Bi, P« X = [lie; Xi — 25 and assume (2.1), (2.2), (2.3) and (2.4) hold. For i € I and
x € X, let H;(z) = co A;(x) N co P;(x) and suppose (2.5) holds. In addition for each i € I assume

2.7) there exists a S; : U; — 2F with co S;(x) C Hi(x) for x € U;
’ and Uz:U{ZTLtUl S;l(w) : wEEi}

Then there exists a x € X with for each i € I we have x; € B;(x) and co A;(x) N co P;(z) = 0.

Proof. Note for each i € I from (2.7), we have H; € HLPY (U;, E;) so from [4] there exists a
continuous (single valued) selection f; : U; — E; of H; with f;(z) € co(Si(x)) C H;(z) for
x € U;. Let G; for i € I be as in Theorem 2.5 and the same reasoning guarantees a + € K with
x; € Gi(x) fori € I. O

Remark 2.6. For each i € I suppose there exists a map S; : X — E; (which may have empty values)
with co Si(x) C Hy(x) forz € X, X = J{intx S; (w) : w € E;} and also assume if v € U,,
then S;(z) # 0. Then, (2.7) holds with S; replaced by S;|y,. Let S} denote S;|y,. For i € I note
S¥:U; — 2Fi, co Sy (z) C Hy(z) for x € U; and now we show U; = |J {inty, (S;)" (w) : w € E;}.
To see this notice

U;=U;,NX=U;N (U{mtXSi_l(w): WEEZ}) :U{Uiﬁ intXSi_l(w): U)EEZ'},

so U; € U{inty, (SF)"*(w) : w € E;} since for each w € E;, we have that U; N intx S; *(w)
is open in U;. On the other hand clearly |J {inty, (S})~Y(w) : w € E;} C U, so as a result U; =
U {inty, (SF)"H(w): w e E;}.

Theorem 2.7. Let T = (X, A;, B;, P;)icr be an abstract economy with {X, }:c1 a family of nonempty
convex sets each in a Hausdorff topological vector space E; (here I is an index set). For each i € I, let
Ay, B, Py : X =[], Xi = 2E and assume the following conditions are satisfied:

(2.8) co(A;(z)) C Bi(x) for z € X,
(2.9) x; ¢ Bi(z)NecoPy(z) if v € X and A;(z) N Pi(z) # 0,

(2.10) there exists a nonempty convex compact subset K; of X;
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and
2.11) foreach y; € X; theset [(coP;)~'(y;)UM;] N A7 (y;)
' isopenin X (here M; = {x e X : A;j(z)N Pi(xz) = 0})

Finally, assume X is a g=Schauder admissible subset of E = [[,.; E;. Then there exists a x € X with
foreach i € I, we have z; € B;(x) and A;(z) N Pi(x) = 0.

Proof. Foreachi € I,let N; = {x € X : A;(z) N P;(z) # (0} and for each x € X let
I(z)={ieI: Aj(x)N P(z) # 0}.
Foreachi € I, let F;,G; : X — 2% be given by

() = ] Ai@)neoBi(x), i€ I(x)
Fy() { Aq(z), i ¢ I(z)
" Gi(z) = { Bi(x) Nco Pi(x) i€ I(x)

' B;(x) i ¢ I(x)

Fix i € I. Note from (2.8) that co F;(x)
note for each y; € X;, we have

F ' yi) ={z € X : yi € Fi(x)}

={xeN;: y; € Ai(x)NcoP(x)} U{x e M,;: y; € Ai(z)}

= {[(coP)) "M (wa) N A7 ()] N N} U {47 (ws) 0 M3}

= [(coP) ™ (ys) N AT ()] U [A7 (i) N M)

= [(coP)) " (i) U M| N AT (i)
which (see (2.11)) is open in X. Thus for each i € I, we have G; € DKT(X, X;) and also from
(2.10) note G;(X) C K; C X;. Now, Theorem 1.2 guarantees a x € K with x; € G,(x) for
i € I. Noteifi € I(x) for some i € I then A;(z) N P;(z) # 0 and z; € B;(x) N co P;(z), which

contradicts (2.9). Thus ¢ ¢ I(x) for all i € I. Consequently, z; € B;(z) and A;(z) N P;(z) = () for
alli e I. g

N

G;(z) for z € X (and note F;(z) # 0 for x € X). Also

Remark 2.7. In Theorem 2.7 if I is a finite set, then the assumption that “X is a g-Schauder admissible
subset of the Hausdorf{f topological vector space E” can be removed (see Remark 1.2).

Theorem 2.8. Let I' = (X, A;, B;, P;)icr be an abstract economy with { X, }:er a family of nonempty
convex sets each in a Hausdorff topological vector space E; (here I is an index set). For each i € I, let
Ay, By, Py : X = e Xi — 2B and assume (2.8), (2.9) and (2.10) hold. Also suppose X is a q—
Schauder admissible subset of E = [[,.; E;. Foreachx € X, let I(x) = {i € I : A;(x) N P;(x) # 0}
and for each i € I, let
_ Ai(x) NcoPy(x), i€l(x)

Fi(@) = { Ai(w), i ¢ 1(x)
and assume that
(2.12) X =uU{intF Yw): we X;}.
Then there exists a z € X with for each i € I, we have x; € B;(z) and A;(z) N P;(z) = 0.

Proof. Let N; and G; be as in Theorem 2.7. For i € I note F;(z) # 0 and co F;(z) C G;(z) for
z € Xand X = U{int F, '(w) : w € X;}. Thus for each i € I, we have G; € HLPY (X, X,)
and also from (2.10) note G;(X) C K; C X,. Now, Theorem 1.3 guarantees a z € K with
x; € Gi(z) for ¢ € I and the reasoning in Theorem 2.7 guarantees the result. O
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Remark 2.8. In Theorem 2.8 if I is a finite set, then the assumption that “ X is a ¢-Schauder admissible
subset of the Hausdorf{f topological vector space E” can be removed (see Remark 1.3).
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