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A FRACTIONAL ORDER MODEL OF HEPATITIS B

TRANSMISSION UNDER THE EFFECT OF VACCINATION
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Abstract. In this paper we present a fractional order mathematical model to

explain the spread of Hepatitis B Virus (HBV) in a non-constant population.
The model we propose includes both vertical and horizontal transmission of

the infection and also vaccination at birth and vaccination of the susceptible

class. We also use a frequency dependent transmission rate in the model. We
give results on existence of equilibrium points of the model and analyze the

stability of the disease-free equilibrium. Finally, numerical simulations of the
model are presented.

1. Introduction

Hepatitis B is a serious liver infection caused by Hepatitis B Virus (HBV). Ac-
cording to World Health Organization (WHO), an estimated 296 million people
are living with HBV infection and in 2019 almost 820000 people died due to HBV
related liver diseases [33]. However, immunization of newborns and susceptible in-
dividuals is a very effective strategy to control the transmission of the disease [34].

There are basically two different transmission types for HBV. When blood, semen
or another body fluid from a person infected with HBV enters to the body of a non-
infected person, horizontal transmission occurs. The virus can also be vertically
transmitted [33]. Vertical transmission is the transmission of the virus from an
infected mother to the baby at birth. Most of the infected individuals recover
from the disease and gain immunity, however some develop chronic HBV infection.
Chronic HBV infection can lead some life-threatening diseases like cirrhosis and
liver cancer. The incubation period for HBV is an average of 120 days [21]. Once
an individual is diagnosed with HBV, the infection is considered as acute infection
for 6 months but if the infection lasts more than 6 months, it is considered as
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chronic infection [21]. For adults, recovery rate from acute infection with immunity
is 95% while for infants and children, this rate is dramatically low [7].

In early 1980’s a general dynamical model considering immunization, composed
of partial differential equations is proposed and the idea of suitability of the given
model for HBV transmission was put forward for the first time [1]. In 1994, the first
differential equation model specifically for transmission of HBV infection including
vaccination is proposed [16]. Since then, many researchers studied on models with
vaccination (See [12]).

Medley et al. introduced a compartment epidemic model for HBV infection with
immunization of children born to carrier mothers and newborn babies [22]. In this
study population in the absence of disease is assumed to be constant. Zou et al.
modified the model given in [22] considering the lifelong immunity gained after
recovery and waning vaccine-induced immunity in a non-constant population by
assuming only horizontal transmission of the disease [35]. In both of these models,
transmission rate is assumed to be density dependent and also transmission occurs
only through carriers ans acute infectious individual. However, HBV may transmit
during its incubation period [33].

In recent years many mathematicians studied on fractional order epidemic mod-
els ( [3], [17], [18]). Ullah et al. introduced a fractional order epidemic model for
HBV transmission with density dependent transmission rate using Caputo-Fabrizio
derivative in which only the immunization of children born to carrier mothers is con-
sidered [29]. Farman et al. analyzed an epidemic model for HBV infection consists
of differential equations in Caputo sense. In this model, the population is assumed
to be constant in the absence of the disease [6]. In this study we propose a more
general model using fractional differential equations of Caputo sense considering
newborn vaccination and also vaccination of susceptible individuals regardless of
age. The reason for using fractional differential equations is to reflect the memory
effect in the spread of the disease to the mathematical model ( [4], [23]). In this
model we consider both horizontal and vertical transmission of the disease. HBV
infection is a long term infection so, ignoring the demographic structure of the
population is not realistic. In the model we propose, we also consider the demo-
graphic properties of the population. Transmission rates used in epidemic models
can be classified in two major forms: density dependent transmission rate and fre-
quency dependent transmission rate [9]. Density dependent transmission rate is
commonly assumed for smaller populations and specifically in modeling airborne
transmitted diseases, nevertheless frequency dependent transmission rate is com-
monly assumed for large, heterogeneous populations and in modeling vector-borne
or sexually transmitted diseases ( [9], [8]). In all of the above mentioned models,
transmission rates are assumed to be density dependent, however we assume fre-
quency dependent transmission rate. We first introduce the model then analyze
the equilibrium points of the model and finally we give the numerical simulations
for the constructed model.
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Figure 1. The schematic diagram of the proposed model.

2. Model Derivation

Definitions of fractional order integral and fractional order derivative in Caputo
sense [19] are presented in the Appendix. Due to its nature, Caputo fractional
derivative is widely used in mathematical modeling of real life problems. We also
use Caputo derivative in our model. The main reason for using fractional derivative
rather than the integer order derivative is the memory effect that is considered in
the fractional order differential equations. Like most of the biological dynamics,
dynamics of the transmission of epidemic diseases have a short memory effect [23].

The schematic diagram of the proposed epidemic model to explain the spread
of HBV infection is given in Figure 1. The total population, N(t), is partitioned
into five classes namely susceptible, exposed, acute infectious, chronic infectious
and recovered classes denoted by S (t) , E (t) , I1 (t) , I2 (t) and R (t), respectively.
The individuals in susceptible class are healthy individuals who are candidates
for contracting the disease. The individuals in E (t) class are infected individuals
for whom the virus is in its incubation period. In the model there are two more
infectious classes. After the symptoms are seen in an infectious individual, he/she
is assumed to pass to the acute infectious class. If an acute infectious person cannot
recover from the disease in a specific time interval which depends on the structure of
the disease, he/she is assumed to be chronic infectious. Acute and chronic infectious
compartments are denoted with I1 (t) and I2 (t), respectively. d is the natural death
rate of the population and θ is the death rate related to the fatal diseases caused by
the infection. Particularly for HBV infection, secondary fatal liver related diseases
arise for the chronic infectious individuals that enhances the death rate. We assume
that vaccination rate at birth is µ and the rate of vaccination of susceptible class
is ξ. Also vaccinated individuals gain immunity and pass to the recovered class.
Since, HBV is a virus that can be vertically transmitted which means an infected
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Table 1. Variables and parameters used in the model.

S(t) : Number of susceptible individuals at time t
E(t) : Number of exposed individuals at time t
I1 (t) : Number of acute infectious individuals at time t
I2 (t) : Number of chronic infectious individuals at time t
R (t) : Number of recovered individuals with immunity at time t
µ : Immunization rate by vaccination at birth

Λ : Number of recruits per unit time

d : Natural death rate

p : Probability of having an exposed baby for exposed and infectious classes

r : Transmission coefficient (both exposed and infectious individuals can transmit the disease)

ξ : Immunization rate of susceptible class

q1: Recovery rate from acute HBV infection

q2: Rate of developing chronic disease after acute Hepatitis B infection.

θ : Disease related death rate

β : The rate at which exposed individuals pass to acute infectious class

individual (we only consider the vertical transmission from mother) may transmit
the disease to its babies before birth, the parameter p is defined as the probability
of having an exposed baby for the infected individuals. All of the parameters used
in the model are explained in Table 1 .

These assumptions lead to the following system of differential equations with
0 < α < 1,

DαS = (1− µ) Λ
(
1− p(E+I1+I2)

N

)
− S

(
r(E+I1+I2)

N + d+ ξ
)
,

DαE = (rS + pΛ) (E+I1+I2)
N − (β + d)E,

DαI1 = βE − (q1 + q2 + d)I1,
DαI2 = q2I1 − (θ + d) I2,

DαR = q1I1 + µΛ
(
1− p(E+I1+I2)

N

)
+ ξS − dR

(1)

and the initial conditions

S (0) = S0, E (0) = E0, I1 (0) = I10, I2 (0) = I20, R (0) = R0, (2)

where N (t) = S (t) +E (t) + I1 (t) + I2 (t) +R (t) and (S,E, I1, I2, R) ∈ R5
+. Using

system (1), we obtain

DαN(t) = Λ− dN − θI2. (3)

Theorem 1. The initial value problem (1)-(2) has a unique solution and the solu-
tion remains in R5

+.

Proof. The existence and uniqueness of the solution of (1)-(2) in (0,∞) can be
shown by using [13]. We now show the positive invariance of the domain R5

+.
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Since,

DαS | S=0 = Λ(1− µ)

(
1− p (E + I1 + I2)

N

)
≥ 0,

DαE | E=0 =
rS(I1 + I2)

S + I1 + I2 +R
+

pΛ(I1 + I2)

S + I1 + I2 +R
≥ 0,

DαI1 | I1=0 = βE ≥ 0,

DαI2 | I2=0 = q2I1 ≥ 0,

DαR | R=0 = q1I1 + µΛ

(
1− p (E + I1 + I2)

S + E + I1 + I2

)
+ ξS ≥ 0,

on every hyperplane bounding the nonnegative orthant, the vector field points into
R5

+.
□

It is clear that N (t) also remains nonnegative.
Let Ω =

{
(S (t) , E (t) , I1 (t) , I2 (t) , R (t)) ∈ R5

+ : 1 ≤ N (t) ≤ Λ/d
}
.

Lemma 1. The set Ω is positively invariant with respect to system (1).

Proof. (3) implies that

DαN(t) ≤ −dN (t) + Λ,

0 < α < 1.

So,

N (t) ≤
(
N0 −

Λ

d

)
Eα (−dtα) +

Λ

d
.

Consequently, N (t) ≤ Λ
d , if N0 ≤ Λ

d .
□

For the sake of simplicity in calculations, we use the system

DαS = (1− µ) Λ
(
1− p(E+I1+I2)

N

)
− S

(
r(E+I1+I2)

N + d+ ξ
)
,

DαE = (rS + pΛ) (E+I1+I2)
N − (β + d)E,

DαI1 = βE − (q1 + q2 + d)I1,
DαI2 = q2I1 − (θ + d) I2,
DαN(t) = Λ− dN − θI2

(4)

that can be obtained by (1) and (3) with the initial conditions

S (0) = S0, E (0) = E0, I1 (0) = I10, I2 (0) = I20, N (0) = N0.
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3. Equilibrium Points and Stability

System (4) has a disease free equilibrium (DFE) at H0 =
(

Λ(1−µ)
d+ξ , 0, 0, 0, Λ

d

)
.

The positive equilibrium appears at H1 = (S∗, E∗, I∗1 , I
∗
2 , N

∗) where

S∗ =

(
N∗A0A1

A0A1 +A0 + 1
− pΛ

)
1

r
,

E∗ = A0A1I
∗
2 ,

I∗1 = A0I
∗
2

N∗ =
Λ− θI∗2

d

and

A0 =
d+ θ

q2
,

A1 =
(d+ q1 + q2)

β
,

if the condition

A0A1 (d+ ξ)

r (1− µ) d (A0A1 +A0 + 1)
> 1, µ < 1

holds true.
Basic reproduction number, denoted by R∗

0, for an infection is the number of
secondary infections caused by one infected individual introduced to a totally sus-
ceptible population. Therefore, it is assumed to be a treshold value for the infection
to persist. Jacobian method is commonly used to determine the value of R∗

0 in epi-
demic models. However, it is not easy to overcome the algebraic work needed to
apply Jacobian method to models with multiple infectious compartments. Next
generation matrix (NGM) method is an alternative method to find the value of R∗

0.
The details of the NGM method can be found in [2], [30], [31] and [32]. We first
give the outline of the NGM method and apply it to the model given by (4).

Consider the system given with

dX

dt
= G (X) .

Let X = (x1, x2, ..., xn)
T
be the number of individuals in each compartment of the

epidemic model and let the first m compartments (m < n) are composed of infected
individuals. Consider the equations represented in the form

dxi

dt
= Fi (X)− Vi (X) , i = 1, 2, ...,m (5)

where Fi (X) is the rate of appearance of new infections in compartment i and
Vi (X) is the rate of transitions between the infected compartments. Here Fi and
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Vi are assumed to be in C2. FV −1 is called the next generation matrix where

F =

[
∂Fi (X

∗)

∂xj

]
and V =

[
∂Vi (X

∗)

∂xj

]
, 1 ≤ i, j ≤ m

and the spectral radius of the NGM is the basic reproduction number.

Theorem 2. ( [32]) If X0 is a disease free equilibrium of the system dxi

dt = Fi (X)−
Vi (X) then X0 is locally asymptotically stable if R∗

0 = ρ
(
FV −1

)
< 1, but unstable

if R∗
0 > 1.

Remark 1. Consider an epidemic model given by the integer order system

dX

dt
= G (X) (6)

and its fractional order counterpart

dαX

dtα
= G (X) . (7)

Systems (6) and (7) have the same equilibrium points. Let X∗ be the disease free
equilibrium point for both models. If X∗ is stable for (6), then it is also stable
for (7). But the converse is not always true. Therefore, Theorem 1 gives only a
sufficient condition for the stability of X∗ for (7).

We now consider the system consisting of three infected compartments of the
model (4),

DαE = (rS + pΛ) (E+I1+I2)
N − (β + d)E

DαI1 = βE − (q1 + q2 + d)I1
DαI2 = q2I1 − (θ + d) I2

(8)

and split the system in the form (5).
Let X = (S,E, I1, I2, N) and define

F1 (X) =
(r + pΛ)S (E + I1 + I2)

N
,

F2 (X) = 0,

F3 (X) = 0,

V1 (X) = (β + d)E,

V2 (X) = −βE + (d+ q1 + q2) I1,

V3 (X) = (d+ θ) I2 − q1I1.

So,

F |H0=

 rd(1−µ)
d+ξ + pd rd(1−µ)

d+ξ + pd rd(1−µ)
d+ξ + pd

0 0 0
0 0 0

 ,
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V |H0
=

(β + d) 0 0
−β d+ q1 + q2 0
0 −q2 d+ θ


and

R∗
0 = ρ

(
FV −1

)
=

dp (d+ ξ) + d (1− µ) r

(β + d) (d+ ξ)
.

Theorem 3. DFE of system (4) is locally asymptotically stable, if R∗
0 < 1 and

unstable if R∗
0 > 1.

Proof. The first part of the theorem is a direct consequence of NGM method and
Remark 1. In order to prove the unstability condition, we apply the Jacobian
method. The characteristic equations of system (4) for the DFE is

(−d− ξ − λ) (−d− λ)P3 (λ) = 0

where P3 (λ) = −λ3 + a2λ
2 + a1λ+ a0 with

a2 = (d+ β) (R∗
0 − 1)− (A1β +A0q2)

a1 = (A1β +A0q2) (d+ β) (R∗
0 − 1)−A0A1βq2 + (d+ β)R∗

0β

a0 = (d+ β)βq2 (A0A1 (R
∗
0 − 1) +R∗

0 (A0 + 1)) .

If R∗
0 > 1 then a0 > 0. Applying Descartes’ rule of signs, we see that P3 has at

least one positive root, that is DFE is unstable. □

Theorem 4. DFE of the system (4) is globally asymptotically stable in Ω if R∗
0 < 1

and the following condition holds:

(q1 + q2 + d) [(β + d) (θ + d) + q2 (r + p)]

(r + p) (q1 + q2 + d+ β) (θ + d+R∗
0q2)

≥ 1. (9)

Proof. Consider the Lyapunov function

L = A1E +A2I1 +A3I2,

where

A1 = (q1 + q2 + d) (θ + d)R∗
0,

A2 = (r + p) (θ + d+R∗
0q2) , (10)

A3 = (r + p) (q1 + q2 + d)R∗
0.

Using system (4), we have

DαL ≤ E [A1 (r + p)−A1 (β + d) +A2β]

+I1 [A1 (r + p)−A2 (q1 + q2 + d) +A3q2]

+I2 [A1 (r + p)−A3 (θ + d)] .

Substituting A1, A2 and A3 as given in (10), we obtain

DαL ≤ (E + I1) (R
∗
0 − 1) (q1 + q2 + d) (r + p) (θ + d)

+E[(β + q1 + q2 + d) (r + p) (θ + d+R∗
0q2)
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− (q1 + q2 + d)R∗
0 ((θ + d) (β + d) + q2 (r + p))]

≤ 0,

if R∗
0 < 1 and (9) holds. Consequently, using LaSalle’s invariance principle, we

conclude that DFE is globally stable in Ω. □

4. Numerical Solutions of the Model Using Data of Turkey

Hepatitis B virus infection is a serious public health issue in Turkey as well as the
rest of the world. There are two phases of the infection namely acute and chronic.
Once a person is diagnosed with chronic HBV infection he/she may develop new
HBV related fatal diseases like cirrhosis and liver carcinoma. A traditional SIR
model is performed for explaining HBV transmission in Turkey and transmission
coefficient for this model is estimated for two different values for birth and natural
death rate of the population [10]. We also simulate our model using data of Turkey.

According to the data provided by Turkish Statistical Institution (TUIK), the
average number of people born in Turkey every year is 1303000 and the average
death rate in Turkey is 0.00521 between the years 2010 and 2020 [28].

The most effective method to control the spread of HBV is the immunization of
the individuals in the population. In our model there are two parameters related
to the immunization. The first one is µ that represents the efficient immunization
rate of the newborns. In Turkey since 1997, every baby born in hospitals is being
vaccinated after birth. The immunity is gained after three doses of vaccine with
95% [20]. In Turkey nearly 94% of the births take place in hospitals and the
newborns receive the first dose after birth but only 75% percent of them take three
doses of vaccine ( [24]). For the parameter that represents the efficient vaccination
rate at birth, µ, we use the estimated value 0.66975 that is the product of 0.95, 0.94
and 0.75.

Vertical transmission of HBV is important for the models explaining the dy-
namics of the spread of HBV because the rate of developing chronic Hepatitis B
is 70% − 90% for the babies who are born infected ( [25]). The rate of having an
exposed baby for the infected mothers is known to be almost 90% and according
to TUIK ( [28]), the rate of giving birth for the population is 1.7% in Turkey. So,
we set the parameter p = 0.0153. β is assumed to be the the rate at which the ex-
posed individuals pass to the acute infectious compartment, that is closely related
with the incubation period of the virus. The incubation period of HBV is known
to be 60 − 180 days and for the simulations we assume it to be 120 days and set
β = 360/120 = 3.

The average recovery rates from acute infection for adults, children and babies
are 95%, 50% and 10%, respectively. Using the demographic data of Turkey we use
the weighted average for the recovery rate for Hepatitis B as 3.5008 considering the
average recovery duration 90 days. We also use the value 0.2496 for the parameter
q2, that is the rate of developing chronic HBV infection for the acute infectious
compartment. This value is calculated by q2 = 2(1− q1/4).
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Table 2. Initial values for system (4).

N (0) 74724.269(×10
3
)

Hepatitis B prevalence ( [26]) 4.57%

Number of HBV infectious people 3414.899(×10
3
)

I1 (0) ( [5]) 406.372(×10
3
)

I2 (0) 3008.526(×10
3
)

E(0) (assumed) 100(×10
3
)

R (0) ( [27]) 23837.041(×10
3
)

S (0) 47372.33(×10
3
)

Chronic HBV infection causes liver related fatal diseases and chronic HBV re-
lated deaths are due to liver cancer with 55% and cirrhosis and other liver diseases
with 45% ( [15]). Disease related death rate, θ, is estimated to be 2.2×10−5 ( [14]).
We also assume that the vaccination rate for the susceptible compartment is 0.0001.

Transmission coefficient of the disease does not only dependent on the type of
the virus but also depends on the social structure of the population we work on. So,
we simulate the model for different values of transmission coefficient, r (r = 0.8, 1).

We start the simulation from 2011, when the prevalence of HBV in Turkey
was 4.57% ( [26]). According to the Annual Epidemiological Report (2010-2014)
on Hepatitis B of European Center for Disease Prevention and Control (ECDC),
11.9% of reported Hepatitis B cases are acute ( [5]). Also the rate of anti-HBs
positivity which is a marker for gained immunity rate for Turkey is 31.9% ( [27]).
We use the values given in Table 2 to determine the initial values of system (4).

Basic reproduction numbers are calculated as 0.0862849 and 0.107849 for r = 0.8
and r = 1, respectively. The solutions of the proposed model using the above
mentioned parameters for different values of α are represented in the figures (2)-
(5).

5. Conclusion

Epidemic diseases and their health and economic consequences are one of the
major problems in the world. The first step to control the spread of a disease is
to understand its dynamics. Mathematical models are very convenient tools to
understand how a disease spread. Although statistical analysis of the data about
the spread of a disease gives a foresight about the future, it generally ignores the
dynamical feature of the process. Also, collecting appropriate data needs a long time
and also it is too expensive. In this paper we propose an epidemic model to explain
the spread of Hepatitis B. Hepatitis B epidemic is a long term epidemic unlike the
seasonal diseases. So, the population in the model is assumed to be non-constant.
Also, due to the nature of HBV both vertical and horizontal transmissions are
considered in the model. We also use a fractional order system to reflect the memory
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Figure 2. Acute infectious compartment for r = 0.8.
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Figure 3. Chronic infectious compartment for r = 0.8.

effect of the epidemic. After determining the equilibrium points of the model, we
give local stability analysis of the disease free equilibrium. We also give numerical
simulations for the model. The parameters used in the simulations are obtained
using previously published research and the numerical solutions are plotted for
two different values of the transmission coefficient. The solutions are presented for
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Figure 4. Acute infectious compartment for r = 1.

Figure 5. Chronic infectious compartment for r = 1.

α = 1, 0.9, 0.8. Data for the incidence of the disease is easily reachable for Hepatitis
B. But for the simulations of the proposed model, we need the prevalence data and
the only comprehensive data for the prevalence of HBV infection in Turkey is given
in 2011 ( [26]). This model may give a foresight for the future of HBV infection in
Turkey under the mentioned scenario.
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Appendix

Definition 1. [19] Riemann-Liouville fractional order integral of order α > 0 for
a function f : R+ → R is defined by

Iαf (t) =
1

Γ (α)

∫ t

0

(t− τ)
α−1

f (τ) dτ

and Caputo fractional order derivative of order α ∈ (n− 1, n) of f (t) is defined by

Dαf (t) = In−αDαf (t)

where n = ⌊α⌋ − 1 and D = d/dt. Here and elsewhere Γ denotes the Gamma
function.
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