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ABSTRACT

In this paper we show that Dehn surgeries on the oriented components of the Whitehead link yield
tetrahedron manifolds of Heegaard genus ≤ 2. As a consequence, the eight homogeneous Thurston
3–geometries are realized by tetrahedron manifolds of Heegaard genus ≤ 2. The proof is based on
techniques of Combinatorial Group Theory, and geometric presentations of manifold fundamental
groups.
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1. Introduction and results

Let us consider the Whitehead link W in the oriented 3–sphere S3. See Figure 1. Let W(m/n; p/q) denote the
closed connected orientable 3–manifold obtained by m/n and p/q Dehn surgeries on the oriented components
of W . Such manifolds were studied in [11] and [12], and their topological classification follows from the results
of [10].

Let G(m/n; p/q) be the fundamental group of W(m/n; p/q). It was shown in [6], Theorem 3.2, that G(m/n; p/q)
admits a finite balanced presentation with generators a and b and relators

(1)
ap+qb−na−qbnaqbna−qb−n = 1

bm+na−qb−naqbnaqb−na−q = 1

Figure 1. The Whitehead link W and the surgery manifold W(m/n; p/q).

Such a presentation is geometric, that is, it corresponds to a spine of the manifold. In particular, it arises from a
Heegaard diagram of genus 2. If W(m/n; p/q) admits a hyperbolic structure, then it has Heegaard genus 2. In
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general, since (1) is a geometric presentation, we see that W(m/n; p/q) has Heegaard genus at most 2. However,
this sentence is well known as W has tunnel number 1. For presentations of Groups in terms of Generators and
Relations we refer to [8] and [9].

The face identification procedure is a very classical method for constructing closed 3–manifolds. It is well-
known that such spaces can be combinatorially described as quotients of polyhedral 3–balls by pairwise
identifications of their boundary faces. The interiors of such 3–balls become open 3–balls in the quotients. Their
boundaries become embedded 2–polyhedra which are spines of the quotient manifolds. A unified method
to treat the theory of discontinuous transformation groups in a space of constant curvature and the face
identification procedure has been developed by Molnár in [14]. See also [15]. Then Molnár and Szirmai [17]
study an interesting family of compact 3–manifolds, i.e., space forms, that are derived from famous Euclidean
and non-Euclidean polyhedral tilings by the unified method of face identifications. For the classification of
face-transitive periodic three-dimensional tilings see [7].

Following [3], [4], [13] and [25], a tetrahedron manifold is, by definition, a closed connected orientable 3–
manifold obtained by a suitable subdivision of the edges of a standard tetrahedron plus an identification of
pairs of the boundary faces. We now state our main result.

Theorem 1. Any surgery 3–manifold W(m/n; p/q) is a tetrahedron manifold of Heegaard genus ≤ 2.

For the proof, we use the finite presentation in (1), the classification results from [10], and the following theorem
which is a consequence of the Geometrization Theorem in combination with the Mostow-Prasad Rigidity
Theorem [20] [21]. See [1], Theorem 3.17.

Theorem 2. Let M and M ′ be closed connected orientable prime 3–manifolds with isomorphic fundamental
groups. If M and M ′ are not lens spaces, then M and M ′ are homeomorphic.

As a consequence of Theorem 1 and the classification results from [10], we get

Corollary 3. The eight homogeneous Thurston 3–geometries are realized by tetrahedron manifolds of
Heegaard genus ≤ 2.

To clarify the statement of Corollary 3 we explicitly confirm that all eight Thurston’s geometries occur on
some manifolds of type W(m/n; p/q). Following [2], let K[b1,b2] denote the 2–bridge knot in S3 that corresponds
to a continued fraction β/α = [b1, b2] = 1/(b1 − 1/b2). Then α is odd, and we may assume that β is even with
1 < β < α. As remarked in [2], at least one of the coefficients bi, i = 1, 2, is even, and we may set b1 = 2n, for
some integer n, as K[b1,b2] is equivalent to K[b2,b1]. Now doing a p/q surgery on K[2n,2] is the same as doing −1/n
and p/q surgeries on the components of the Whitehead link W . Recall that K[2n,2] is a twist knot, and K[2,2] is the
trefoil knot T (3, 2). Thus, for every n ≥ 1, we have the homeomorphism W(−1/n; p/q) ∼= K[2n,2](p/q). For n = 1,
we get W(−1; p/q) ∼= K[2,2](p/q), where K[2,2] = T (3, 2). From [19] and [24], let M be the closed 3–manifold
obtained by Dehn surgery on T (3, 2) with coefficient p/q, and set σ = 6q + p.

If σ = 0 (e.g., p = −6 and q = 1), then M is reducible, and it is homeomorphic to RP 3#L(3, 1).
If |σ| = 1, then M is homeomorphic to the lens space L(|p|, 4q). In this case, M has Heegaard genus one. It

admits spherical geometry (i.e., S3–geometry) as p ̸= 0. In particular, for |p| = 1, we get the 3–sphere S3.
If |σ| ≥ 2, then M is a Seifert fibered 3–manifold with three exceptional fibers, that is,

M ≡ (O 0 o : − 1 (3, 1) (2, 1) (p+ 6q, q)).

From [18], let us consider two parallel curves in a solid torus V with surgery instructions (1, b) and (α, β).
Without changing the meridian of the resulting solid torus, we can exchange the surgery instructions for
(1, b+ n) and (α, β − αn), respectively. Applying this construction to the above surgery manifold, for |σ| ≥ 2, it
follows that M can be completely represented by the following Seifert coefficients:

M ≡ (O 0 o : 0 (3, 1) (2,−1) (p+ 6q, q)).

Thus the Euler number of the Seifert fibration for M is given by

e =
1

2
− 1

3
− q

p+ 6q
=

p

6(p+ 6q)
.

The Euler characteristic of the base orbifold is given by

χ = 2− (1− 1

3
)− (1− 1

2
)− (1− 1

p+ 6q
) =

6− 6q − p

6(p+ 6q)
.
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χ > 0 χ = 0 χ < 0

e = 0 S2 ×R E3 H2 ×R
e ̸= 0 S3 Nil P̃SL

By [22], the relevant geometries of a Seifert fibered 3–manifold is determined by e and χ according to the above
table.

In our case, we have:
• χ = 0, e = 0 (p = 0, q = 1). Then the surgery manifold

M ≡ (O 0 o : − 1 (3, 1) (2, 1) (6, 1))

is an Euclidean manifold (see [18], p.63), hence it admits an E3–geometry.

• χ < 0, e = 0 (p = 0, q < 0 or q > 1). Then the resulting surgery manifold admits a (H2 ×R)–geometry.

• χ = 0, e ̸= 0 (p ̸= 0, 6q = 6− p). Then the surgery manifold admits a Nil–geometry.

• χ < 0, e ̸= 0 (hence p ̸= 0). Then the surgery manifold admits a P̃SL–geometry.

The surgery manifold W(m/n; p/q) with n = 0 (hence m = 1) is homeomorphic to the lens space L(p, q), which
has S3–geometry for p ̸= 0, and (S2 × S1)–geometry for p = 0 as L(0, 1) ∼= S2 × S1.
From [3], the surgery manifold W(m/n; p/q), with p = 0, q = 1 and m = n− 2, n = 1 for n > 2, admits a Sol
geometry.
From [4], the surgery manifold W(m/n; p/q), with p = 4m+ 1, q = m and m = 2n+ 3, n = n+ 1 , admits a
hyperbolic geometry. Hyperbolic manifolds arising by surgeries on the components of the Whitehead link
have been studied in [10], [11] and [12]. Symmetries in the eight homogeneous Thurston 3-geometries have
been described by Molnár and Szirmai in [16].

2. A class of tetrahedron manifolds

Let us consider the simplicial complex P (m/n; p/q) which triangulates the boundary of the standard
tetrahedron as indicated in Figure 2. Let Ai be a vertex of the tetrahedron, for i = 0, 1, 2, 3. The oriented edges
A0A2 and A3A0 are subdivided into four sequences of oriented edges, labeled by the oriented sequences bn,
aq, bn and aq, where the exponent is taken with sign +1 (resp. −1) if the walking sense of A0A2 and A3A0

is coherent (resp. opposite) to the arrow marked in Figure 2. The oriented edge A2A3 is labeled by bm, that
is, it is subdivided by m oriented edges of the same length, labeled by b. The oriented edges A1A2 and A3A1

are subdivided into four sequences of oriented edges, labeled by the oriented sequences aq, bn, aq and bn.
As before, the exponent is taken with sign +1 (resp. −1) if the walking sense of A1A2 and A3A1 is coherent
(resp. opposite) to the arrow drawn in Figure 2. We identify in pairs the boundary faces of the standard
tetrahedron, i.e., F1 ≡ F 1 and F2 ≡ F 2. The faces are to be paired so that the index stars in Figure 2 match up.
For (m,n) = (p, q) = 1, the resulting space, denoted by M(m/n; p/q), has one vertex, two 1–cells, also labeled by
a and b, two 2–cells, and one 3–cell. Since the Euler characteristic vanishes, the quotient space M(m/n; p/q) is a
closed connected orientable 3–manifold. The face pairing forces an identification of the cells of P (m/n; p/q) into
a 2–polyhedron, which is a spine of the manifold M(m/n; p/q). We can immediately obtain a finite presentation
for the fundamental group of M(m/n; p/q) by considering the two spine relations:

Theorem 4. The simplicial complex P (m/n; p/q) with the identifications described above defines the
tetrahedron manifold M(m/n; p/q) of Heegaard genus ≤ 2. The two cycle relations provide the finite geometric
presentation in (1) for the fundamental group of M(m/n; p/q). Such a presentation corresponds to a spine of
the constructed manifold.
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Figure 2. Polyhedral schemata of the tetrahedron manifolds M(m/n; p/q).

3. Proof of Theorem 1.

Set (m,n) = (p, q) = 1. Assume that |m/n| ≤ |p/q| as W(m/n; p/q) is homeomorphic to W(p/q;m/n). This
follows from the symmetries of the Whitehead link W . In particular, there is a self–homeomorphism of the
exterior of W in S3 which interchanges two boundary tori. See, for example, [11]. Here we consider only
nontrivial surgery manifolds, that is, we exclude the case that either n = 0 or q = 0. Such surgeries on the
components of W produce the lens spaces (including S3 and S2 × S1), which are tetrahedron manifolds by
obvious modification of the polyhedral schemata in Figure 2. For example, if q = 0 (hence p = 1) the sequences
of edges labeled by aq disappear from the polyhedral scheme in Figure 2. In this case G(m/n;∞) admits a
geometric presentation with generators a and b and relators a = 1 and bm = 1. By Singer moves [23] on the
Heegaard diagram associated to G(m/n;∞), we see that the resulting manifold is the lens space L(m,n).

If W(m/n; p/q) and M(m/n; p/q) are prime and not lens spaces, then they are homeomorphic by Theorems
2 and 4. More precisely, Theorem 4 states that these manifolds have isomorphic fundamental groups. This
enables the application of Theorem 2. We now investigate the case of reducible manifolds and the case of
manifolds homeomorphic to lens spaces.

Reducible manifolds. From the classification results of [10], the surgery manifold W(m/n; p/q) is reducible if
and only if

(m/n, p/q) ∈ {(−1,−6), (−2,−4), (−3,−3)}.

In these cases, we have W(−1;−6) ∼= L(3, 1)#RP 3, W(−2;−4) ∼= L(4, 1)#RP 3, and W(−3;−3) ∼=
L(3, 1)#L(3, 1). For such pairs of integers, we show that the manifolds W(m/n; p/q) and M(m/n; p/q)
are homeomorphic.

Case (m/n, p/q) = (−1,−6). For m = 1, n = −1, p = −6 and q = 1, the finite presentation of G(m/n; p/q) in (1)
has generators a and b and relations

(2) a−5ba−1b−1ab−1a−1b = 1
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and

(3) a−2bab−1ab = 1.

From (3) we get

(4) a−1ba−1 = ba−2b

which becomes a−2ba−2ba−2 = a−3ba−3, or, equivalently,

(5) (a−2b)3 = (a−3b)2.

Substituting relation (4) into (2) and doing simplifications yield the following sequence of equivalent relations:

a−4(a−1ba−1)b−1ab−1a−1b = 1

a−4(ba−2b)b−1ab−1a−1b = 1

a−4ba−1b−1a−1b = 1

a−3(a−1ba−1)b−1a−1b = 1

a−3(ba−2b)b−1a−1b = 1

a−3ba−3b = 1

hence

(6) (a−3b)2 = 1.

By (5) and (6), the group G(−1;−6) admits a finite presentation with generators a and b and relations
(a−3b)2 = 1 and (a−2b)3 = 1. Set x = a−2b and y = a−3b with inverse relations a = xy−1 and b = (xy−1)2x. Then
G(−1;−6) is presented by generators x and y and relations x3 = 1 and y2 = 1, that is, π1(M(−1;−6)) ∼= Z3 ∗ Z2.
By Theorem 3.11 of [1] there exist closed orientable 3–manifolds M1 and M2 with π1(M1) ∼= Z3, π1(M2) ∼= Z2,
and M(−1;−6) ∼= M1#M2. Since M(−1;−6) has Heegaard genus two, the manifold Mi, i = 1, 2, has Heegaard
genus one. It follows that M1

∼= L(3, 1) and M2
∼= RP 3, as requested.

For this case, we can also propose an alternative argument as follows. Since W(−1;−6) ∼= L(3, 1)#RP 3 and
both π1(M(−1;−6)) and π1(W(−1;−6)) have the presentation G(−1;−6), we immediately know that

π1(M(−1;−6)) ∼= π1(L(3, 1)#RP 3) ∼= Z3 ∗ Z2.

Then there exist closed orientable 3–manifolds M1 and M2 as above. In this case, M1#M2 is homeomorphic
to M1#(−M2), where −M2 denotes M2 with the opposite orientation. In fact, M2 = RP 3 admits an orientation
reversing self-homeomorphism. More generally, it is well-known that a lens space L(p, q) admits an orientation
reversing self-homeomorphism if and only if q2 ≡ −1 (mod p).

Case (m/n, p/q) = (−2,−4). For m = 2, n = −1, p = 4 and q = −1, the finite presentation of G(m/n; p/q) in (1)
has generators a and b and relations

(7) a3bab−1a−1b−1ab = 1

and

(8) baba−1b−1a−1ba = 1.

From (8) we get

(9) babab = aba

which becomes abababa = a2ba2, or, equivalently,

(10) (ab)4 = (a2b)2.

Substituting relation (9) into (7) and doing simplifications yield the following sequence of equivalent relations:

a2(aba)b−1a−1b−1ab = 1

a2(babab)b−1a−1b−1ab = 1

a2ba2b = 1
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hence

(11) (a2b)2 = 1.

By (10) and (11), the group G(−2;−4) admits a finite presentation with generators a and b and relations
(a2b)2 = 1 and (ab)4 = 1. Set x = ab and y = a2b with inverse relations a = yx−1 and b = xy−1x. Then G(−2;−4)
is presented by generators x and y and relations x4 = 1 and y2 = 1, that is, π1(M(−2;−4)) ∼= Z4 ∗ Z2. Reasoning
as above, we get M(−2;−4) ∼= M1#M2 with M1

∼= L(4, 1) and M2
∼= RP 3 because M1 and M2 have Heegaard

genus one. Also in this case, one can apply the arguments described at the end of the previous case concerning
the homeomorphism M1#M2

∼= M1#(−M2).

Case (m/n, p/q) = (−3,−3). For m = p = 3 and n = q = −1, the finite presentation of G(m/n; p/q) in (1) has
generators a and b and relations

(12) a2bab−1a−1b−1ab = 1

and

(13) b2aba−1b−1a−1ba = 1.

From (13) we get

(14) bab2ab = aba

which becomes b2ab2ab2 = babab, or, equivalently,

(15) (ab)3 = (ab2)3.

Substituting relation (14) into (12) and doing simplifications yield the following sequence of equivalent
relations:

a(aba)b−1a−1b−1ab = 1

a(bab2ab)b−1a−1b−1ab = 1

ababab = 1

hence

(16) (ab)3 = 1.

By (15) and (16), the group G(−3;−3) admits a finite presentation with generators a and b and relations
(ab)3 = 1 and (ab2)3 = 1. Set x = ab and y = ab2 with inverse relations a = xy−1x and b = x−1y. Then G(−3;−3)
is presented by generators x and y and relations x3 = 1 and y3 = 1, that is, π1(M(−3;−3)) ∼= Z3 ∗ Z3. Finally,
we obtain M(−3;−3) ∼= L(3, 1)#L(3, 1). In this case, the manifolds L(3, 1)#L(3, 1) and L(3, 1)#− L(3, 1) are
not homeomorphic. The claimed result follows from the trick of viewing the Tietze transformations as Singer
moves. See, for example, [23]. More precisely, from (15) and (16) the group G(−3;−3) admits the finite
presentation with generators x and y and relations x3(y−1)3 = 1 and x3 = 1. The above Tietze transformations
correspond to Singer moves on the Heegaard diagrams representing M(−3;−3). So the last presentation is
geometric, and we can apply an obvious extension of Theorem 2.2 of [5] with p = n = 3 and k = −1 (according
to notations in the statement of Theorem 2.2). Then M(−3;−3) is homeomorphic to the manifold with Seifert
invariants given by (O 0 o : − 1 (3,m) (3,−q) (0, 1)), which is L(3,m)#L(3,−q) with (3,m) = (3,−q) = 1. Then
we get M(−3;−3) ∼= L(3, 1)#L(3, 1).

Lens spaces. From the classification results of [10], the surgery manifold W(m/n; p/q) is homeomorphic
to a lens space (including S2 × S1) if and only if (m/n, p/q) equals one of the following pairs: (−1, p/q)
with p+ 6q = ±1; (−3,−4); (−3 + 1/n,−3) and (−4 + 1/n,−2) for n ≥ 1. In these cases we have W(−1; p/q) ∼=
L(|p|, 4q) with p+ 6q = ±1, W(−3;−4) ∼= L(12, 5), W(−3 + 1/n;−3) ∼= L(9n− 3, 3n− 2), and W(−4 + 1/n;−2) ∼=
L(8n− 2, 4n+ 1). For such pairs we show that W(m/n; p/q) and M(m/n; p/q) are homeomorphic.

Case (m/n, p/q) = (−1, p/q) with p+ 6q = ±1. For m = 1, n = −1 and p = ±1− 6q, the finite presentation of
G(m/n; p/q) in (1) has generators a and b and relations

(17) a±1−5pba−qb−1aqb−1a−qb = 1
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and

(18) a−2qbaqb−1aqb = 1.

From (18) we get

(19) a−qba−q = ba−2qb

which becomes a−3qba−3q = a−2qba−2qba−2q, or, equivalently,

(20) (a−2qb)3 = (a−3qb)2.

Substituting relation (19) into (17) and doing simplifications yield the following sequence of equivalent
relations:

a±1−4q(a−qba−q)b−1aqb−1a−qb = 1

a±1−4q(ba−2qb)b−1aqb−1a−qb = 1

a±1−4qba−qb−1a−qb = 1

a±1−3q(a−qba−q)b−1a−qb = 1

a±1−3q(ba−2qb)b−1a−qb = 1

a±1−3qba−3qb = 1

hence

(21) a±1(a−3qb)2 = 1.

Set x = a and y = a−3qb with inverse relations a = x and b = x3qy. By (20) and (21) the group G(−1; p/q), with
p+ 6q = ±1, admits the finite presentation with generators x and y and relations x±1y2 = 1 and (xqy)2xqy−1 =
1. The above Tietze transformations correspond to Singer moves on the Heegaard diagrams representing
M(−1; p/q) with p+ 6q = ±1. So the last presentation is geometric, and we can apply Theorem 2.2 of [5]
with p = ±1, n = 2, m = q, k = 2, and q = −1 (according to notations in the statement of Theorem 2.2). Then
M(−1; p/q) with p+ 6q = ±1 is the Seifert manifold defined by the invariants (O 0 o : −1 (3, 1) (±1, q) (2, 1)).
By [18] this space is homeomorphic to the Seifert manifold (O 0 o : b (α1, β1) (α2, β2)), where b = −q, (α1, β1) =
(2, 1), α2 = 3, and β2 = −1 (resp. -2) if p = −6q + 1 (resp. p = −6q − 1). But the last space is homeomorphic to the
lens space L(ξ, η), where ξ = |bα1α2 + α1β2 + α2β1| = |p| and η = 3q − β2. Since η(4q) ≡ ±1 (mod p), it follows
that M(−1; p/q) ∼= L(|p|, 4q) with p+ 6q = ±1, as required.

Case (m/n, p/q) = (−3,−4) . For m = 3, n = −1, p = 4 and q = −1, the finite presentation of G(m/n; p/q) in
(1) has generators a and b and relations

(22) a3bab−1a−1b−1ab = 1

and

(23) b2aba−1b−1a−1ba = 1.

From (23) we get

(24) aba = bab2ab

which becomes babab = b2ab2ab2, or, equivalently,

(25) (ab)3 = (ab2)3.

Substituting relation (24) into (22) and doing simplifications yield the following sequence of equivalent
relations:

a2(aba)b−1a−1b−1ab = 1

a2(bab2ab)b−1a−1b−1ab = 1

a2babab = 1

dergipark.org.tr/en/pub/iejg 198

https://dergipark.org.tr/en/pub/iejg


A. Cavicchioli & F. Spaggiari

hence

(26) a(ab)3 = 1.

Set x = a and y = ab with inverse relations a = x and b = x−1y. By (25) and (26) the group G(−3;−4) admits
a finite presentation with generators x and y and relations xy3 = 1 and (x−1y2)2x−1y−1 = 1. The above Tietze
transformations correspond to Singer moves on the Heegaard diagrams representing M(−3;−4). So the last
presentation is geometric, and we can apply Theorem 2.2 of [5] with p = 1, n = 3, m = −1, k = 2, and q = −1
(according to notations in the statement of Theorem 2.2). Then M(−3;−4) is the Seifert manifold defined by the
invariants (O 0 o : −1 (1,−1) (3, 1) (3, 1)). By [18] this space is homeomorphic to the Seifert manifold (O 0 o :
b (α1, β1) (α2, β2)), where b = −1, (α1, β1) = (3,−2) and (α2, β2) = (3, 1). But the last space is homeomorphic
to the lens space L(ξ, η), where ξ = |bα1α2 + α1β2 + α2β1| = 12 and η = uα2 + vβ2, with uα1 − v(bα1 + β1) = 1.
The latter equation becomes 3u+ 5v = 1, which gives u = −3 and v = 2. Substituting these values into the
expression of η implies η = −3α2 + 2β2 = −7 ≡ 5 mod 12. Thus we have M(−3;−4) ∼= L(12, 5), as required.

Case (m/n, p/q) = (−3 + 1/n,−3) . For m = 3n− 1, p = 3 and q = −1, the finite presentation of G(m/n; p/q)
in (1) has generators a and b and relations

(27) a2bnab−na−1b−nabn = 1

and

(28) b2n−1abna−1b−na−1bna = 1.

From (27) we get

(29) bnabn = abna2bna

which becomes abnabna = a2bna2bna2, or, equivalently,

(30) (abn)3 = (a2bn)3.

Substituting relation (29) into (28) and doing simplifications yield the following sequence of equivalent
relations:

bn−1(bnabn)a−1b−na−1bna = 1

bn−1(abna2bna)a−1b−na−1bna = 1

bn−1abnabna = 1

hence

(31) b−1(abn)3 = 1.

Set x = b−1 and y = abn with inverse relations a = yxn and b = x−1. By (30) and (31) the group G(−3 + 1/n;−3)
admits a finite presentation with generators x and y and relations xy3 = 1 and (xny2)2xny−1 = 1. The above
Tietze transformations correspond to Singer moves on the Heegaard diagrams representing M(−3 + 1/n;−3).
So the last presentation is geometric, and we can apply Theorem 2.2 of [5] with p = 1, n = 3, m = n, k = 2, and
q = −1 (according to notations in the statement of Theorem 2.2). Then M(−3 + 1/n;−3) is the Seifert manifold
defined by the invariants (O 0 o : −1 (1, n) (3, 1) (3, 1)). By [18] this space is homeomorphic to the Seifert
manifold (O 0 o : b (α1, β1) (α2, β2)), where b = −n, (α1, β1) = (3,−1) and (α2, β2) = (3, 2). But the last space
is homeomorphic to the lens space L(ξ, η), where ξ = |bα1α2 + α1β2 + α2β1| = 9n− 3 and η = uα2 + vβ2, with
uα1 − v(bα1 + β1) = 1. The latter equation becomes 3u+ (3n+ 1)v = 1, which gives u = 2n+ 1 and v = −2.
Substituting these values into the expression of η implies η = (2n+ 1)α2 − 2β2 = 6n− 1 ≡ −(3n− 2) mod
(9n− 3). Thus we have M(−3 + 1/n;−3) ∼= L(9n− 3, 3n− 2), as required.

Case (m/n, p/q) = (−4 + 1/n,−2) . For m = 4n− 1, p = 2 and q = −1, the finite presentation of G(m/n; p/q)
in (1) has generators a and b and relations

(32) abnab−na−1b−nabn = 1

and

(33) b3n−1abna−1b−na−1bna = 1.
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From (32) we get

(34) bnabn = abnabna

which becomes b2nab2n = bnabnabnabn, or, equivalently,

(35) (ab2n)2 = (abn)4.

Substituting relation (34) into (33) and doing simplifications yield the following sequence of equivalent
relations:

b2n−1(bnabn)a−1b−na−1bna = 1

b2n−1(abnabna)a−1b−na−1bna = 1

b2n−1ab2na = 1

hence

(36) b−1(ab2n)2 = 1.

Set x = b−1 and y = ab2n with inverse relations a = yx2n and b = x−1. By (35) and (36) the group G(−4 +
1/n;−2) admits a finite presentation with generators x and y and relations xy2 = 1 and (xny)3xny−1 = 1. The
above Tietze transformations correspond to Singer moves on the Heegaard diagrams representing the manifold
M(−4 + 1/n;−2). So the last presentation is geometric, and we can apply Theorem 2.2 of [5] with p = 1, n = 2,
m = n, k = 3, and q = −1 (according to notations in the statement of Theorem 2.2). Then M(−4 + 1/n;−2) is
the Seifert manifold defined by the invariants (O 0 o : −1 (1, n) (2, 1) (4, 1)). By [18] this space is homeomorphic
to the Seifert manifold (O 0 o : b (α1, β1) (α2, β2)), where b = −n, (α1, β1) = (2, 1) and (α2, β2) = (4,−1).
But the last space is homeomorphic to the lens space L(ξ, η), where ξ = |bα1α2 + α1β2 + α2β1| = 8n− 2 and
η = uα2 + vβ2, with uα1 − v(bα1 + β1) = 1. The latter equation becomes 2u+ (2n− 1)v = 1, which gives u = n
and v = −1. Substituting these values into the expression of η implies η = nα2 − β2 = 4n+ 1. Thus we have
M(−4 + 1/n;−2) ∼= L(8n− 2, 4n+ 1), as required.
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