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Approximating sums by integrals only: multiple sums and
sums over lattice polytopes
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ABSTRACT. The Euler–Maclaurin (EM) summation formula is used in many theoretical studies and numerical cal-
culations. It approximates the sum

∑n−1
k=0 f(k) of values of a function f by a linear combination of a corresponding

integral of f and values of its higher-order derivatives f (j). An alternative (Alt) summation formula was presented by
the author, which approximates the sum by a linear combination of integrals only, without using derivatives of f . It was
shown that the Alt formula will in most cases outperform the EM formula. In the present paper, a multiple-sum/multi-
index-sum extension of the Alt formula is given, with applications to summing possibly divergent multi-index series
and to sums over the integral points of integral lattice polytopes.
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1. INTRODUCTION

The Euler–Maclaurin (EM) summation formula can be written as follows (see e.g. [16]):

(1.1)
n−1∑
k=0

f(k) ≈
∫ n−1

0

dx f(x) +
f(n− 1) + f(0)

2
+

m∑
j=1

B2j

(2j)!
[f (2j−1)(n− 1)− f (2j−1)(0)],

where f : R→ R is a smooth enough function,Bj is the j-th Bernoulli number, and n andm are
natural numbers. The EM approximation is exact when f is a polynomial of degree < 2m+ 1.

The EM formula has been used in a large number of theoretical studies and numerical cal-
culations.

Clearly, to use the EM formula in a theoretical or computational study, one will usually need
to have an antiderivative F of f and the derivatives f (2j−1) for j = 1, . . . ,m in tractable or,
respectively, computable form.

In [19], an alternative summation formula (Alt) was offered, which approximates the sum∑n−1
k=0 f(k) by a linear combination of values of an antiderivative F of f only, without using

values of any derivatives of f :

(1.2)
n−1∑
k=0

f(k) ≈
m−1∑
j=1−m

τm,1+|j|

∫ n−1/2−j/2

j/2−1/2
dx f(x),
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where f is again a smooth enough function, the coefficients τm,r are certain rational numbers
not depending on f and such that

∑m−1
j=1−m τm,1+|j| = 1, and n and m are natural numbers.

Similarly to the case of the EM formula, the Alt approximation is exact when f is a polynomial
of degree < 2m.

It was shown in [19] that the Alt formula should be usually expected to outperform the EM
one.

Extensions of the EM formula to the multiple sums, including sums over the integral points
of integral lattice polytopes, have been of significant interest; see e.g. [20, 8, 7, 13, 21, 14, 6, 3, 10,
22, 18, 4]. In the present paper, a multiple-sum/multi-index-sum extension of the Alt formula
will be given. The main result of this paper, Theorem 2.1, is then extended to sums over the
integral points of integral lattice polytopes as well.

The rest of this paper is organized as follows.
In Section 2, the multi-index Alt formula is stated, with discussion.
In Section 3, an application of the multi-index Alt formula to summing possibly divergent

multi-index series is given. A shift trick then allows one to make the remainder in the Alt
formula arbitrarily small.

In Section 4, the mentioned extension to sums over the integral points of integral lattice
polytopes is presented.

The necessary proofs are deferred to Section 5.
At the end of this introduction, let us fix notation to be used in the rest of the paper:
Suppose that p and m are natural numbers and f : Rp → R is a 2m-times continuously

differentiable function, with partial derivatives f (α), where α = (α1, . . . , αp) ∈ Zp+ and Z+ :=
Z ∩ [0,∞).

Generally, boldface letters will denote vectors in Rp, in Zp, or in Zp+, with the coordinates
denoted by the corresponding non-boldface letters with the indices: x = (x1, . . . , xp) ∈ Rp,
y = (y1, . . . , yp) ∈ Rp, u = (u1, . . . , up) ∈ Rp, v = (v1, . . . , vp) ∈ Rp, n = (n1, . . . , np) ∈ Zp+,
k = (k1, . . . , kp) ∈ Zp+, j = (j1, . . . , jp) ∈ Zp+, i = (i1, . . . , ip) ∈ Zp+, α = (α1, . . . , αp) ∈ Zp+,
and β = (β1, . . . , βp) ∈ Zp. Let I{A} denote the indicator of an assertion A; that is, I{A} := 1
if A is true and I{A} := 0 if A is false. Let ‖α‖ := ‖α‖1 = α1 + · · · + αp; α! := α1! · · ·αp!;
xα := xα1

1 · · ·x
αp
p ; |β| := (|β1|, . . . , |βp|); 1 := (1, . . . , 1) ∈ Zp+; 0 := 01; jv := (j1v1, . . . , jpvp);

j ≥ i
def⇐⇒ i ≤ j

def⇐⇒ ir ≤ jr for all r ∈ [p] := {1, . . . , p};

[u,v] :=

p∏
r=1

[ur, vr];∧x := x1 ∧ · · · ∧ xp;∨x := x1 ∨ · · · ∨ xp;

u ∧ v := (u1 ∧ v1, . . . , up ∧ vp); u ∨ v := (u1 ∨ v1, . . . , up ∨ vp);

k∑
i=j

:=
∑

i∈Zp
+ : j≤i≤k

;

∫ v

u

dx h(x) := (−1)
∑p

r=1 I{ur>vr}
∫
[u∧v,u∨v]

dx h(x);

∫ v

u

:=

∫ v

u

dx f(x).

Let Rp+ := [0,∞)p.

2. A MULTI-INDEX ALTERNATIVE (ALT) TO THE EM FORMULA

The following extension of [19, Theorem 3.1] to multiple sums is the main result of this
paper:



74 Iosif Pinelis

Theorem 2.1. One has

(2.3)
n−1∑
k=0

f(k)
[

=

n1−1∑
k1=0

· · ·
np−1∑
kp=0

f(k1, . . . , kp)
]

= Am −Rm,

where

Am :=

m1∑
j=1

γm,j

j−1∑
i=0

∫ n−1+j/2−i

i−j/2
=

m1∑
j=1

γm,j

j−1∑
i=0

∫ n−1+j/2−i

−1+j/2−i
(2.4)

=

(m−1)1∑
β=(1−m)1

τm,1+|β|

∫ n−1/2−β/2

β/2−1/2
=

(m−1)1∑
β=(1−m)1

τm,1+|β|

∫ n−1/2−β/2

−1/2−β/2
(2.5)

=

(m−1)1∑
α=0

τm,1+α

∑
β : |β|=α

∫ n−1/2−β/2

β/2−1/2
=

(m−1)1∑
α=0

τm,1+α

∑
β : |β|=α

∫ n−1/2−β/2

−1/2−β/2
(2.6)

is the integral approximation to the sum
∑n−1

k=0 f(k),

(2.7) γm,j :=

p∏
r=1

γm,jr , γm,j := (−1)j−1
2

j

(
2m

m+ j

)/(2m

m

)
,

(2.8) τm,j :=

p∏
r=1

τm,jr , τm,j :=

bm/2−j/2c∑
β=0

γm,j+2β =

∞∑
β=0

γm,j+2β ,

and Rm is the remainder given by the formula

(2.9)

Rm :=
m

22m+p−1

×
∑

‖α‖=2m

1

α!

∫ 1

0

ds (1− s)2m−1
∫ 1

−1
dv vα

m1∑
j=1

γm,j j
α+1

n−1∑
k=0

f (α)(k + sjv/2).

The sum of all the coefficients of the integrals in each of the expressions (2.4), (2.5), and (2.6) of Am is

(2.10)
m1∑
j=1

γm,j

j−1∑
i=0

1 =

m1∑
j=1

γm,j j
1 =

(m−1)1∑
β=(1−m)1

τm,1+|β| = 1.

If M2m is a real number such that

(2.11)
∣∣∣ n−1∑
k=0

f (α)(k + u)
∣∣∣ ≤M2m for all α with ‖α‖ = 2m and all u ∈ (−m1/2,m1/2],

then the remainder Rm can be bounded as follows:

|Rm| ≤
M2m

22m

∑
‖α‖=2m

1

(α + 1)!

m1∑
j=1

|γm,j| jα+1(2.12)

≤M2m
1.0331(πm)(p+1)/2

(2m+ 1)!
(κpm)2m,(2.13)

where

(2.14) κ :=

√
Λ∗
4

= 0.27754 . . .
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and
Λ∗ := max

0<t<1
Λ(t) = 0.3081 . . . , Λ(t) := (1− t)t−1(1 + t)−1−tt2.

If m ≥ 2, then the factor 1.0331 in (2.13) can be replaced by 1.001.

Recall the convention that the sum of an empty family is 0. In particular, if ∧n = 0, then∑n−1
k=0 f(k) = 0 = Am = Rm.
Also, it is clear that Rm = 0 if the function f is any polynomial of degree at most 2m− 1.
One may note here that, in each of the formulas (2.4), (2.5), and (2.6), the first expression is a

linear combination of integrals of the form
∫ n−1+λ

−λ for some λ ∈ Rp with |λ| ≤ (m− 2)1/2. So,
provided that n ≥ (m−1)1, each of these integrals equals the Lebesgue integral of the function
f over the p-dimensional interval [−λ,n− 1 + λ], symmetric about the point (n− 1)/2.

In contrast, the second expression in each of the formulas (2.4), (2.5), and (2.6) is a linear
combination of integrals of the form

∫ n+λ

λ
for some λ ∈ Rp; so, each of these integrals equals

the Lebesgue integral of the function f over the p-dimensional interval [λ,n + λ], whose end-
points differ by the vector n. This observation holds whether the condition n ≥ (m− 1)1 holds
or not.

Remark 2.1. As in [19] in the special case of ordinary sums, here, instead of assuming that the function
f is real-valued, one may assume, more generally, that f takes values in any normed space. In particular,
one may allow f to take values in the q-dimensional complex space Cq , for any natural q. An advantage
of dealing with a vector-valued function (rather than separately with each of its coordinates) is that this
way one has to compute the coefficients – say τm,β in (2.6) – only once, for all the components of the
vector function. �

3. APPLICATION TO SUMMING (POSSIBLY DIVERGENT) MULTI-INDEX SERIES

Let us say that a function F : Rp → R is an antiderivative of the function f if

F (1) = f ;

that is, if F is differentiated once with respect to every one of the p arguments of the function F ,
then the result of this p-fold partial differentiation is the function f . It is assumed that this result
does not depend on the order of the arguments with respect to which the partial derivatives are
taken. Here and elsewhere in the paper, f and p are as set in Section 1. In particular, it follows
that the function f is continuous. Clearly, this notion of an antiderivative is a generalization of
the corresponding notion for functions on R.

For each set J ⊆ [p], let |J | denote the cardinality of J , and also let

1J := (I{1 ∈ J}, . . . , I{p ∈ J}).
In particular, 1[p] = 1 and 1∅ = 0.

Remark 3.2. A function F on Rp is an antiderivative of the function f if and only if one has a repre-
sentation of the form

F (x) =

∫ x

0

dy f(y) +

p∑
j=1

cj(x1, . . . , xj−1, xj+1, . . . , xp)

for all x = (x1, . . . , xp) ∈ Rp, where c1, . . . , cp are functions on Rp−1 such that, for each j ∈ {1, . . . , p}

and all (x1, . . . , xp) ∈ Rp, the mixed partial derivative
∂p−1cj(x1, . . . , xj−1, xj+1, . . . , xp)

∂x1 · · · ∂xj−1∂xj+1 · · · ∂xp
exists and

does not depend on the order of the arguments x1, . . . , xj−1, xj+1, . . . , xp with respect to which the
partial derivatives are taken.
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The “if” part of the above statement is obvious. The “only if” part of it follows from the multidimen-
sional version of the fundamental theorem of calculus to be given by Lemma 5.1 in Section 5 (take there
0 and x, respectively, in place of u and v in Lemma 5.1, and note that then F (v[p]) = F (v) = F (x)).

In particular, the function F on Rp given by the condition F (x) =
∫ x

0
dyf(y) for all x ∈ Rp

is clearly an antiderivative of f ; thus, there always exists an antiderivative of the function f – still
assuming, of course, that f is 2m-times continuously differentiable for some natural m; in fact, just the
continuity of f would be enough for the existence of an antiderivative of f . �

The alternative summation formula presented in Theorem 2.1 can be used for summing
(possibly divergent) multi-index series, as follows.

Theorem 3.2. Let m0 be a natural number, and suppose that m ≥ m0. Let F be any antiderivative of
f . Suppose that

(3.15) F (α)(x) −→
∨x→∞

0 for each α ∈ Zp+ with ‖α‖ = 2m0

and the series

(3.16)

∞1∑
k=0

f (α)(k + u) converges uniformly in u ∈ [−m1/2,m1/2]

for each α ∈ Zp+ with ‖α‖ = 2m,

in the sense that
∑n−1

k=0 f
(α)(k + u) converges uniformly as ∧n→∞. Then

(3.17)
Alt∑
k≥0

f(k) := lim
∧n→∞

( n−1∑
k=0

f(k)− Ãm0,F (n)
)

= (−1)pA∅m,F (0)−Rm,f (∞),

where (cf. (2.4), (2.5), and (2.6))

(3.18) Ãm,F (n) :=
∑
∅6=J⊆[p]

(−1)p−|J|AJm,F (n),

AJm,F (n) :=

m1∑
j=1

γm,j

j−1∑
i=0

F (n1J − 1 + j/2− i)(3.19)

=

(m−1)1∑
β=(1−m)1

τm,1+|β| F (n1J − 1/2− β/2)(3.20)

=

(m−1)1∑
α=0

τm,1+α

∑
β : |β|=α

F (n1J − 1/2− β/2),(3.21)

and (cf. (2.9))

Rm,f (∞) :=
m

22m+p−1

×
∑

‖α‖=2m

1

α!

∫ 1

0

ds (1− s)2m−1
∫ 1

−1
dv vα

m1∑
j=1

γm,j j
α+1

∞1∑
k=0

f (α)(k + sjv/2).

If condition (2.11) holds for all n ∈ Zp+, then one can replace Rm in (2.12)–(2.13) by Rm,f (∞), so that

(3.22) |Rm,f (∞)| ≤M2m
1.0331(πm)(p+1)/2

(2m+ 1)!
(κpm)2m.
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Looking, say, at the expression of AJm,F (n) in (3.21), one may note that

(3.23) A∅m,F (0) = A∅m,F (n) = AJm,F (0) =

(m−1)1∑
α=0

τm,1+α

∑
β : |β|=α

F (β/2− 1/2)

for all n ∈ Zp+ and J ⊆ [p].

The limit
∑Alt

k≥0 f(k) in (3.17) may be referred to as the (generalized) sum of the possibly
divergent multi-index series

∑∞1
k=0 f(k) by means of the Alt formula (2.3).

Theorem 3.2 is a multi-index extension of Proposition 5.1 in [19].
To compute the generalized sum

∑Alt
k≥0 f(k) effectively, one has to ensure that the remainder

Rm,f (∞) can be made arbitrarily small. This can be done as follows.
For any function h : Rp → R and any c ∈ Rp, let hc denote the c-shift of h defined by the

formula

(3.24) hc(x) := h(x + c)

for all x ∈ Rp. Note that, if F is an antiderivative of f , then Fc is an antiderivative of fc.

Theorem 3.3. Suppose that the conditions of Theorem 3.2 hold. Take any c ∈ Zp+. Then

(3.25)
Alt∑
k≥0

f(k) =

c−1∑
k=0

f(k)− Ãm,F (c)−Rm,f,c(∞),

where

(3.26) Rm,f,c(∞) := −
∑
∅6=J⊆[p]

(−1)p−|J|Rm,fc1J
(∞)

(cf. (3.18)).

Under the conditions of Theorem 3.2, the remainderRm,f,c(∞) can be made arbitrarily small
by making ∧c large enough. The price to pay for this will be the need to compute a possibly
large partial sum

∑c−1
k=0 f(k) of the series.

Theorem 3.3 is a multi-index extension of Corollary 5.6 in [19].

Example 3.1. In Theorem 3.3, let p = 2 and take any 4-times continuously differentiable function
f : R2 → R such that

f(x, y) = (x+ y + 2) ln(x+ y + 2)

for real x, y ≥ 0. Such a function f exists, by Whitney’s theorem [24]; however, only the values of f
on [0,∞)2 will matter for the purposes of this example. Then it is straightforward to check by direct
differentiation that for an antiderivative F of f and all real x, y ≥ 0 one will have

F (x, y) = 1
6 (x+ y + 2)3 ln(x+ y + 2)− 5

12 (x+ 1)(y + 1)(x+ y + 2).

It is also straightforward to verify conditions (3.15) and (3.16) of Theorem 3.2 with m0 = m = 2.
It also follows that, for n = (n, n), the term Ãm,F (n) = Ã2,F

(
(n, n)

)
(defined in (3.18)) is expressed

as a linear combination of certain terms of the form P (n) ln(a + bn) or P (n), where P is polynomial
with real coefficients, a is a nonnegative real number, and b is a positive real number. Replacing, in
that expression for Ãm,F (n), every instance of ln(a+ bn) by its large-n asymptotics lnn+ ln b+ a

bn −
a2

2b2n2 + a3

3b3n3 +O( 1
n4 ), after some rather heavy algebra we find

Ãm,F (n) = Sn + δn,
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FIGURE 1. Graph
{

(n, sn − Sn) : n ∈ {1, . . . , 50}
}

where

(3.27) Sn := n3 ln
24/3 n

e5/6
+ n2 ln

4n√
e

+
5

6
n ln 2− 1

12
ln
en

2

and

(3.28) δn = O(1/n2).

Thus, by Theorem 3.3,

sn :=

n∑
k=1

n∑
l=1

(k + l) ln(k + l) = Sn + L+ rn,

where

L :=

Alt∑
k≥0

f(k) = lim
n→∞

(sn − Sn) ∈ R

and

(3.29) rn := δn +R2,f,(n,n)(∞) = O(1/n),

in view of (3.28), (3.26), (3.24), (3.22), (2.11), and (2.14); the universal positive real constant factor in
O(1/n) in (3.29) can be given explicitly. Note that the bound O(1/n) on the error term rn in (3.29)
can be improved to O(1/nm−1) by choosing the “approximation order” m in formula (3.25) to be any
natural number greater than 2; of course, then the expression for Sn in (3.27) will have to be replaced by
a more complicated expression.

The convergence of sn − Sn to the limit L is illustrated in Figure 1, which shows the discrete graph{
(n, sn − Sn) : n ∈ {1, . . . , 50}

}
. �
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4. APPLICATION TO SUMS OVER THE INTEGRAL POINTS OF INTEGRAL LATTICE POLYTOPES

Let P be an integral polytope in Rp, that is, the convex hull of a finite subset of Zp.
Suppose that P is of full dimension, p. Let V denote the set of all vertices (that is, extreme

points) of P .
By the main result of Haase [11], for each v ∈ V there exist a finite set Iv, a map Iv 3 i 7→

tv,i ∈ {0, 1}, a map Iv 3 i 7→ Av,i into the set of all nonsingular p × p matrices over Z, and a
map Iv 3 i 7→ Jv,i into the set of all subsets of the set [p] = {1, . . . , p} such that

(4.30) JP K =
∑
v∈V

∑
i∈Iv

(−1)tv,iJCv,iK,

where J·K denotes the indicator/characteristic function,

(4.31) Cv,i := v +Av,iR+
Jv,i

= {v +Av,ix : x ∈ R+
Jv,i
},

R+
J :=

∏
j∈[p]

R+
1−JJK(j) for J ⊆ [p],

and

R+
ε :=

{
(0,∞) if ε = 0,

[0,∞) if ε = 1

(so that the closure of Cv,i is a polyhedral cone, for each pair (v, i)). In the case when the
polytope P is simple, decomposition (4.30) was obtained earlier by Lawrence [17]. To extend
Lawrence’s result, Haase used virtual infinitesimal deformations of vertices of P , identified
with regular triangulations of the normal cones at the vertices.

Proposition 4.1. Let A be any nonsingular p× p matrix over Z, and let J be any subset of the set [p].
Then there exist a finite set I , a map I 3 i 7→ Ai into the set of all unimodular p× p matrices over Z,
and a map I 3 i 7→ Ji into the set of all subsets of the set [p] such that

(4.32) JAR+
J K =

∑
i∈I

JAiR+
Ji

K.

(Recall that a matrix is called unimodular if its determinant is 1 or −1.)

Thus, one can strengthen the statement on the decomposition (4.30) as follows:

Corollary 4.1. One may assume that all the matrices Av,i in (4.30)–(4.31) are unimodular.

A similar decomposition, but with polyhedral cones of lower dimensions, was obtained in
[5].

The following corollary is almost immediate from Theorem 2.1 and Corollary 4.1.

Corollary 4.2. Suppose that the function f is compactly supported. Then

(4.33)
∑

k∈P∩Zp

f(k) = Am(f, P )−Rm(f, P ),

where

Am(f, P ) :=

(m−1)1∑
β=(1−m)1

τm,1+|β|
∑
v∈V

(−1)tv
∑
i∈Iv

∫
Cv,i+Av,i(1Jv,i

−(1+β)/2)

dxf(x)(4.34)

is the integral approximation to the sum
∑

k∈P∩Zp

f(k) and Rm(f, P ) is the remainder given by the

formula
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Rm(f, P ) :=
m

22m+p−1

∑
‖α‖=2m

1

α!

∫ 1

0

ds (1− s)2m−1
∫ 1

−1
duuα Σm(su)

with

Σm(w) :=

m1∑
j=1

γm,j j
α+1

∑
v∈V

∑
i∈Iv

(−1)tv
∑
k≥0

g
(α)
v,i (k + 1Jv,i

+ jw/2)

and
gv,i(y) := f(v +Av,iy)

for y ∈ Rp. If M2m is a real number such that∣∣∣ ∑
v∈V

∑
i∈Iv

(−1)tv
∑
k≥0

g
(α)
v,i (k + u)

∣∣∣ ≤M2m whenever ‖α‖ = 2m and |u| ≤ (m2 + 1)1,

then

|Rm(f, P )| ≤M2m
1.0331(πm)(p+1)/2

(2m+ 1)!
(κpm)2m,

where κ is as in (2.14).

Indeed, for J ⊆ [p], let
Z+
J := Zp ∩ R+

J = Zp+ + 1J ,

where Z+ := Z ∩ [0,∞). Note that AZp = Zp for any unimodular matrix A over Z. Now
Corollary 4.2 follows by Corollary 4.1 and Theorem 2.1 because∑

k∈Cv,i∩Zp

f(k) =
∑

q∈Z+
Jv,i

f(v +Av,iq) =
∑
q≥0

f(v +Av,i(q + 1Jv,i
)) =

∑
q≥0

gv,i(q + 1Jv,i
)

and ∫
[−1/2−β/2,∞1)

dy gv,i(y + 1Jv,i) =

∫
Cv,i+Av,i(1Jv,i

−(1+β)/2)

dxf(x).

The expression for Am(f, P ) in (4.34) is based on the second expression for Am in (2.5); of
course, one can quite similarly use any one of the other 5 expressions in (2.4)–(2.6).

Notable differences between the Alt formula in Corollary 4.2 and the EM formula that is
the main result of [14] (Theorem 2 therein) include the following: (i) in [14, Theorem 2], the
summation is over all faces of the polytope P , whereas in (4.34) the corresponding summation
is only over the vertices of P and (ii) instead of the plain summation

∑
k∈P∩Zp f(k) in (4.33),

in the corresponding sum in [14] the summands f(k) are weighted (in accordance with the
dimension of the relative interior of the face given that k belongs to that relative interior).

Note also that [14, Theorem 2] is obtained for simple polytopes. In [3], this result was ex-
tended to allow more general weights, and then further generalized to non-simple polytopes
in [4].

The version of the EM formula for polytopes in [6] is given for polynomial functions f in
terms of differential operators of infinite order, with the summation over all faces of the poly-
tope.

It should be possible to extend Corollary 4.2 to the case when the function f is a so-called
symbol in the sense of Hörmander [12] – cf. [14, Theorem 3], as well as conditions (3.15) and
(3.16).

(
Recall that a function f ∈ C∞(Rp) is called a symbol of order N if for every α ∈ Zp+

there is a real constant Cα such that |f (α)(x)| ≤ Cα(1 + ‖x‖)N−‖α‖ for all x ∈ Rp; here, as
before, ‖ · ‖ := ‖ · ‖1.

)
One way to attack this goal could be to show that, for any α ∈ Zp+ such
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that α ≤ (m − 1)1, the essential support (except possibly for a set of Lebesgue measure 0) of
the function ∑

β : |β|=α

∑
v∈V

∑
i∈Iv

(−1)tv,i JCv,i +Av,i(1Jv,i − (1 + β)/2)K

is bounded, presumably being just a perturbed version of the indicator of the polytope P ; cf.
(4.34) and the equality in [14, formula (89)].

Moreover, in view of the results of Section 3, it appears not unlikely that Corollary 4.2 could
be extended to general polyhedral sets.

5. PROOFS

Proof of Theorem 2.1. Take any k (in Zp+) such that k ≤ n− 1 and consider the Taylor expansion

(5.35) f(x) =
∑

‖α‖≤2m−1

f (α)(k)

α!
uα +

∑
‖α‖=2m

2m

α!
uα

∫ 1

0

ds (1− s)2m−1f (α)(k + su)

for all x ∈ (k −m1/2, k + m1/2], where u := x − k. Integrating both sides of this identity in
x ∈ (k − j/2, k + j/2] (or, equivalently, in u ∈ (−j/2, j/2]) for each j (in Zp+) such that j ≤ m1,
then multiplying by γm,j, and then summing in j, one has

(5.36) Am,k = Sm,k +Rm,k,

where

Am,k :=

m1∑
j=1

γm,j

∫ k+j/2

k−j/2
dx f(x),(5.37)

Sm,k :=
∑

‖α‖≤m−1

f (2α)(k)

(2α + 1)! 22‖α‖

m1∑
j=1

γm,j j
2α+1,(5.38)

Rm,k :=
∑

‖α‖=2m

2m

α!

∫ 1

0

ds (1− s)2m−1
m1∑
j=1

γm,j

∫ j/2

−j/2
du uα f (α)(k + su)

=
∑

‖α‖=2m

2m

α!

∫ 1

0

ds (1− s)2m−1
m1∑
j=1

γm,j (j/2)α+1

∫ 1

−1
dv vα f (α)(k + sjv/2);(5.39)

the latter equality is obtained by the change of variables u = jv.
As noted before, in the special case p = 1 Theorem 2.1 turns into Theorem 3.1 of [19]. So,

without loss of generality (w.l.o.g.) p ≥ 2. Write

(5.40)
n−1∑
k=0

∫ k+j/2

k−j/2
dx f(x) =

n1−1∑
k1=0

· · ·
np−1∑
kp=0

∫ kp+jp/2

kp−jp/2
dxp · · ·

∫ k1+j1/2

k1−j1/2
dx1 f(x).
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In view of the multi-line display next after formula (7.7) in [19] (note, in particular, the penul-
timate expression there), the right-hand side of (5.40) can be rewritten as

n1−1∑
k1=0

· · ·
np−1−1∑
kp−1=0

jp−1∑
ip=0

∫ np−1+jp/2−ip

ip−jp/2
dxp

∫ kp−1+jp−1/2

kp−1−jp−1/2

dxp−1 · · ·
∫ k1+j1/2

k1−j1/2
dx1 f(x)

=

jp−1∑
ip=0

∫ np−1+jp/2−ip

ip−jp/2
dxp

n1−1∑
k1=0

· · ·
np−1−1∑
kp−1=0

∫ kp−1+jp−1/2

kp−1−jp−1/2

dxp−1 · · ·
∫ k1+j1/2

k1−j1/2
dx1 f(x)

...

=

jp−1∑
ip=0

∫ np−1+jp/2−ip

ip−jp/2
dxp · · ·

j1−1∑
i1=0

∫ n1−1+j1/2−i1

i1−j1/2
dx1 f(x).

So,

n−1∑
k=0

∫ k+j/2

k−j/2
dx f(x) =

j−1∑
i=0

∫ n−1+j/2−i

i−j/2
dx f(x)

and hence, by (5.37),

(5.41)
n−1∑
k=0

Am,k =

m1∑
j=1

γm,j

n−1∑
k=0

∫ k+j/2

k−j/2
dx f(x) =

m1∑
j=1

γm,j

j−1∑
i=0

∫ n−1+j/2−i

i−j/2
dx f(x) = Am.

Similarly, but using the last expression in the mentioned multi-line display next after formula
(7.7) in [19] rather than the penultimate expression there, we have

n−1∑
k=0

Am,k =

m1∑
j=1

γm,j

j−1∑
i=0

∫ n−1+j/2−i

−1+j/2−i
dx f(x).

In particular, it follows that the two double sums in (2.4) are the same.
Suppose now that some i and j in Zp+ and some β ∈ Zp are related by the condition β =

2i− j + 1. Then the condition 1 ≤ j ≤ m1 & 0 ≤ i ≤ j− 1 is equivalent to the condition

(1−m)1 ≤ β ≤ (m− 1)1 & 1 + |β| ≤ j ≤ m1 & (j− 1− |β|)/2 ∈ Zp+.

So,

(5.42)
m1∑
j=1

γm,j

j−1∑
i=0

∫ n−1+j/2−i

i−j/2
=

(m−1)1∑
β=(1−m)1

τ̃m,1+|β|

∫ n−1/2−β/2

β/2−1/2

and

(5.43)
m1∑
j=1

γm,j

j−1∑
i=0

∫ n−1+j/2−i

−1+j/2−i
=

(m−1)1∑
β=(1−m)1

τ̃m,1+|β|

∫ n−1/2−β/2

−1/2−β/2
,
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where

τ̃m,1+|β| :=

m1∑
j=1+|β|

γm,j I
{

(j− 1− |β|)/2 ∈ Zp+
}

=

m∑
j1=1+|β1|

· · ·
m∑

jp=1+|βp|

p∏
r=1

(
γm,jr I

{
(jr − 1− |βr|)/2 ∈ Z+

})
=

p∏
r=1

m∑
jr=1+|βr|

(
γm,jr I

{
(jr − 1− |βr|)/2 ∈ Z+

})
=

p∏
r=1

τm,1+|βr| = τm,1+|β|,

in view of (2.7) and (2.8).
Thus, by (5.42) and (5.43), the first double sum in (2.4) equals the first sum in (2.5), and the

second double sum in (2.4) equals the second sum in (2.5).
Also, it is obvious that the first sum in (2.6) equals the first sum in (2.5), and the second sum

in (2.6) equals the second sum in (2.5).
Next, for any α (in Zp+) with ‖α‖ ≤ m− 1,

(5.44)
m1∑
j=1

γm,j j
2α+1 =

m∑
j1=1

· · ·
m∑
jp=1

p∏
r=1

(
γm,jrj

2αr+1
r

)
=

p∏
r=1

m∑
j=1

γm,jj
2αr+1 = I{α = 0}

by formula (7.6) in [19]. So, by (5.38),

(5.45) Sm,k = f(k).

Also, the case α = 0 in (5.44) shows that the first two sums in (2.10), involving the γm,j’s,
are equal to 1. The second equality in (2.10) follows from the equality of the first sums in (2.4)
and (2.5) to each other by taking there n = m1 and f(x) ≡ I{(m/2 − 1)1 ≤ x ≤ m1/2}; then
each of the integrals in (2.4)–(2.6) equals 1.

By (5.39) and (2.9),

n−1∑
k=0

Rm,k = Rm.

So, (2.3) follows immediately from (5.36), (5.41), and (5.45).
In view of (2.9) and (2.11),

|Rm| ≤ R̃m := M2m
m

22m+p−1

∑
‖α‖=2m

1

α!

∫ 1

0

ds (1− s)2m−1
∫ 1

−1
dv |v|α

m1∑
j=1

|γm,j| jα+1.

Computing the integrals here, it is easy to check that R̃m equals the upper bound in (2.12). On
the other hand, using the multinomial formula, the definition of γm,j in (2.7), and the Hölder
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inequality
(∑p

r=1 |vrjr|
)2m

≤ p2m−1
∑p
r=1 |vrjr|2m, we see that

(5.46)

R̃m =
M2m

22m(2m)!

m1∑
j=1

|γm,j| j1
∫ 1

0

dv
∑

‖α‖=2m

(2m)!

α!
(vj)α

=
M2m

22m(2m)!

m1∑
j=1

|γm,j| j1
∫ 1

0

dv
( p∑
r=1

vrjr

)2m
≤M2mp

2m−1

22m(2m)!

( m∑
j1=1

· · ·
m∑
jp=1

|γm,j1 |j1 . . . |γm,jp |jp
) p∑
r=1

j2mr

∫ 1

0

v2mr dv

=
M2mp

2m

22m(2m+ 1)!

m∑
j=1

|γm,j |j2m+1
( m∑
j=1

|γm,j |j
)p−1

.

By Proposition 4.4 in [19],

(5.47)
m∑
j=1

|γm,j |j2m+1 ≤ 1.0331πΛm∗ m
2m+1,

and for m ≥ 2 the factor 1.0331 can be replaced by 1.001.
It follows from [23] that Γ(x+ 1)/Γ(x+ 1/2) >

√
x+ 1/π for real x > 0. For x = m ∈ N, this

inequality can be rewritten as 22m
/(

2m
m

)
<
√
πm+ 1. So, in view of (2.7),

(5.48)
m∑
j=1

|γm,j |j = 22m
/(2m

m

)
− 1 <

√
πm.

Collecting (5.46), (5.47), (5.48), and (2.14), we obtain (2.13).
Theorem 2.1 is now completely proved. �

To prove Theorem 3.2, we shall need the following multidimensional generalization of the
fundamental theorem of calculus (FTC).

Lemma 5.1. (Multidimensional FTC) Let F be any antiderivative of f . Take any u and v in Rp.
Then

(5.49)
∫ v

u

dxf(x) =
∑
J⊆[p]

(−1)p−|J|F (vJ),

where vJ := u1[p]\J + v1J = u + (v − u)1J .

For p = 2 and u ≤ v, formula (5.49) appears in the proof of Lemma 6.2 [9]; a version of it for
general p seems to be implicit on page 515 in [15]. Related formulas were given in [2, (III.1)]
and [1, Lemma 1]. The following simple proof – which is essentially just a p-fold application of
the one-dimensional FTC, plus some organizing – will be given here for readers’ convenience.

Proof of Lemma 5.1. This will be done by induction in p. For p = 1, (5.49) is the usual, one-
dimensional FTC. Suppose that p ≥ 2 and that (5.49) holds with p− 1 in place of p.

Introduce some notation, as follows. For x = (x1, . . . , xp−1, xp) ∈ Rp, let x̃ := (x1, . . . , xp−1),
and similarly define ũ and ṽ. Also, for any J ⊆ [p − 1], define ṽJ similarly to vJ , but based
on ũ and ṽ rather than on u and v. For any function h : Rp → R and any real xp, let hxp

denote the “cross-section” function from Rp−1 to R defined by the formula hxp
(x̃) := h(x),
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again for x = (x1, . . . , xp−1, xp) ∈ Rp. Note that, for each real xp, the function
(
F (1{p})

)
xp

is an
antiderivative of the function fxp

.
For real u and v, let ∆u,v := δv − δu, where δx is the Dirac measure at x. Consider the signed

product measures

∆u,v := ∆u1,v1 ⊗ · · · ⊗∆up,vp =
∑
J⊆[p]

(−1)p−|J|δvJ

and ∆̃u,v := ∆u1,v1 ⊗ · · · ⊗∆up−1,vp−1
, so that ∆u,v = ∆̃u,v ⊗∆up,vp .

Now, appropriately rewriting the right-hand side of (5.49) and then using the Fubini theo-
rem and the induction hypothesis, we have∑
J⊆[p]

(−1)p−|J|F (vJ) =

∫
Rp

d∆u,v F (rewriting)

=

∫
R

∆up,vp(dxp)

∫
Rp−1

d∆̃u,v Fxp (Fubini)

=

∫
R

∆up,vp(dxp)
∑

J⊆[p−1]

(−1)p−1−|J|Fxp
(ṽJ) (similar rewriting)

=
∑

J⊆[p−1]

(−1)p−1−|J|
∫
R

∆up,vp(dxp)Fxp(ṽJ)

=
∑

J⊆[p−1]

(−1)p−1−|J|
∫ vp

up

dxp
d

dxp
Fxp(ṽJ) (one-dimensional FTC)

=

∫ vp

up

dxp
∑

J⊆[p−1]

(−1)p−1−|J|
d

dxp
Fxp(ṽJ)

=

∫ vp

up

dxp
∑

J⊆[p−1]

(−1)p−1−|J|
(
F (1{p})

)
xp

(ṽJ)

=

∫ vp

up

dxp

∫ ṽ

ũ

dx̃ fxp
(x̃) (induction)

=

∫ v

u

dxf(x). (Fubini)

This completes the proof of Lemma 5.1. �

Proof of Theorem 3.2. Let

Rm,f (n) := Rm,

with Rm as defined in (2.9). Then, by (3.16),

(5.50) Rm,f (n) −→
∧n→∞

Rm,f (∞).

Let

(5.51) Am,F (n) :=
∑
J⊆[p]

(−1)p−|J|AJm,F (n) = Ãm,F (n) + (−1)pA∅m,F (n),
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in view of (3.18). By (2.3)–(2.4), Lemma 5.1, (5.51), and (3.19),

(5.52)

n−1∑
k=0

f(k)−Am0,F (n) +Rm,f (n)

=Am,F (n)−Am0,F (n)

=
∑
J⊆[p]

(−1)p−|J|
(
AJm,F (n)−AJm0,F (n)

)
=
∑
J⊆[p]

(−1)p−|J|
(
AJm,TJ

(n)−AJm0,TJ
(n) +AJm,F−TJ

(n)−AJm0,F−TJ
(n)
)
,

where TJ = TJ,n,m0,F is the Taylor polynomial of order 2m0 − 1 for the function F at the point
n1J − 1, so that

TJ(x) =
∑

‖α‖≤2m0−1

F (α)(n1J − 1)

α!
(x− n1J + 1)α

for x ∈ Rp.
Consider the monomial P (x) = xα of degree ‖α‖ ≤ 2m0 − 1, so that

P (x) =
∏p
r=1 Pr(x), where Pr(x) := xαr .

Take any r = 1, . . . , p and any J ⊆ [p], and let nr,J := nr I{r ∈ J}. Following the lines of the
proof of Proposition 5.1 in [19] for the case when f = P ′r and F = Pr, so that the polynomial T
therein coincides with F = Pr, we see from [19, (5.5) and (7.19)] that

m−1∑
β=1−m

τm,1+|β| Pr(n− 1/2− β/2) = Gm,Pr (n) = Gm0,Pr (n)

=

m0−1∑
β=1−m0

τm0,1+|β| Pr(n− 1/2− β/2)

for any n ∈ Z+. So, by (3.20) and (2.8),

AJm,P (n) =

(m−1)1∑
β=(1−m)1

τm,1+|β| P (n1J − 1/2− β/2)

=

(m−1)1∑
β=(1−m)1

p∏
r=1

(
τm,1+|βr| Pr(nr,J − 1/2− βr/2)

)
=

p∏
r=1

m−1∑
β=1−m

(
τm,1+|β| Pr(nr,J − 1/2− β/2)

)
=

p∏
r=1

m0−1∑
β=1−m0

(
τm0,1+|β| Pr(nr,J − 1/2− β/2)

)
= AJm0,P (n).

Since TJ is a polynomial of degree ≤ 2m0 − 1 and AJm,F (n) is linear in F , we conclude that

(5.53) AJm,TJ
(n)−AJm0,TJ

(n) = 0 for all J ⊆ [p].
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Further, the remainder (F−TJ)(n1J−1+u) at point n1J−1+u of the Taylor approximation
TJ of F at n1J − 1 equals (cf. (5.35))∑

‖α‖=2m0

2m0

α!
uα

∫ 1

0

ds (1− s)2m0−1F (α)(n1J − 1 + su),

which, by (3.15), goes to 0 as ∧n→∞ unless J = ∅. So, by (3.19),

AJm,F−TJ
(n) −→

∧n→∞
0 and AJm0,F−TJ

(n) −→
∧n→∞

0 unless J = ∅.

It follows now by (5.53), (3.23), the linearity of AJm,F in F , and (again) (5.53) that the limit of the
last expression in (5.52) as ∧n→∞ equals

(−1)p
(
A∅m,F−T∅(0)−A∅m0,F−T∅(0)

)
=(−1)p

(
A∅m,F (0)−A∅m0,F

(0)
)
− (−1)p

(
A∅m,T∅(0)−A∅m0,T∅

(0)
)

=(−1)p
(
A∅m,F (0)−A∅m0,F

(0)
)
.

Now (3.17) follows, in view of (5.50) and (the second equality in) (5.51).
Inequality (3.22) follows immediately from (2.11) and (2.12)–(2.13).
Formula (3.23) follows immediately from (3.21).
Theorem 3.2 is completely proved. �

Proof of Theorem 3.3. Note that
c−1∑
k=0

f(k) =
∑
k≥0

f(k) I{k ≤ c− 1}

=
∑
k≥0

f(k)

p∏
r=1

(
I{kr ≤ nr + cr − 1} − I{cr ≤ kr ≤ nr + cr − 1}

)
=
∑
k≥0

f(k)
∑
J⊆[p]

(−1)|J| I{kr ≤ nr + cr − 1 ∀r ∈ [p] \ J,

cr ≤ kr ≤ nr + cr − 1 ∀r ∈ J}

=
∑
J⊆[p]

(−1)|J|
n+c−1∑
k=c1J

f(k) =

n+c−1∑
k=0

f(k) +
∑
∅6=J⊆[p]

(−1)|J|
n+c−1∑
k=c1J

f(k).

Hence,

(5.54)

n+c−1∑
k=0

f(k)− Ãm0,F (n + c)

=

c−1∑
k=0

f(k)−
∑
∅6=J⊆[p]

(−1)|J|
n+c−1∑
k=c1J

f(k)− Ãm0,F (n + c)

=

c−1∑
k=0

f(k)−
∑
∅6=J⊆[p]

(−1)|J|
( n+c−c1J−1∑

k=0

fc1J
(k)− Ãm0,Fc1J

(n + c− c1J)
)

+R,

where
R := −

∑
∅6=J⊆[p]

(−1)|J|Ãm0,Fc1J
(n + c− c1J)− Ãm0,F (n + c).



88 Iosif Pinelis

By Lemma 5.1 with F = 1 (and f = 0),

(5.55)
∑
J⊆[p]

(−1)|J| = 0 and hence
∑
∅6=J⊆[p]

(−1)|J| = −1.

Therefore and in view of (3.18) and (3.20),

R =
∑
∅6=J⊆[p]

(−1)|J|RJ ,

where

RJ :=Ãm0,F (n + c)− Ãm0,Fc1J
(n + c− c1J) =

(m−1)1∑
β=(1−m)1

τm,1+|β|RJ,β,

RJ,β :=
∑

∅6=K⊆[p]

(−1)p−|K|
[
H
(
(n + c)1K

)
−H

(
c1J + (n + c− c1J)1K

)]
,

and H(x) := F (x− 1/2− β/2). Thus,

(5.56) R =

(m−1)1∑
β=(1−m)1

τm,1+|β|
∑

∅6=K⊆[p]

(−1)p−|K|Rβ,K ,

where

(5.57)

Rβ,K :=
∑
∅6=J⊆[p]

(−1)|J|
[
H
(
(n + c)1K

)
−H

(
c1J + (n + c− c1J)1K

)]
=

∑
∅6=J⊆[p]

(−1)|J|
[
H
(
(n + c)1K

)
−H

(
(n + c)1K + c1J\K

)]
=
∑
L∈LK

[
H
(
(n + c)1K

)
−H

(
(n + c)1K + c1L

)] ∑
J∈JK,L

(−1)|J|,

LK := {L : L ⊆ [p], L 6= ∅, L ∩K = ∅}, JK,L := {J : ∅ 6= J ⊆ [p], J \K = L}.

For any K ⊆ [p] and any L ∈ LK , the map J 7→ IJ := J ∩ K is a bijection of the set JK,L
onto the set {I : I ⊆ K}, and for any J ∈ JK,L the set J is the disjoint union of the sets IJ
and L, so that |J | = |IJ | + |L|. It follows by (5.55) that for any K ⊆ [p] and any L ∈ LK one
has

∑
J∈JK,L

(−1)|J| =
∑
I⊆K(−1)|I|(−1)|L| = 0. Looking back at (5.57) and (5.56), we see that

R = 0.
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Letting now ∧n → ∞ and recalling (5.54), (3.17), the definition (3.26) of Rm,f,c(∞), and
formulas (3.23), (3.21), and (3.18), we have

Alt∑
k≥0

f(k)−
c−1∑
k=0

f(k)

=−
∑
∅6=J⊆[p]

(−1)|J|
Alt∑
k≥0

fc1J
(k)

=−
∑
∅6=J⊆[p]

(−1)|J|
[
(−1)pA∅m,Fc1J

(0)−Rm,fc1J
(∞)

]

=−Rm,f,c(∞)−
∑
∅6=J⊆[p]

(−1)p−|J|
(m−1)1∑
α=0

τm,1+α

∑
β : |β|=α

F (c1J + β/2− 1/2)

=−Rm,f,c(∞)− Ãm,F (c),

which completes the proof of Theorem 3.3. �

Proof of Proposition 4.1. Let a1, . . . ,ap denote the columns of the matrix A, so that ai ∈ Zp for
each i ∈ [p] and

C := AR+
J =

∑
i∈[p]

R+
εiai, where εi := 1− JJK(i).

If the matrix A is unimodular, there is nothing to prove. So, w.l.o.g., |detA| ≥ 2. Then there
is a vector w ∈ Zp \ {0} such that

(5.58) w = w1a1 + · · ·+ wpap

for some real numbers w1, . . . , wp in the interval [0, 1) (in fact, there are exactly |detA| − 1 such
vectors w). Thus, w.l.o.g. for some k ∈ [p] one has

(5.59) wj > 0 for j ∈ [k] and wj = 0 for j ∈ [p] \ [k].

For each i ∈ [k], let Ai be the (integral) matrix obtained from the matrix A by replacing its i-th
column, ai, by w; then detAi = wi detA and hence

(5.60) 0 < |detAi| < |detA|.

We shall see that (4.32) holds with I = [k], the matrices Ai just defined, and some subsets
J1, . . . , Jk of the set [p].

Then, repeating the step described in the last paragraph – for each of the matricesA1, . . . , Ak
in place of A, in view of (5.60) we shall eventually obtain (4.32) with unimodular p×p matrices
Ai over Z, as required. This step relies mainly on the following combinatorial lemma.

Lemma 5.2. Let a1, . . . ,ap, C, w, and k be as described above. For each i ∈ [k], let

(5.61) Ci := R+
εiiw +

∑
j∈[p]\{i}

R+
εijaj ,

where the εij ’s are any numbers in the set {0, 1} satisfying the following conditions:
(i) εij = εj for i ∈ [k] and j ∈ [p] \ [k];

(ii) εii = εi for i ∈ [k];
(iii) εij + εji = 1 for any distinct i and j in [k];
(iv) for each i ∈ [k], the condition εi = 1 implies εij ≤ εj for all j ∈ [k];
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(v) for each nonempty subset J of the set [k], there is some i ∈ J such that for all j ∈ J \ {i} one has
εij = 1.

Then

(5.62) JCK =
∑
i∈[k]

JCiK.

We also have

Lemma 5.3. Take any ε1, . . . , εp in {0, 1} and any k ∈ [p]. Then there exist numbers εij in the set
{0, 1} satisfying all the conditions (i)–(v) in Lemma 5.2.

We shall prove these two lemmas in a moment.
Letting now Ji = {j ∈ [p] : εij = 0} for each i ∈ [k] (so that εij = 1− JJiK(j) for all i ∈ [k] and

j ∈ [p]), we will have Ci = AiR+
Ji

for i ∈ [k], which will complete the step described in the para-
graph containing formulas (5.58)–(5.60). Thus, to complete the entire proof of Proposition 4.1,
it remains to prove Lemmas 5.2 and 5.3.

Proof of Lemma 5.2. Take any x ∈ Rp. Let (y1, . . . , yp) = (y1(x), . . . , yp(x)) denote the p-tuple of
the coordinates of the vector x in the basis (a1, . . . ,ap) of Rp, so that

(5.63) x =
∑
j∈[p]

yjaj .

Also, for each i ∈ [k], let (yi1, . . . , yip) = (yi1(x), . . . , yip(x)) denote the p-tuple of the coordi-
nates of the vector x in the basis (a1, . . . ,ai−1,w,ai+1, . . . ,ap) of Rp, so that

x = yiiw +
∑

j∈[p]\{i}

yijaj = yiiwiai +
∑

j∈[p]\{i}

(yiiwj + yij)aj .

In view of (5.58) and (5.59),

(5.64) yij = yj for i ∈ [k], j ∈ [p] \ [k].

As for i and j in [k], we have yi = yiiwi and yj = yiiwj + yij = yi
wi
wj + yij if j 6= i, which can

be rewritten as

(5.65) ∀(i, j) ∈ [k]× [k]
(
yiiwi = yi and j 6= i =⇒ yij

wj
= rj − ri

)
,

where
rj := rj(x) :=

yj
wj
.

Note that (5.62) means precisely that C is the disjoint union of the Ci’s. Thus, the proof of
Lemma 5.2 will be completed in the following three steps.

Step 1: checking that Ci ⊆ C for each i ∈ [k]. Take indeed any i ∈ [k], and then take any
x ∈ Ci, so that, by (5.61), yij ∈ R+

εij for all j ∈ [p]. Then yii ∈ R+
εii = R+

εi by condition (ii)
of Lemma 5.2 and hence yi = yiiwi ∈ R+

εi . Also, by (5.64) and condition (i) of Lemma 5.2,
yj = yij ∈ R+

εij = R+
εj for j ∈ [p] \ [k].

If yi > 0, then yj = yi
wi
wj + yij > yij ≥ 0 for all j ∈ [k] \ {i}, whence yj > 0 for all j ∈ [k]. So,

by (5.63), x ∈
∑
j∈[k] R

+
0 aj +

∑
j∈[p]\[k] R+

εjaj ⊆
∑
j∈[p] R+

εjaj = C.
If now yi = 0, then the mentioned condition yi ∈ R+

εi implies εi = 1. So, by condition
(iv) of Lemma 5.2, for all j ∈ [k] we have εij ≤ εj and hence R+

εij ⊆ R+
εj , which yields yj =

yi
wi
wj + yij = yij ∈ R+

εij ⊆ R+
εj . So, in this case as well, x ∈ C.
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Step 2: checking that the Ci’s are disjoint. Take any distinct i and j in [k], and then take
any x ∈ Ci ∩ Cj . Then yij ∈ R+

εij , whence, by (5.65), rj − ri = yij/wj ∈ R+
εij . Similarly,

ri − rj ∈ R+
εji , that is, rj − ri ∈ −R+

εji = R \ R+
εij , by condition (iii) of Lemma 5.2. Thus,

rj − ri ∈ R+
εij ∩

(
R \ R+

εij

)
= ∅, which is a contradiction.

Step 3: checking that C ⊆
⋃
i∈[k] Ci. Take any x ∈ C, so that yj ∈ R+

εj for all j ∈ [p]. Let

Jx := {i ∈ [k] : ri(x) ≤ rj(x) ∀j ∈ [k]}.

Then, by (5.65), yij ≥ 0 for all i ∈ Jx and j ∈ [k]. Moreover, rj(x) > ri(x) for all i ∈ Jx and
j ∈ [k] \ Jx.

So, again by (5.65), for all i ∈ Jx and j ∈ [k] \ Jx we have yij > 0, so that yij ∈ R+
0 ⊆ R+

εij .
Note that Jx 6= ∅. So, by condition (v) of Lemma 5.2, there is some ix ∈ Jx such that for all
j ∈ Jx \ {ix} one has εixj = 1, so that yixj ∈ R+

εixj
. Thus, yixj ∈ R+

εixj
for all j ∈ [k] \ {ix}. Also,

yixix ∈ R+
εixix

– in view of the first equality in (5.65), the condition yi ∈ R+
εi for all i ∈ [p], and

condition (ii) of Lemma 5.2. Moreover, yixj ∈ R+
εixj

for all j ∈ [p] \ [k] – in view of (5.64), the
condition yj ∈ R+

εj for all j ∈ [p], and condition (i) of Lemma 5.2. We conclude that yixj ∈ R+
εixj

for all j ∈ [p], that is, x ∈ Cix ⊆
⋃
i∈[k] Ci.

Lemma 5.2 is now proved. �

Proof of Lemma 5.3. For i ∈ [k] and j ∈ [p] \ [k], let εij := εj , in accordance with condition (i) of
Lemma 5.2.

Similarly, let εii := εi for i ∈ [k], in accordance with condition (ii) of Lemma 5.2.
Next, w.l.o.g. εj is nondecreasing in j ∈ [k]. Let then εij := 1 and εji := 0 for all i and j in [k]

with i < j.
It is now straightforward to check that all the conditions (i)–(v) in Lemma 5.2 hold. In par-

ticular, concerning condition (iv), note that, if εi = 1 and εij = 1 for some distinct i and j in [k],
then i < j and hence 1 = εi ≤ εj , so that εj = 1. Concerning condition (v), for each nonempty
subset J of the set [k], let i := min J ; then for all j ∈ J \ {i} one has i < j and hence εij = 1.
Lemma 5.3 is now proved. �

The entire proof of Proposition 4.1 is thus complete. �
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