Miihendislik Bilimleri ve Tasarim Dergisi
10(4),1251-1271, 2022
e-ISSN: 1308-6693

Journal of Engineering Sciences and Design
DOI: 10.21923/jesd.1104772

Arastirma Makalesi Research Article

A THEORETICAL INVESTIGATION ON TRAINING OF PIPE-LIKE NEURAL NETWORK
BENCHMARK ARCHITECTURES AND PERFORMANCE COMPARISONS OF POPULAR
TRAINING ALGORITHMS

Ozlem Imik SIMSEK", Baris Baykant ALAGOZ

Inonu University, Engineering Faculty, Department of Computer Engineering, Malatya, Turkey

Keywords Abstract

Artificial Neural Networks, Architectures of neural networks affect the training performance of artificial
Network Architectures, neural networks. For more consistent performance evaluation of training
Training Performance, algorithms, hard-to-train benchmarking architectures should be used. This
Backpropagation study introduces a benchmark neural network architecture, which is called
Algorithms, pipe-like architecture, and presents training performance analyses for popular
Metaheuristic Training. Neural Network Backpropagation Algorithms (NNBA) and well-known

Metaheuristic Search Algorithms (MSA). The pipe-like neural architectures
essentially resemble an elongated fraction of a deep neural network and form
a narrowed long bottleneck for the learning process. Therefore, they can
significantly complicate the training process by causing the gradient vanishing
problems and large training delays in backward propagation of parameter
updates throughout the elongated pipe-like network. The training difficulties
of pipe-like architectures are theoretically demonstrated in this study by
considering the upper bound of weight updates according to an aggregated
one-neuron learning channels conjecture. These analyses also contribute to
Baldi et al.'s learning channel theorem of neural networks in a practical aspect.
The training experiments for popular NNBA and MSA algorithms were
conducted on the pipe-like benchmark architecture by using a biological
dataset. Moreover, a Normalized Overall Performance Scoring (NOPS) was
performed for the criterion-based assessment of overall performance of
training algorithms.

BORU-BENZERI YAPAY SiNIR AGI KARSILASTIRMA MiMARILERININ
EGITiMI HAKKINDA BiR TEORIK ARASTIRMA VE POPULAR EGITIiM
ALGORITMALARIN PERFORMANS KARSILASTIRILMALARI

Anahtar Kelimeler 0z

Yapay Sinir Aglari, Sinir aglarinin mimarileri, yapay sinir aglarinin egitim performansini etkiler.
Ag Mimarileri, Egitim algoritmalarinin daha tutarl performans degerlendirmesi i¢in egitimi
Egitim Performansi, zor Kiyaslama mimarileri kullanilmalidir. Bu ¢alisma, boru-benzeri mimari
Geriyeyayilim Algoritmalari, olarak adlandirilan bir referans sinir ag1 mimarisini tanitmakta ve popiler
Metasezgisel Egitim. Sinir Ag1 Geriyeyayilim Algoritmalari (SAGA) ve iyi bilinen Metasezgisel Arama

Algoritmalarinin (MAA) egitim performansi analizlerini sunmaktadir. Boru-
benzeri sinir mimarileri, temelde bir derin sinir aginin uzunlamasina bir
kesitini temsil eder ve 6grenme siireci icin bir daraltilmis uzun darbogaz
olusturur. Bu nedenle, uzun boru-benzeri ag boyunca parametre
giincellemelerinin geriye dogru yayillmasinda gradyan kaybolma problemleri
ve biiylik egitim gecikmelerine neden olarak egitim siirecini 6nemli 6l¢iide
zorlastirir. Bu c¢alismada boru-benzeri mimarilerin egitim zorluklan
birlestirilmis tek-néron oOgrenme kanallar1 konjektoriine goére agirhik
giincellemelerinin st sinir1 dikkate alinarak teorik olarak gdsterilmistir. Bu
analizler ayni zamanda Baldi ve arkadaslarinin sinir aglarinin 6grenme kanali
teoremine pratik acidan da katkida bulunmaktadir. Popiiler NNBA ve MSA
algoritmalarinin egitim deneyleri, bir biyolojik veri seti kullanilarak boru
benzeri kiyaslama mimarisinde gerceklestirmistir. Ayrica, egitim

1251

SIMSEK and ALAGOZ 10.21923/jesd. 1104772

algoritmalarinin genel performansinin 6lgiit tabanli degerlendirmesi igin
Normallestirilmis Genel Performans Puanlamasi (NGPP) uygulanmistir.

Alint1 / Cite

Simsek, 0.1, Alagoz, B.B., (2022). A Theoretical Investigation on Training of Pipe-Like Neural Network
Benchmark Architectures and Performance Comparisons of Popular Training Algorithms, Journal of
Engineering Sciences and Design, 10(4), 1251-1271.

Yazar Kimligi / Author ID (ORCID Number) Makale Siireci / Article Process

0. Imik Simsek, 0000-0002-4192-0255 Basvuru Tarihi /Submission Date |17.04.2022

B.B. Alagoz, 0000-0001-5238-6433 Revizyon Tarihi / Revision Date |15.07.2022
Kabul Tarihi / Accepted Date 15.07.2022
Yayim Tarihi / Published Date 30.12.2022

1. Introduction

Neural networks have been gaining growing popularity in many fields of engineering and applied science
for almost two decades. Their architectures and computation schemes have been progressively developed
since the first appearance of the fundamental neural network models (Kim,2017). Today, the learning
power of deep neural networks is harnessed for processing much bigger data stacks, and theoretical works
and research competitions for deeper neural networks are continuing to boost learning capability of the
deep neural networks (Coleman et al., 2017; Schmidhuber, 2015; Shrestha and Mahmood, 2019; Deng and
Yu, 2013; Winkler and Le, 2017; Mhaskar et al., 2016).

Architectures of neural networks and the training algorithms have been occasionally progressed. The
gradient vanishing problem was a major problem when adding more hidden layers to neural networks to
reach much deeper networks (Kim, 2017). As the hidden layer count has increased, gradient vanishing
problems have emerged, slowed down the training, reduced efficiency of backpropagation algorithms
throughout deep layers, and the practical benefits in use of deeper layers began to disappear. Since around
2000, researches have came up with several solutions for the training problems of deep hidden layers; for
instance use of more relevant activation functions (RELU and variants)(Kim, 2017; Oostwal et al., 2019),
pre-training approaches (Hinton and Salakhutdinov, 2006), better random initial scaling (Glorot and
Bengio, 2010), employment of better optimization methods (Martens, 2010), selection of more suitable
neural network architectures (Shrestha and Mahmood, 2019; Bahrami et al.,, 2019; Arifovic and Gengay,
2001) and improved initialization techniques such as the orthogonal initialization and the random walk
initialization (Sussillo and Abbott, 2014).

Besides the implementation of gradient based optimization methods in neural network training, there have
been attempts to use metaheuristic optimization algorithms in the training process of neural networks. The
metaheuristic optimization can provide a gradient-free search option and this becomes advantageous when
searching the optimal points in low-gradient parametric search spaces (Martens, 2010). Metaheuristic
methods employ a set and trial search strategy to seek optimal values of parameters in the complicated
optimization problems (Arifovic and Gengay, 2001; Sussillo and Abbott, 2014). Due to these advantageous,
there are several research works that have addressed the training of feedforward neural networks by using
popular metaheuristics(Sexton and Gupta, 2000; Che et al., 2011; Gudise and Venayagamoorthy, 2003; Ince
etal, 2010; Mosavi et al., 2016) and results were compared with the backpropagation method in the shallow
feedforward neural network training problems: Sexton et al. showed that genetic algorithm could be
effectively used for training of shallow neural networks for chaotic time series data and reported a superior
training performance of genetic algorithm over the backpropagation methods (Sexton and Gupta, 2000). In
a similar study, Che et al. concluded that the backpropagation algorithm can be preferred since it provides
faster training of neural networks than the genetic algorithm; however it can suffer from the gradient
vanishing problem where the genetic algorithm does not suffer (Che et al,, 2011). Gudise et al. compared
the neural network training performance of particle swarm optimization with performance of a
backpropagation algorithm and reported that particle swarm optimization algorithm can faster converge
to optimal weights than the backpropagation algorithm (Gudise and Venayagamoorthy, 2003). These
contradicting reports on training performances of backpropagation and metaheuristic methods indicate the
need for well-designed, standardized test and evaluation procedures.

" ilgili yazar / Corresponding author: oimiksimsek@gmail.com, +90-530-416-8860

1252

mailto:oimiksimsek@gmail.com

SIMSEK and ALAGOZ 10.21923/jesd. 1104772

Later, performances of several contemporary metaheuristic algorithms were compared for the training of
neural networks (Mosavi et al,, 2016; Ghasemiyeh et al., 2017). Besides the training process of the neural
network, metaheuristic optimization has also been performed for optimization of the network architectures
to reach an improved training performance (Arifovic and Gencay, 2001). Although there are many efforts
that compare performances of the learning methods (Sewak et al., 2018; Caruana and Niculescu-Mizil, 2006;
Bala et al,, 1992) and training algorithms (Bahrami et al.,, 2019; Zhao et al., 2010; Rusiecki, 2012; Karim et
al., 2018; Can et al, 2019; Awolusi et al., 2019; Thakkar et al., 2020) in specific application domains,
application-specific results obtained for arbitrary network architectures may not be relevant and consistent
to have a common view on the training performances of the algorithms. For this reason, there is a demand
for standard neural network training benchmark architectures, which are deliberately designed for hard-
to-train tests to uncover advantages and/or shortcoming of the training algorithms (Zhu et al., 2018; Fong
et al, 2018). Such application-independent benchmarking is particularly useful to pinpoint major
drawbacks of existing popular training algorithms and helpful to indicate new research directions for the
ongoing research efforts.

This study investigates training performances of 9 widely used backpropagation training algorithms (e.g.
LM, BFG, CGB etc.), which are implications of the gradient based optimization approaches, and 3 popular
metaheuristic search methods (GA, PSO GWO) in the training problem of pipe-like deep neural network
benchmark architectures. The pipe-like architecture of deep neural networks complicates the training
process due to forming a long and narrowed learning bottleneck via an elongated feedforward path of
neurons. In the experimental work, the body fat percentage estimation dataset, which may express bio-
complexity of human metabolism, is used in training of this architecture with different pipe lengths (hidden
layer counts). For the overall performance assessment of the training methods in pipe-like neural network
architecture, a NOPS scheme is employed and the overall training performance and performance criterion-
based selection of the training algorithms are shown. The addressed problems, novelties and main
contributions of this study can be summarized as:

(i) A pipe-like neural network benchmark architecture, which is called pipe-like neural network benchmark
architecture, is introduced. The pipe-like neural network benchmark architecture forms an extended
bottleneck for the learning process. The training difficulties of this hard-to-train benchmark architecture
are theoretically analyzed in the aspect of Baldi et al.'s learning channel theorem of neural networks. This
effort contributes to using practical implications of the learning channel theorem for investigating training
problems in deep neural networks.

(ii) A theorem to consider upper bounds of the training performance for gradient-based training algorithms
is suggested. This theorem implements sensitivity derivative analysis on the pipe-like deep neural learning
channel and it conjectures essential mechanisms that lead to gradient vanishing problems in deep neural
networks. Suggestions of this theorem were observed in the experimental study and used to explain
essential reasons for training performance degradations of gradient-based training in our experimental
test.

(iii) To the best of our knowledge, this is the first experimental study that tests training performances of 9
popular NNBA algorithms and 3 fundamental MSA algorithms on the elongated pipe-like benchmark
architectures from shallow one to deeper networks. The training performances of these algorithms are
reported without any application-specific bias. The experimental results revealed performance drawbacks
of these training algorithms and results indicated a requirement of designing new deep learning dedicated
optimization algorithms, which are particularly specialized for training of deep neural network algorithms.

(iv) To enable performance criterion-based selection of the training algorithms, a NOPS scheme is
illustrated. By allowing importance weighting of the performance criterion, NOPS can contribute to the
solution of automated training algorithm evaluation and selection problems.

2. Preliminaries And Theoretical Background

This section provides preliminary knowledge on NNBA and MSA training algorithms that are tested in
experimental study. Then, training difficulties of the pipe-like neural network benchmark architecture are
theoretically analyzed by suggesting a theorem for upper bounds of training performance of this benchmark
architecture. This theoretical background establishes a theoretical foundation to demonstrate suitability of
the pipe-like neural network benchmark architecture for testing of training algorithm performances.

1253

SIMSEK and ALAGOZ 10.21923/jesd. 1104772

2.1. Backpropagation Training Algorithms

Training of an artificial neural network mathematically refers to finding optimal values of weight
coefficients in order to minimize a predefined loss function. The loss functions are mathematical
expressions that are used to evaluate the quality of the learning activity on the net. This optimization
problem complicates as the number of layers in a neural network increases because of the increased
function compositions to represent the network function (functional complexity of the network function)
and growing weight and bias coefficient numbers to be optimized (high dimensionality of the optimization
problem). To deal with complications associated with the training of multilayer feedforward neural
network architectures, a “backpropagation” algorithm was proposed to cope with functional complexity of
multilayer networks (Kim, 2017; Goodfellow et al., 2016). Then, the backpropagation has become the most
fundamental training algorithm, and it has found a wide application area for the training of multilayer
neural networks. It involves two essential stages (Kim, 2017): firstly, the input data propagates towards the
output layer of neural networks; this stage is forward propagation of information, afterward, the error
information, which is calculated at the output of the neural network, propagates back into the input layer
of the neural network. This is the process of the backward propagation of the error information, where the
term “backpropagation” comes from. Several training algorithms have been proposed to improve
performance of the backpropagation training approach (Hagan et al., 1996; Comert and Kocamaz, 2017;
Hagan and Menhaj, 1994; Dennis and Schnabel, 1996; Mosavi et al., 2016; Pan et al., 2013). Table 1 shows a
list of up-to-date backpropagation training algorithms that have been preferred in the training of multilayer
feedforward neural networks in the current study. Training performance of backpropagation algorithms
decrease when the hidden layer number of the feedforward neural networks increases because of the
gradient vanishing problems: The decrease in gradient magnitudes can severely deteriorate the backward
error propagation toward input layers, the weight updates slows down, and the training in deep layers
begins to cease, practically. Therefore, consistent training performance analysis of algorithms should be
carried out for deep and complicated neural network configurations.

Table 1. The NNBA Types, Which Are Tested in This Study, and Their Abbreviations

Training Algorithms Abbreviations Related Works
Levenberg-Marquardt backpropagation LM (Hagan et al., 1996; Hagan and
Menhaj, 1994; Powell, 1977)
Quasi-Newton backpropagation with Broyden, BFG
Fletcher, Goldfarb, and Shanno (BFGS) update (Dennis and Schnabel, 1996)
Conjugate gradient backpropagation with Powell- CGB (Powell, 1977; Beale, 1972)
Beale restarts
Conjugate gradient backpropagation with Polak- CGP (Hagan et al.,, 1996; Scales, 1985
Ribiére updates ; Fletcher, 1964)
Conjugate gradient backpropagation with Fletcher- CGF (Hagan et al,, 1996; Scales,
Powell updates 1985; Fletcher, 1964
Variable learning rate gradient descent GDX (Vogl et al., 1988)
One-step secant backpropagation 0SS (Battiti, 1992)
Resilient backpropagation RP (Riedmiller and Braun, 1993)
Scaled conjugate gradient backpropagation SCG (Moller, 1993)

2.2. Metaheuristic Training for Artificial Neural Networks

Metaheuristic optimization methods are easy-to-use, optimal solution seeking tools that have been widely
implemented in engineering problems. They have been particularly used when the optimization problem is
too complex to be solved numerically or analytically (Wong and Ming, 2019). These methods employ a set
and trial search strategy that can provide a straightforward solution for empirical, complicated, even not-
well structured optimization problems. This introduces an important advantage that makes them
preferable in real-world engineering application works. However, they have some disadvantages such as
concerns about the dependability of solutions, inefficiency of these methods while searching in high
dimensional search spaces etc.

The candidate solution selection strategies of metaheuristic algorithms are very substantial for convergence
performance of metaheuristic optimization, and they establish major discrimination points between
metaheuristic optimization techniques. Some major problems, which were observed in use of the
metaheuristic methods, can be summarized as (Gogna and Tayal, 2013; Chopard and Tomassini, 2018;
Hinton, Salakhutdinov, 2006; Igel, 2014):

1254

SIMSEK and ALAGOZ 10.21923/jesd. 1104772

(i) Contemporary metaheuristic optimization methods cannot convey definite information whether or not
the solution is globally optimal (Gogna and Tayal, 2013). However, the quality of solutions can be evaluated
with the value of objective functions in applications (Parejo et al., 2012; Gunantara et al.,, 2019).

(ii) Metaheuristic optimization is commonly effective in the low dimensional search spaces. An increase in
the dimension of search spaces, that is, more parameters to optimize, severely reduces the converge
performance in the metaheuristic searching because of the exponential growth in the exploration fields for
the set and trial searching of search agents. When the number of parameters, namely the dimension of the
problem, increases, the computation time of the algorithms severely arises (Chopard and Tomassini, 2018;
Parejo et al.,, 2012).

(iii) Many metaheuristic methods need the finite search spaces that are confined by the predefined search
ranges of the optimized parameters. This may become an important shortcoming that can reduce practical
efficiency of metaheuristic methods because it is not always an easy problem to determine predefined
search ranges of parameters, which can include the global minimum or maximum. Therefore, improper
configuration of parameter search regions can limit performance of metaheuristic search (Chopard and
Tomassini, 2018; Birattari and Kacprzyk, 2009).

(iv) Metaheuristics methods commonly utilize random number generation in the search processes to
differentiate search paths. However, this brings a problem of unrepeatability of the solutions even though
the computers can generate pseudo-random numbers. The reliable results require a statistical evaluation
of the repeated optimization tasks. However, the rerunning of the algorithms many times can considerably
increase the computational burden (Gogna and Tayal, 2013; Parejo et al.,, 2012).

When the depth of a multi-layer feedforward neural network increases, training of the neural network
introduces difficulties associated with gradient magnitudes for gradient-based optimization techniques.
Therefore, there exist several efforts to implement gradient-free metaheuristic optimization as a substitute
for backpropagation methods (Sexton and Gupta, 2000; Che et al.,, 2011; Gudise and Venayagamoorthy,
2003; Ince et al., 2010; Mosavi et al.,, 2016). Since a majority of metaheuristic methods perform gradient-
free optimization algorithms, they are expected to present advantages over the gradient-based optimization
algorithms when gradient calculations are problematic or ineffective. For the training of the multilayer
feedforward networks, three widely preferred popular metaheuristic optimization methods in the
literature are listed in Table 2 (Che et al,, 2011; Ince et al., 2010; Mosavi et al,, 2016). These methods are
commonly used to minimize the sum of square error loss function of neural networks, which is written by

min E(w) :ggef =§§(fi (W)~ y,)? W

where, f, (W, XJ-) represents |t output function of the neural network for the input vector X;j . Training

set is formed by the input-output data pairs (Xj, Yir Yosen yk). The weight vector W represents a

collection of the weight coefficients of neural networks, which are optimized during the training of the
network via a metaheuristic method. (Bias coefficients are computationally assumed as an input with a
weight value of 1). Number of parameters to optimize, N layer neural network can be written by

n
D= Z (Kngyky + k), where K is the number of neurons in the hidden layer h and K, is the number
h1

of inputs in a neural network. Parameter number D determines the dimension of the search space. The
search space expands a D dimensional hypercube by the term [WI y W,]D, where [WI , Wu] is the upper

and lower boundaries of weight coefficient search ranges. Due to the exponential growth of the search space
volume, the metaheuristic algorithms in Table 2 have been utilized in the training of shallow neural
networks (Che et al,, 2011; Ince et al.,, 2010; Mosavi et al., 2016). It will be useful to test these methods in
training of the pipe-like architecture of deep neural networks to better observe the inherent shortcomings
of the metaheuristic training approach.

1255

SIMSEK and ALAGOZ 10.21923/jesd. 1104772

Table 2. The MSA Types, Which Are Tested in This Study, and Their Abbreviations

Metaheuristic Search Algorithms Abbreviations Related Works
Genetic Algorithm GA (Sexton and Gupta, 2000; Che et al,, 2011;
Melanie, 1996 ; Michalewicz, 1992
Particle Swarm Optimization PSO (Gudise and Venayagamoorthy, 2003 ; Ince
etal, 2010 ; Zeugmann et al,, 2011)
Gray Wolf Optimization GWO (Mosavi et al.,, 2016 ;Mirjalili and Mirjalili S.,
2014 ;Faris etal, 2018)

2.3. A Theoretical Background on Pipe-like Architecture Deep Neural Network

Architecture types of neural networks affect the learning skills, and the proper selection of network
architecture is a very important stage for the training performance (Ince et al, 2010; Hornik, 1991).
Fundamentally, feedforward neural network architectures are divided into two main categories: These are
the single layer neural networks in Figure 1 and the multi-layer neural networks in Figure 1. Later, multi-
layer feedforward neural networks were grouped into two major subcategories that are the shallow neural
networks and the deep neural networks. Theoretical discussions on the architecture or the configuration of
artificial neural networks are continuing on the bases of universal approximation theorems (Schmidhuber,
2015 ; Winkler and Le, 2017; Hornik, 1991; Csaji, 2001; Kratsios and Bilkoptov, 2020).

Conceptually, increasing the tunable parameter numbers (layers, weights, bias, generic activation function)
can enhance fitting capability to data because it increases complexity in the compositional function
representation of neural network and accordingly allows representation of more composite function

models by using the deep neural network function fi(W, Xj). Thus, deep neural networks present

potential of better approximating to higher complexity compositional function models that cannot be well
approximated by a shallow neural network (Mhaskar et al, 2016). On the other hand, in addition to
enhancing approximation capability, increasing the depth of feedforward network was observed to enable
more abstraction of the learned knowledge in the deeper layers similar to the biological neural network can
do, for instance the convolution neural network can detect more complex features (irregular shape) in deep
layers by using more primitive features (e.g. edges, curves) that are detected in the shallow layers (Deng
and Yu, 2013). However, the overfitting problem, which causes a reduction in the generalization property
in learning, emerges in deep neural networks because too many tunable parameters highly increase the
approximation capability of neural network function to each data pointin the training set. Overfitted models
cause serious performance degradations in data applications in the cases of noisy data or insufficient data
in training sets. Therefore, a proper generalization is preferable in data applications to obtain satisfactory
practical performance.

In order to compare training performances of the training methods, hard-to-train neural network
architectures are more suitable to reveal the performance shortcomings and superiorities. In this manner,
authors used a pipe-like architecture deep neural network in the performance tests. The width of layers
was set to 5 neurons and the length of the neural network was increased up to 20 layers by adding a hidden
layer at each test. Figure 2 shows a depiction of the trained 5 neurons wide and 20 layers long pipe-like
benchmark architecture. This generic pipe-like structure enables testing several pipe architecture versions
from the shallow one to the deep networks by adjusting the hidden layer counts.

The communication and signaling phenomenon between neurons indicate the communication nature of the
neural networks (Tagluk and Isik, 2019). A neural network resembles an information-adaptive narrowband
communication channel with alearning property between the input layer and the output layer of the neural
network. Previously, Baldi et al. have suggested the existence of a physical learning channel to convey
information via the weights of the network (Isik and Sadowski, 2016) and they investigated the capacity of
learning algorithms by considering the error gradients per weight. Thus, Baldi et al. conjectured a
foundation for the learning channel theorem of neural networks. The current study contributes to the
learning channel theorem of neural networks in a practical aspect by considering distribution of weight
update magnitudes throughout a pipe-like deep neural network. Figure 2 depicts a one-neuron wide, pipe-
like network fraction (at middle schematic) that is composed of the hidden neuron model (at bottom
schematic). Let's investigate the weight update magnitudes for this network to show hard-to-train nature
of pipe-like benchmark networks:

1256

SIMSEK and ALAGOZ 10.21923/jesd.1104772

-

Qutput

o =

-

Input

- -

Output Input

Hidden Layer Layerl Layer2 Layer3

Figure 1. A Representation Of A Single Layer Neural Network With 5 Neurons (On The Left-Hand Side) And A Multi
Layer Neural Network With Three 3 Hidden Layer Of The 5 Neurons (On The Right-Hand Side)

L18 L19 L20

e

Layers

e
L

F Y

k One-neuron wide pipe-like network fraction

Width of Network

S
':"") wf A neuron medel in hidden layers

A 0 L P P —

%ﬂa-l (_Lf.*—l) ‘Hf:

L]

Figure 2. A Block Diagram Of A 5 Neuron Wide And 20 Layer Long Pipe Architecture Neural Network (Top Schema), A
Depiction Of One-Neuron Wide Pipe-Like Network Segment (Middle Schema), One Neuron In The Hidden Layer
(Bottom Schema)

Essentially, the pipe-like architecture results in a long bottleneck for the training process because a pipe-
like architecture forms a narrowed and elongated network for forward and backward propagation of neural
information and it exhibits two major training drawbacks for gradient based training algorithms that are
the propagation delay problems related to narrowing of network and gradient vanishing problems related
to elongation of network. To analyze these properties associated with the network architecture, let's denote

the output function of the layer h in the neural network by the function f " (W", XT), where the superscript

h is the layer index. When the layer number increases by adding more layers, the resulting output function

of a deep neural network with n layers can be commonly expressed by using function compositions as
(Mhaskar et al., 2016; Isik and Sadowski, 2016; Strang, 2018)

y=fo(w", U TR F R, FR (W X)) (2)

where the superscript N is the depth of this function composition.

By considering activation function and the weighted sum of neuron inputs in the form of
"= (W, x") =" (Z W' o') = 0" (W'e"™) (Isik and Sadowski, 2016; Mhaskar et al,, 2016), the

output of whole neural network is considered in the form of

1257

SIMSEK and ALAGOZ 10.21923/jesd. 1104772

y=9"O W'o" O Wt O w0’ O Wit (O wix)))...))) (3)

This equation suggests a composite learning function family of the weight coefficient vector W". The (/)h ()
stands for the activation in the layer h. The weighted sum of neuron inputs in the layer h can be

represented by the weighted sum of previous layer outputs V" =ZWih.(Dih_1. For every optimal

determination of the weight coefficient set of W = {V\I1 , e , w o Wh } at a minima of the loss function, the
results yield alearned function Y; = f (W*, X;) for an input vector X; from the training set. The pipe-like

architecture mainly narrows the width of the network, and this decreases the number of the weighted sum
terms in the output function of the network. Consequently, this decreases the complexity of the composite
learning function family that is represented by the Equation (3). Accordingly, a reduction in the complexity
of the composite learning function tree decreases the representative nature of the output function. This is a
factor that complicates the training tasks of a pipe-like architecture for all training algorithms.

The gradient-based algorithms use delta rule for the weight updates,
W w" + AW (4)

where AW" is the weight update (Kim, 2017; Isik and Sadowski, 2016). The weight updates AW" are

commonly performed in directions where the loss function decreases. Therefore, sensitivity function

is widely used for the weight update AW" = —1] — in order to detect the descent directions of the loss
function, where 77 > 0 is the learning rate that is commonly used to regulate converge rate of gradient-

is an indicator to

based optimization techniques. The magnitude of the weight updates ‘Aw“‘ =n o

evaluate penetration of learning through the network. To consider training difficulties of pipe-like neural
network architecture for gradient-based backpropagation training algorithms, it is useful to investigate an
upper boundary of sensitivity function magnitude in the network.

Theorem 1 (An upper bound for sensitivity derivatives in pipe-like neural network models):

In cases of k numbers of the neuron in the each layer and gradient-based training algorithms, an upper
bound for sensitivity derivatives at the first layer neurons can be expressed as

6¢.

i| OE ||a¢),

0g | ov"

\X | (5)

Proof: To calculate sensitivity derivative - through the layers, a chain rule of derivative operators is

implemented to cope with the composite function form of the neural network output function. When the
chain rule of derivative operator is used for the one-neuron wide and N layer pipe-like architecture, the
sensitivity derivative can be written by

AWt = — OE _ OE op" V" 0"t vt ov® 0p® oV Op" oVt
=N A= N5 7 An Nl Al A n2' 2 1 (6)
ow op" V' Op" oV Op op

1258

SIMSEK and ALAGOZ 10.21923/jesd. 1104772

for an update of weights in the first hidden layer (Roodschild et al., 2020). Here, by considering at the hidden
h 1

layers W =W" and the first hidden layer W =Xj, the magnitude of sensitivity at the first hidden
®
layer is expressed by the weight update magnitude as
oE OE |0¢" _ o0p*| ,|09
| |_| " @ |Wn o W iwzixj (7)

ol lour o o

For K numbers of the neuron in the each layer (i.e., the learning channel width of k-neurons), one can
aggregate contributions of all one-neuron path segments (See middle schema in Figure 2) in order to state
an upper boundary for the sensitivity function magnitudes:

6¢. 8% 2(00)

6B | < | E |ogr
o < 2agr | ovr |

i

Some Remarks and A Numerical Example:

By using Equation (5), an upper boundary for the weight updates at the first layer neurons can be obtained

|] <

op!

EﬂaE%g

n a¢in_l||wn—l‘ ‘W‘
o097 ov"

This boundary reveals a restrictive factors for the learning activity of the pipe-like neural networks: The
learning tendency of the network at each training epoch depends on the magnitude of activation function
h

|, the magnitude of weight coefficients ‘Wh‘ , the learning rate 77 and the depth of the

V\ (8)

derivatives

network (N). For the worst-case analysis, each partial derivative term of activation functions can be
h

assumed <1 and the weight magnitudes are considered = ‘Wh‘ <1, these conditions cause

h-1

op

the whole chain rule approximating to zero,

W‘ — 0, as the number of hidden layer (N) increases

because of the subsequent multiplication of <1 and ‘Wh‘ <1 terms. This effect results in the weight

updates also converging to zero, ‘A\Nl‘ — 0, and it can severely slow down the training process.

According to Theorem 1, the deep pipe-like network encounters two major training complications for NNBA

oE
methods: (i) gradient vanishing problem (——- —> 0) because of the multiplication of terms with

ow'
op"

——< 1 and ‘Wh‘ <1 as the hidden layer number increases, and (ii) slowing down the training process

though the pipe-like networks as neuron counts K (the channel width) decreases in the narrowed layers.

For a numerical illustration of the gradient vanishing problem in the pipe-like neural networks, it is useful
to consider upper bounds of sensitivity derivatives at the first hidden layer for a fundamental activation
function. For illustration purpose, a pipe-like neural network with the sigmoid activation function (

mw=1

—) is investigated based on the inequality (5). The unit weight coefficients ‘Wi‘ =1 and the

1259

SIMSEK and ALAGOZ 10.21923/jesd. 1104772

unit input ‘Xj‘ =1 are assumed in order to compensate for effects of weight and input parameters. Thus,

one can consider only effects of the activation function selection on the training process. Let us consider

6 h
sigmoid activation functions, it is obvious that ih <0.25. For an upper boundary analysis, the

h

maximum value =0.25 can be used in inequality (5). Figure 3 shows change of logarithmic scaled

h

7|) at the first layer neurons while increasing hidden layer numbers up

sensitivity function amplitude (

to 20 layers. The upper bound of the sensitivity derivative up to 20 hidden layer network is about
oE

1

<9.09-107*%, which also implies that the weight updating ‘A\Nl‘ <779.09-107" is at a negligible

level at the first layer. This problem suppresses backward propagation of error signals through deep neural
networks. This result indicates a severe gradient vanishing problem with almost cessation of the training
process under the presumed conditions. However, according to this conjecture, one can suggest that the
learning rate 77, can be adaptively used to amplify the sensitivity function amplitudes to deal with this issue.

10° : .

107 [1

Sensitivity Derivative

10—10 L 4

1
0 5 10 15 20
layers

Figure 3. The Level Of Sensitivity Function In Logarithmic Scale At The First Hidden Layer () For Sigmoid

1

Activation Functions
3. An Experimental Study

This section reports experimental results for training performance of 9 popular NNBA algorithms and 3
fundamental MSA algorithms on the elongated pipe-like benchmark architectures. The advantages and
disadvantages of the tested training algorithms are revealed in training of this benchmark architecture.

3.1. A Comparison of Training Algorithms from Shallow to Deep Training

Artificial neural networks have been widely used for the black-box modeling of the physical and biological
systems and they have been implemented in the model-based prediction problems (Chen et al., 2020; Zhao
et al, 2020). Due to higher level of complexity and chaotic dynamics, biological system modeling benefits
from highly nonlinear function approximation skills of the artificial neural networks. To conduct the
training experiments, the body fat rate estimation problem is solved by using body fat data from Matlab.
This dataset is composed of 13 anatomical measurements of the human body as input data, and the neural
network is trained to predict body fat percentages based on these anatomical features (Zamri et al., 2018).
This dataset involves highly nonlinear relations and noisy data, which make it preferable for training
algorithm tests.

Figure 4 shows the average MSE performance of NNBA training tests. Figure 5 and Figure 6 illustrate the
maximum MSE and the minimum MSE performances of NNBA training processes for 10 repeated tests. A
large increase in layer counts cannot consistently improve MSE performance because of emergence of the

1260

SIMSEK and ALAGOZ 10.21923/jesd. 1104772

gradient vanishing and saturation problems as suggested in remarks of theorem 1. In overall, one can
observe that the BFG, LM, CGB and RP backpropagation algorithms provide an improved average MSE
performance when training the neural network architectures from 1 layer to 10 layers. However, for 10
repeated tests, the minimum MSE performances are produced by the LM algorithm for all configurations in
Figure 6. These results indicate the potential of the LM algorithm to reach the lowest MSE when training of
the neural networks is repeated adequately.

1 ——— =
Aafelapelet BFG |
----- A CGE
""" a CEF]
""" E oGP ||
___________ —
= pe-e-
=
w
= W0y
= [
g) ______
T : g .
----- 22 St S SRR S
10 H I H I r H . H
1 2 3 4 il i} T i 9 10
MNumber of Layes
Figure 4. Average MSE Performances of The NNBA Trainings
¥ =
E T
r
r
:
T
= :
g
=
w
(=]
=
E bofooaoo Ao woooaoioool
E
B g i oo L____
£
1 L -I e -I------: ----- [JI----
_____ s SO N S S N A
10 H : H H r H L H
1 2 3 4 5 3] T B a 10
MNumber of Layers

Figure 5. Maximum MSE Performances of The NNBA Trainings

1261

SIMSEK and ALAGOZ 10.21923/jesd. 1104772

' ' ——BFG
. ; : ; ; : 0GB
L e R e ahbhl R F Sk a el
A Y S CGP
S S A GOX
S R . e o Lk
£ |0 : { —
W h--- T T Ny LOLTEEE R
= ' ! CG
E : '
R
= :
1™ e [
10’ ! ! : . !
1 2 3 4 5] 7 8 8 10
MNumber of Layers

Figure 6. Minimum of MSE performances of the NNBA trainings

Figure 7 shows the average MSE performance of the training tests by using MSAs. Figure 8 and 9 illustrate
the maximum MSE and the minimum MSE performances for 10 repeated training tests of each neural
network configuration. Increasing the hidden layer number to 2 layers or more severely deteriorated the
tested MSE performances because MSAs need much more computation time in searching optimal points as

n
the dimension of search spaces increases. The dimension of search space (D = Z (k(hfl)kh +k,,)) grows
h=1
fast with the layer number N in neural networks. Another factor that affects the performance of MSAs is
the geometry of search spaces. Loss functions of shallow networks introduce rather multimodal search
spaces and a higher exploration skill becomes an advantage to find better solutions, and this effect can
increase average performance of search agents in multimodal search spaces. As the number ofhidden layers
increases in neural networks, the convexity of their search space increases because more hidden layers
increase depth and optimization parameters, and accordingly approximation performance of the composite
neural network function.

Figure 7 and 8 reveal that the GA can provide better average MSE and maximum MSE performances up to 8
hidden layer networks. A main reason for this result is that the GA is more explorative than swarm-based
search algorithms (GWO, PSO) because of randomly applied genetic processes such as random mutation
and crossover. These processes occasionally lead to random spreading of population into the search space
at each generation, and such dispersion of individuals makes it more probable to find better solutions in
multi-modal search space of shallow networks. On the other hand, GWO and PSO algorithms perform more
exploitative search because search agents (individuals) of the swarm tend to move towards the best
individual. Therefore, minimum MSE performance of GWO and PSO begins to improve after 8 hidden layers
in Figure 9 as a result of the increase in convexity of the search space. Due to enhanced exploitation
capability of GWO, the GWO algorithm can provide the lowest minimum MSE values when the training is
repeated adequately. These results reveal that the GWO algorithm can be advantageous to obtain a
minimum MSE in the case that the training of the deep neural networks is repeated.

1262

10.21923/jesd.1104772

SIMSEK and ALAGOZ

e

JEETTE Y J A R T o g

B e

¢

Bl 35y aebay

(5]

%]

Mumber of Laye:

Average MSE Performances of The MSAs

Figure 7

(" Bof) 5 LNy

Figure 8. Maximum MSE Performances of The MSAs

(" B 35 Wy

Minimum MSE Performances of The MSAs

Figure 9

1263

SIMSEK and ALAGOZ 10.21923/jesd. 1104772

The computation time per weight parameter is useful to consider the computation load of an optimization
method in the training process. It expresses the average of training time that a training algorithm is used to
perform a weight update. It eliminates effects of network depth on training time measurements of

algorithms. It is computed by dividing the total computation time (T,) by the number of weight parameters

(NW) as T, / N,, . Figure 10 shows the average computation times per weight in the training processes of

NNBAs. The figure reveals that the BFG training method consumes considerably more time during the
training process. Figure 11 shows the average computation times per weight in MSAs during the training
process. The figure reveals a lower computation time of the GA algorithm compared to GWO and PSO
algorithms in this regression problem because automatic stopping criteria of Matlab ga() can decrease the
computation time. GWO and PSO algorithms do not stop before performing the maximum iteration number
(Maximum iteration number is 1000 iterations for GWO and PSO). Figure 12 compares NNBAs and MSAs in
terms of computation time per the weight coefficient. For these network configurations (up to 10 hidden
layers), it is apparent that the computation times of MSAs is much higher than those of the NNBAs and such
a high computation time is another important disadvantage of MSAs for the deep neural network training
tasks. A reason for high computation time of MSAs is that MSAs are multi-agent (population-based) search
algorithms, and they perform a loss function calculation for each agent of the population. This is an
important factor that increases the training time of MSAs depending on the population size. Since
population size and iteration numbers of MSAs are the same while the number of layers increases, the
computation time per weight is relatively steady in Figure 11.

Awegam Caleulation Time (ag,, in sac)

wh---r-

-
g

Figure 10. Computation

Aoenare Calculation Time dog,, in sec)

w@h--r-

Figure 11. Computation Times (In Sec) During Training of The Neural Network Configurations By Using MSAs

Table 3 lists the training test results of algorithms on a pipe-like deep neural network architecture with 20
hidden layers. In the case of 20 hidden layers, the lowest average MSE is provided by the GWO algorithm

1264

SIMSEK and ALAGOZ 10.21923/jesd. 1104772

and the lowest maximum MSE is provided by the PSO algorithm as a result of the increased convexity in the
search space. On the other hand, due to the gradient vanishing problem of the pipe-like deep neural
network, which was analyzed by using Theorem 1, training performances of NNBAs can reduce to levels
that are comparable with training performances of MSAs. The performance of MSAs deteriorated because
of the high-dimensional search space with 646 optimization parameters. However, the lowest minimum
MSE is still provided by the LM algorithm (The lower minimum MSE implies accessibility to the best MSE
performance in the case of multiple training.) and the lowest standard deviation of the MSE is provided by
the CGF algorithm. (The lower standard deviation implies consistency of the MSE performance in multiple
tests.) The lowest average computation time per weight is provided by the RP algorithm because The RP
uses the sign of the partial derivative of the activation functions and this improves convergence speed
however reduces convergence accuracy (Riedmiller an Braun, 1993). Although the lowest average MSE is
possible by using the GWO, it’s computation time is much higher than all NNBAs. Table 3 showed that NNBA
methods consume quite less computation time. Deep neural network training applications require faster
algorithms in order to process large amounts of data. The speed of training algorithms is an important asset
for deep neural network training in big data applications (Zhu et al.,2018).

L1l

&

Faregare Calculation Time Jog,, in sec)

Figure 12. The Computation Time (In Sec) Comparison Between NNBAs And MSAs

When an optimization algorithm is developed to be successful in hard-to-training benchmark networks, it
will be more specialized and more dedicated for deep neural network training tasks. This unveils a research
motivation that the optimization algorithms should be designed dedicated to the neural networks “deep
learning dedicated optimization algorithms” in order to surpass the training performance standards of
general purpose optimization algorithms.

Table 3. Test Results of The Pipe Architecture Deep Neural Network With 20 Hidden Layers For Analyses Of MSE
Performances And Computation Times For 10 Repeated Training (The Number Of Weights To Be Updated At Each
Iteration Is 646

Training Algorithm Average Maximum Minimum Standard Average
Algorithm MSE MSE MSE Deviation Computation
Types Time (Sec.) Per
Weight Update
NNBA LM 49.26 69.84 16.25 26.56 2.12
NNBA BFG 54.00 74.24 30.08 15.61 11.28
NNBA CGB 63.15 70.84 28.08 13.67 1.22
NNBA CGP 62.60 82.50 28.86 15.09 1.23
NNBA CGF 69.73 70.14 68.86 0.34 1.07
NNBA GDX 89.43 259.83 69.78 59.88 1.00
NNBA 0SS 67.84 72.50 45.75 7.82 1.36
NNBA RP 71.37 74.60 70.18 1.62 0.89
NNBA SCG 62.60 69.92 43.00 11.52 1.25
MSA GA 73.30 106.95 46.65 18.32 129.11
MSA PSO 52.30 60.16 44.17 5.14 20964.90
MSA GWO 43.26 66.89 31.30 10.21 20698.54

1265

SIMSEK and ALAGOZ 10.21923/jesd. 1104772

3.2. Overall Performance Analysis and Criterion-based Selection of Training Algorithms

For criterion-based assessment on the practical effectiveness of training algorithms, a normalized overall
performance scoring (NOPS) is adopted to statistical properties in Table 3 as follows:

WD
NOPS = >,)

i=1 i P|

j=1

where the parameter P, i =12,.., p stands for the value of the properties (performance indices) in the

analyses of M different algorithm options. Authors used 5 properties to evaluate training algorithm
performance (P =5). Accordingly, the property F’1 is the average MSE value, the property P, is the

maximum MSE value, the property P; is the minimum MSE value, the property P, is the standard deviation

and the property P is the average computation time per weight. Previously, the weighted sum formula

has been considered for decision-making problems (Stanujkic and Zavadskas, 2015 ; Goh et al,, 1996). We
modified it for the criterion-based selection of the training algorithms by using importance weighting. It
should be noticed that all properties should be minimized for a desirable performance in this training
algorithm selection problem. Therefore, an algorithm with alower NOPS is better in criterion-based overall

performance. The parameter W, stands for the importance weight of the property I and the importance

P
weight should satisfy the normalization condition ZWi =1 to perform a weighted average. For the equal
i=1

1
importance of the properties, the importance weight is set to a constant value of W, = — . Table 4 and Table
p

5 show NOPS lists of NNBAs and MSAs for three type importance weighting: the equal importance weights
with W, =[0.2 0.2 0.2 0.2 0.2], the NOPS_1 importance weights with W, =[0.4 0.1 0.2 0.0 0.3] (it

attributes more importance for average and minimum MSE performances to express accuracy and for
computation time to express speed of the training algorithms) and NOPS_2 importance weights with

W, =[0.4 0.0 0.0 0.3 0.3] (it attributes more importance for average MSE and standard deviation to

express accuracy and consistency and for computation time to express speed of the training algorithms).
Due to their higher speed and accuracy requirements, NOPS_1 can be preferable for training algorithm
selection tasks of deep learning applications for big data analytics. Since MSAs have very high computation
time, NOPS calculations were separately performed for NNBAs and MSAs categories. According to the NOPS
analyses, the LM, CGB and CGP training algorithms can be advantageous for speed and accuracy
requirements due to their low scores in Table 4. Improvements on nonlinear optimization (Marquardt,
1963) can contribute to NNBAs. Among the tested MSAs in Table 5, GA algorithms can be useful in terms of
speed and accuracy weighting. However, one should consider that these MSAs have extremely high
computation time as shown in Table 3, and they are not effective for deep neural network training.

Table 4. NOPS Analyses of NNBAs For The Pipe Architecture Deep Neural Network With 20 Hidden Layers

Training Algorithm NOPS for Equal NOPS_1 for Speed and | NOPS_2 for Speed and

Algorithm Importance Accuracy Importance Consistency
Types Importance
NNBA LM 0.0608 0.0795 0.1155
NNBA CGB 0.0552 0.0823 0.0869
NNBA CGP 0.0591 0.0838 0.0894
NNBA SCG 0.0583 0.0897 0.0827
NNBA 0SS 0.0572 0.0965 0.0805
NNBA RP 0.0612 0.1047 0.0640
NNBA CGF 0.0581 0.1049 0.0629
NNBA GDX 0.1629 0.1402 0.1927
NNBA BFG 0.0563 0.2184 0.2254

1266

SIMSEK and ALAGOZ

10.21923/jesd.1104772

Table 5. NOPS Analyses of MSAs For The Pipe Architecture Deep Neural Network With 20 Hidden Layers

Training NOPS for Equal NOPS_1 for Speed NOPS_2 for Speed
Algorithm Algorithm Importance and Accuracy and Consistency
Types Importance Importance
MSA GA 0.0773 0.2967 0.3378
MSA GWO 0.1598 0.3309 0.3420
MSA PSO 0.1476 0.3724 0.3202

3.3. A Discussion on Experimental Results:
Some significant observations from experimental results can be summarized as

(i) For training of the shallow networks with a hidden layer of 5 neurons, MSE performances of the tested
NNBAs and MSAs are comparable. However, when two or more hidden layers were added to the network,
MSE values of the MSAs sharply increased and the training performances severely deteriorated. While
increasing the hidden layer numbers, MSE performances of NNBAs rather slowly deteriorate because the
gradient vanishing problem gradually becomes effective as the layer number increases as suggested by
Theorem 1. Therefore, authors concluded that the tested MSAs are suitable for the training of shallow neural
networks. This shortcoming is mainly caused by the fact that the tested MSA methods are practicable for
low dimensional optimization problems (Fong et al.,, 2018). An increase in hidden layers largely increases
the number of weight and bias coefficients, namely the dimension of the search space of the loss function.
For this reason, in order to train deep neural networks via MSAs, it is necessary to design algorithms that
can be particularly effective for high dimensional optimization problems. Consequently, research efforts on
high dimensional optimization problems will be very strategic for the deep learning research community.
Authors anticipated that development of deep learning dedicated optimization methods can be more
effective than the adaptation of general purpose optimization methods for neural network training. In a
recent work, Manoharan et al. discussed performance improvement of neural network dedicated
metaheuristics for several datasets (Manoharan and Sathesh, 2020).MSAs were preferably utilized in
network architecture optimization problems because architecture optimization introduces lower-
dimensional optimization problems compared to training tasks. MSAs can more effectively optimize hyper-
parameters of neural networks such as layer numbers, neuron numbers and configuration of neural
elements. Several works have discussed benefits of such neuroevolutionary approaches in deep learning
(Stanley et al., 2019; Floreano et al., 2008; Suganuma, 2017; Ding et al., 2013; Galvan and Mooney, 2021).

(ii) The computation load of the MSAs is much larger than those of the tested NNBAs. This is another
substantial shortcoming of MSAs in the training of deep neural networks. The main reason is that
metaheuristic optimization commonly uses multi-agents (population) global search techniques. NNBAs use
the single search agent and perform the local search according to the gradient direction. This property of
NNBAs becomes an advantage for reduction of algorithmic computation complexity and it can significantly
reduce the computation load of the training process. Nonetheless, low average MSE results of GWO in Table
3 can support the idea, suggesting that the gradient free metaheuristic search can be a solution to deal with
the complications associated with the gradient-based deep neural network training, such as the gradient
vanishing and gradient exploding problems. However, the computation time of GWO is severely high, which
becomes an important disadvantage for deep learning applications.

For consistent evaluation of training algorithms, hyperparameters of each training algorithm type have
been configured to similar values. Some significant hyperparameters of the training algorithms are
summarized in Table 6. Upper and lower bounds of weight coefficients are important parameters because
they can affect the training performance for MSA methods. When these bounds are set symmetrical in
positive and negative ranges, MSAs can obtain both negative and positive weight coefficients in the
optimization stage. Besides, we configured the upper and lower bounds of weight coefficients in the narrow
range of [-10, 10] as in Table 6. This can lead to a regularization effect (data generalization) in the neural
learning process by preventing large differences between weight coefficients. Since the number of
optimized weight coefficients in the training process exponentially grows the search space of MSAs,
population size of MSAs can be increased to maintain the search performance for large search spaces.

1267

SIMSEK and ALAGOZ 10.21923/jesd. 1104772

Table 6. Hyperparameter Setting of Training Algorithms

Training Algorithm HyperParameter Setting
Algorithm Types

NNBA LM, BFG, Number of epoch: 200, Minimum gradient magnitude: 1e-20, Error goal: 0,
CGB, CGP, Numbers of neurons in hidden layers are 5, Activation function in hidden
CGF, GDX, layers is hyperbolic tangent sigmoid transfer function, Activation function

0SS, RP, in output layer is linear transfer function, Number of weight coefficient:
SCG 646.
MSA GA Iteration number: Default stopping criteria of Matlab ga() function is used,

Population size: 200, Number of parameters (dimension of optimization):
646, Lower bound of parameters: -10, Upper bound of parameters:10.
MSA PSO Maximum iteration number: 1000, Population size: 200, Number of
parameters (dimension of optimization): 646, Lower bound of
parameters: -10, Upper bound of parameters:10, Damping Ratio: 0.99,
Personal Acceleration Coefficient: 2, Social Acceleration Coefficient: 2.
MSA GWO Maximum iteration number: 1000, Population size: 200, Number of
parameters (dimension of optimization): 646, Lower bound of
parameters: -10, Upper bound of parameters:10.

4., Conclusions

This study introduced the pipe-like neural network benchmark architecture and performance analysis
results of popular training algorithms were reported for different depths of the generic pipe-like neural
network architecture. Training difficulties of this network were theoretically demonstrated by extending
the learning channel theory to an aggregated one-neuron learning channel conjecture in Theorem 1. The
weight update bounds of aggregated one-neuron learning channels and gradient vanishing problem of pipe-
like deep networks were analyzed for a fundamental neuron model. In the experimental studies, training
processes of a pipe-like deep neural network took several weeks run-time for a high performance computer
(Intel 17 processors and 16 GB RAM) without interruptions.

Some remarks and suggestions can be summarized as follows:

* Upper bounds theorem of training performance demonstrated training complications of the pipe-like
neural network benchmark architecture on the basis of learning channel theorem, and the experimental
study validates these performance complications for 9 popular NNBA algorithms and 3 fundamental MSA
algorithms.

* A major weaknesses of the tested popular NNBA algorithms originates from decrease of sensitivity

function magnitudes (m

) through hidden layers according to remarks of Theorem 1. This effect causes

severe attenuation of backward error signal propagation in the deep neural networks for backpropagation
algorithms. Possible solutions to this problem may be reducing of gradient dependence of optimization
methods (e.g., use of gradient-free optimization methods (Sexton and Gupta, 2000; Che et al., 2011; Gudise
and Venayagamoorthy, 2003; Ince et al., 2010; Mosavi et al., 2016)), implementation of gradient magnitude
balancing mechanisms to regulate backward error propagation (e.g., adjustment of additional gain
coefficients (Roodschild et al.,, 2020) to balance gradient magnitudes through hidden layers), improving
activation function (Kim, 2017; Oostwal et al, 2019) to enhance gradient magnitude of the activation
h

: 4
function (W).

*An essential shortcoming of the tested popular MSA algorithms is related to a high increase of computation
burden as the dimension of optimization problems (the number of parameters to optimize) increases.
Dimension of optimization problem for the training of neural networks grows very fast as the layer number
increases. Population sizes and iteration numbers of MSAs should be increased to deal with the high
dimension issue, however this can severely increase the computation time and cause the tested MSAs to be
impractical for the deep neural network training task. Possible solutions of this problem may be
enhancement of search strategies by specializing them to perform more effective searching on neural
network function types. Such metaheuristics are referred to as deep learning dedicated MSAs.

1268

SIMSEK and ALAGOZ 10.21923/jesd. 1104772

The current study introduced a hard-to-train benchmark network that can be utilized as a test bench for
development of training algorithms. Future works can address designing and testing of the deep learning
dedicated optimization algorithms by using a pipe-like neural network test benches.

Conflict of Interest
No conflict of interest was declared by the authors.
References

Aliev, R.A,, Fazlollahi, B., Guirimov, B.G., Aliev, R.R., 2008. Recurrent Fuzzy Neural Networks and Their Performance
Analysis. in: Recurr. Neural Networks, InTech. https://doi.org/10.5772/5540.

Arifovic,]., Gengay, R., 2001. Using genetic algorithms to select architecture of a feedforward artificial neural network.
Phys. A Stat. Mech. Its Appl., 289:574-594. https://doi.org/10.1016,/S0378-4371(00)00479-9.

Awolusi, T.F., Oke, 0.L., Akinkurolere, 0.0., Sojobi, A.O., Aluko, 0.G., 2019. Performance comparison of neural network
training algorithms in the modeling properties of steel fiber reinforced concrete. Heliyon 5:e01115.
https://doi.org/10.1016/j.heliyon.2018.e01115.

Bahrami, M., Akbari, M., Bagherzadeh, S.A., Karimipour, A., Afrand, M., Goodarzi, M., 2019. Develop 24 dissimilar ANNs
by suitable architectures & training algorithms via sensitivity analysis to better statistical presentation: Measure
MSEs between targets & ANN for Fe-CuO/Eg-Water nanofluid. Phys. A Stat. Mech. Its Appl. 519:159-168.
https://doi.org/10.1016/j.physa.2018.12.031.

Bala, J.W.,, Analytics, D., Bloedorn, E., Bratko, I, 1992. The MONK’s Problems A Performance Comparison of Different
Learning Algorithms. http://robots.stanford.edu/papers/thrun.MONK.html Accessed 05 August 2021.

Battiti, R, 1992. First- and Second-Order Methods for Learning: Between Steepest Descent and Newton’s Method.
Neural Comput., 4:141-166. https://doi.org/10.1162/neco.1992.4.2.141.

Beale, EMM.L, 1972. A derivation of conjugate gradients. in F.A. Lootsma, Ed., Numerical methods for nonlinear
optimization, Academic Press, London, 39-43.

Birattari, M., Kacprzyk, J., 2009. Tuning metaheuristics: a machine learning perspective, Springer, Berlin.

Can, A, Dagdelenler, G., Ercanoglu, M., Sonmez, H., 2019. Landslide susceptibility mapping at Ovacik-Karabiik (Turkey)
using different artificial neural network models: comparison of training algorithms. Bull. Eng. Geol. Environ., 78:89-
102. https://doi.org/10.1007 /s10064-017-1034-3.

Caruana, R, Niculescu-Mizil, A.,, 2006. An empirical comparison of supervised learning algorithms. ACM Int. Conf.
Proceeding Ser., 148:161-168. https://doi.org/10.1145/1143844.1143865.

Che, Z.G., Chiang, T.A,, Che, Z.H., 2011. Feed-forward neural networks training: a comparison between genetic algorithm
and back-propagation learning algorithm. International Journal of Innovative Computing Information and Control
,7(10), 5839-5850.

Chen, Z., Ashkezari, A.Z., Tlili, I., 2020. Applying artificial neural network and curve fitting method to predict the viscosity
of SAE50/MWCNTs-TiO2 hybrid nanolubricant. Phys. A Stat. Mech. Its Appl, 549:123946.
https://doi.org/10.1016/j.physa.2019.123946.

Chopard, B., Tomassini, M., 2018. Performance and limitations of metaheuristics. in: Nat. Comput. Ser., Springer Verlag,
191-203. https://doi.org/10.1007/978-3-319-93073-2_11.

Coleman, C., Narayanan, D., Kang, D., Zhao, T., Zhang,], Nardi, L., Bailis, P., Olukotun, K., Zaharia, C.M., 2017. DawnBench:
An end-to-end deep learning benchmark and competition, Training. In NIPS ML Systems Workshop.

Comert, Z., Kocamaz, A, 2017. A Study of Artificial Neural Network Training Algorithms for Classification of
Cardiotocography Signals. Bitlis Eren Univ. J. Sci. Technol,, 7 s 93-103.
https://doi.org/10.17678/beuscitech.338085.

Csaji, B.C., 2001. Approximation with Artificial Neural networks, Faculty of Science; E6tvo Lorand University, Hungary.

Dennis, J.E., Schnabel, R.B., 1996. Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Society
for Industrial and Applied Mathematics, SIAM. https://doi.org/10.1137/1.9781611971200.

Deng, L., Yu, D, 2013. Deep learning: Methods and applications, Found. Trends Signal Process. 7:197-387.
https://doi.org/10.1561/2000000039.

Ding, S, Li, H,, Su, C, etal,, 2013. Evolutionary artificial neural networks: a review. Artificial Intelligence Review, 39:251-
260. https://doi.org/10.1007/s10462-011-9270-6.

Faris, H., Aljarah, L., Al-Betar, M.A., Mirjalili, S., 2018. Grey wolf optimizer: a review of recent variants and applications.
Neural Comput. Appl,, 30:413-435. https://doi.org/10.1007 /s00521-017-3272-5.

Fletcher, R, 1964. Function minimization by conjugate gradients. ~Comput.], 7:149-154.
https://doi.org/10.1093/comjnl/7.2.149.

Floreano, D., Diirr, P., Mattiussi, C., 2008. Neuroevolution: from architectures to learning. Evolutionary intelligence, 1(1),
47-62.

Fong, S., Deb, S, Yang, X.S., 2018. How meta-heuristic algorithms contribute to deep learning in the hype of big data
analytics. Adv. Intell. Syst. Comput., 518:3-25. https://doi.org/10.1007/978-981-10-3373-5_1.

Galvan, E., Mooney, P., 2021. Neuroevolution in deep neural networks: Current trends and future challenges. IEEE
Transactions on Artificial Intelligence, 2: 476-493. https://doi.org/10.1109/TA1.2021.3067574.

Ghasemiyeh, R., Moghdani, R.., Sana, S.S., 2017. A Hybrid Artificial Neural Network with Metaheuristic Algorithms for
Predicting Stock Price. Cybern. Syst., 48:365-392. https://doi.org/10.1080/01969722.2017.1285162.

1269

SIMSEK and ALAGOZ 10.21923/jesd. 1104772

Glorot, X., Bengio, Y., 2010. Understanding the difficulty of training deep feedforward neural networks. Proceedings of
the Thirteenth International Conference on Artificial Intelligence and Statistics, PMLR 9:249-256.

Gogna, A., Tayal, A, 2013. Metaheuristics: Review and application. J. Exp. Theor. Artif. Intell, 25:503-526.
https://doi.org/10.1080/0952813X.2013.782347.

Goh, C.H,, Tung, Y.C.A,, Cheng, C.H., 1996. A revised weighted sum decision model for robot selection. Comput. Ind. Eng.,
30:193-199. https://doi.org/10.1016/0360-8352(95)00167-0.

Goodfellow, 1., Bengio, Y., Courville, A, 2016. Deep Learning, MIT Press.

Gudise, V.G., Venayagamoorthy, G.K., 2003. Comparison of particle swarm optimization and backpropagation as training
algorithms for neural networks. in: 2003 IEEE Swarm Intell. Symp. SIS 2003 - Proc., Institute of Electrical and
Electronics Engineers Inc., 2003:110-117. https://doi.org/10.1109/S1S.2003.1202255.

Gunantara, N., Nurweda, Putra I.D.N.,, 2019. The Characteristics of Metaheuristic Method in Selection of Path Pairs on
Multicriteria Ad Hoc Networks.]. Comput. Networks Commun., 2019:7983583.
https://doi.org/10.1155/2019/7983583.

Hagan, M.T., Demuth, H.B., Beale, M.H., 1996. Neural Network Design, Boston, MA: PWS Publishing.

Hagan, M.T., Menhaj, M.B., 1994. Training Feedforward Networks with the Marquardt Algorithm. IEEE Trans. Neural
Networks., 5:989-993. https://doi.org/10.1109/72.329697.

Hinton, G.E., Salakhutdinov, R.R.,, 2006. Reducing the dimensionality of data with neural networks. Science 313:504-
507. https://doi.org/10.1126/science.1127647.

Hornik, K, 1991. Approximation capabilities of multilayer feedforward networks. Neural Networks, 4:251-257.
https://doi.org/10.1016,/0893-6080(91)90009-T.

Igel, C.,, 2014. No free lunch theorems: Limitations and perspectives of metaheuristics. In Theory and principled methods
for the design of metaheuristics. Springer, Berlin.

Ince, T., Kiranyaz, S., Pulkkinen, J., Gabbouj, M., 2010. Evaluation of global and local training techniques over feed-
forward neural network architecture spaces for computer-aided medical diagnosis. Expert Syst. Appl., 37:8450-
8461. https://doi.org/10.1016/j.eswa.2010.05.033.

Isik, P.X,, Sadowski, P., 2016. A theory of local learning, the learning channel. and the optimality of backpropagation.
Neural Netw., 83:51-74. https://doi.org/10.1016/j.neunet.2016.07.006

Karim, H., Niakan, S.R,, Safdari, R., 2018. Comparison of neural network training algorithms for classification of heart
diseases. [AES Int.]. Artif. Intell., 7:185-189. https://doi.org/10.11591/ijai.v7.i4.pp185-189.

Kim, P., 2017. Matlab Deep Learning With Machine Learning. Neural Networks and Artificial Intelligence, Apress.

Kratsios, A., Bilkoptov, E., 2020. Non-Euclidean Universal Approximation. arXiv preprint arXiv:2006.02341.

Manoharan, S., Sathesh, A., 2020. Population Based Meta Heuristics Algorithm for Performance Improvement of Feed
Forward Neural Network. Journal of Soft Computing Paradigm, 2(1), 36-46.
https://doi.org/10.36548/jscp.2020.1.004.

Marquardt, D.W., 1963. An Algorithm for Least-Squares Estimation of Nonlinear Parameters. J. Soc. Ind. Appl. Math.
11:431-441. https://doi.org/10.1137/0111030.

Martens, J., 2010. Deep learning via hessian-free optimization. in ICML, 27:735-742.

Mhaskar, H., Liao, Q. Poggio, T, 2016. Learning Functions: When Is Deep Better Than Shallow. arXiv preprint
arXiv:1603.00988.

Mirjalili, S, Mirjalili, S.M., 2014. A. Lewis, Grey Wolf Optimizer. Adv. Eng. Softw., 69:46-61.
https://doi.org/10.1016/j.advengsoft.2013.12.007.

Michalewicz, Z., 1992. Genetic algorithm + data structures = evolutionary programs. Springer-Verlag, New York.
Melanie, M., 1996. An Introduction to Genetic Algorithms. MIT Press, Cambridge.

Moller, M.F.,, 1993. A scaled conjugate gradient algorithm for fast supervised learning. Neural Networks , 1993:6525-
533. https://doi.org/10.1016,/S0893-6080(05)80056-5.

Mosavi, M.R,, Khishe, M., Ghamgosar, A., 2016. Classification Of Sonar Data Set Using Neural Network Trained By Gray
Wolf Optimization. Neural Netw. World. 26:393-415 https://doi.org/10.14311/nnw.2016.26.023.

Oostwal, E., Straat, M., Biehl, M., 2019. Hidden Unit Specialization in Layered Neural Networks: ReLU vs. Sigmoidal
Activation. Phys. A Stat. Mech. Its Appl, 564:125517. https://doi.org/10.1016/j.physa.2020.125517.

Pan, X, Lee, B, Zhang, C., 2013. A comparison of neural network backpropagation algorithms for electricity load
forecasting. In 2013 IEEE International Workshop on Inteligent Energy Systems (IWIES), 22-27.

Parejo, J.A,, Ruiz-Cortés, A., Lozano, S., Fernandez, P., 2012. Metaheuristic optimization frameworks: A survey and
benchmarking. Soft Comput., 16:527-561. https://doi.org/10.1007/s00500-011-0754-8

Powell, M.J.D., 1977. Restart procedures for the conjugate gradient method. Math. Program, 12:241-254.
https://doi.org/10.1007 /BF01593790.

Riedmiller, M., Braun, H., 1993. Direct adaptive method for faster backpropagation learning: The RPROP algorithm. in:
1993 IEEE Int. Conf. Neural Networks, Publ by IEEE, 586-591. https://doi.org/10.1109/icnn.1993.298623.

Roodschild, M., Sardifias, J. G., Will, A,, 2020. A new approach for the vanishing gradient problem on sigmoid activation.
Progress in Artificial Intelligence, 9(4), 351-360.

Rusiecki, A., 2012. Robust learning algorithm based on iterative least median of squares. Neural Process. Lett., 36:145-
160. https://doi.org/10.1007/s11063-012-9227-z.

Scales, L.E., 1985. Introduction to Non-Linear Optimization. Springer-Verlag, New York.

Sexton, R.S., Gupta,].N.D., 2000. Comparative evaluation of genetic algorithm and backpropagation for training neural
networks. Inf. Sci., 129:45-59. https://doi.org/10.1016,/S0020-0255(00)00068-2.

Sewak, M,, Sahay, S.K,, Rathore, H., 2018. Comparison of deep learning and the classical machine learning algorithm for
the malware detection, in: Proc. - 2018 IEEE/ACIS 19th Int. Conf. Softw. Eng. Artif. Intell. Netw. Parallel/Distributed

1270

https://doi.org/10.1016/0360-8352(95)00167-0
https://doi.org/10.1016/0893-6080(91)90009-T
https://doi.org/10.1016/S0893-6080(05)80056-5

SIMSEK and ALAGOZ 10.21923/jesd. 1104772

Comput. SNPD 2018, |Institute of Electrical and Electronics Engineers Inc, pp.293-296.
https://doi.org/10.1109/SNPD.2018.8441123.

Schmidhuber,], 2015. Deep Learning in neural networks: An overview. Neural Networks 61:85-117.
https://doi.org/10.1016/j.neunet.2014.09.003.

Shrestha, A,, Mahmood, A., 2019. Review of deep learning algorithms and architectures. IEEE Access 7:53040-53065.
https://doi.org/10.1109/ACCESS.2019.2912200

Stanley, K.O., Clune, J,, Lehman, J., Miikkulainen, R,, 2019. Designing neural networks through neuroevolution. Nature
Machine Intelligence, 1(1), 24-35.

Stanujkic, D., Zavadskas, E.K.,, 2015. A modified Weighted Sum method based on the decision-maker’s preferred levels
of performances. Stud. Informatics Control. 24:461-469. https://doi.org/10.24846/v24i4y201510.

Strang, G., 2018. The functions of deep learning. SIAM news., 51:1-4.

Suganuma, M., Shirakawa, S., Nagao, T. 2017. A genetic programming approach to designing convolutional neural
network architectures. In: Proceedings of the Genetic and Evolutionary Computation Conference on - GECCO ’17.
ACM Press, New York, New York, USA, 497-504.

Sussillo, D., Abbott, L.F.,, 2014. Random Walk Initialization for Training Very Deep Feedforward Networks. arXiv
preprint arXiv:1412.6558. http://arxiv.org/abs/1412.6558 (accessed June 11, 2021).

Tagluk, M.E,, Isik, I, 2019. Communication in nano devices: Electronic based biophysical model of a neuron. Nano
Commun. Netw., 19:134-147. https://doi.org/10.1016/j.nancom.2019.01.006.

Thakkar, A, Mungra, D., Agrawal, A,, 2020. Sentiment analysis: An empirical comparison between various training
algorithms for artificial neural network, Int. J. Innov. Comput. Appl,, 11:9-209.
https://doi.org/10.1504/1JICA.2020.105315.

Winkler, D.A, Le, T.C., 2017. Performance of Deep and Shallow Neural Networks, the Universal Approximation Theorem.
Activity Cliffs, and QSAR, Mol. Inform,36. https://doi.org/10.1002/minf.201600118.

Wong, W.K,, Ming, C.I, 2019. A Review on Metaheuristic Algorithms: Recent Trends, Benchmarking and Applications,
in: 2019 7th Int. Conf. Smart Comput. Commun. ICSCC 2019, Institute of Electrical and Electronics Engineers Inc., 1-
5. https://doi.org/10.1109/ICSCC.2019.8843624.

Vogl, T.P., Mangis,].K, Rigler, AK,, Zink, W.T., Alkon, D.L., 1988. Accelerating the convergence of the back-propagation
method. Biol. Cybern., 59:257-263. https://doi.org/10.1007 /BF00332914.

Zamri, N.B.A,, Bhuvaneswari, T., Aziz, N.A.B.A,, Aziz, N.H.B.A,, 2018. Feature selection using simulated Kalman filter
(SKF) for prediction of body fat percentage. In Proceedings of the 2018 International Conference on Mathematics
and Statistics, 23-27. https://doi.org/10.1145/3274250.3274264.

Zeugmann, T., Poupart, P., Kennedy, J., Jin, X,, Han, |, Saitta, L., Sebag, M., Peters,]., Bagnell,].A., Daelemans, W., Webb,
G.I, Ting, KM, Ting, K.M., Webb, G.I,, Shirabad,].S., Fiirnkranz,]., Hiillermeier, E., Matwin, S., Sakakibara, Y., Flener,
P., Schmid, U., Procopiuc, C.M., Lachiche, N., Fiirnkranz, J., 2011. Particle Swarm Optimization. in: Encycl. Mach.
Learn., Springer US, Boston, MA, 760-766. https://doi.org/10.1007 /978-0-387-30164-8_630.

Zhao, X,, Xia, L., Zhang, J., Song, W., 2020. Artificial neural network based modeling on unidirectional and bidirectional
pedestrian flow at straight corridors. Phys. A Stat. Mech. Its Appl, 547:123825.
https://doi.org/10.1016/j.physa.2019.123825.

Zhao, Z., Xin, H., Ren, Y., Guo, X., 2010. Application and comparison of BP neural network algorithm in MATLAB, in: 2010
Int. Conf. Meas. Technol. Mechatronics Autom. ICMTMA, 2010: 590-593.
https://doi.org/10.1109/ICMTMA.2010.492.

Zhu, H., Akrout, M. Zheng, B., Pelegris, A, Jayarajan, A. Phanishayee, A. Schroeder, B., Pekhimenko, G. 2018.
Benchmarking and Analyzing Deep Neural Network Training, in: 2018 IEEE Int. Symp. Workload Charact. ISWC
2018, Institute of Electrical and Electronics Engineers Inc,, 2018:88-100.
https://doi.org/10.1109/11SWC.2018.8573476.

1271

