
INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
K. Otal, Vol. 11, No. 2, pp. 1-11

A Generalization of the Subfield Construction

Kamil Otal1 

National Research Institute of Electronics and Cryptology, TÜBİTAK BİLGEM, Gebze, Kocaeli, Turkey
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Abstract—The subfield construction is one of the most promising methods to construct maximum distance separable (MDS)
diffusion layers for block ciphers and cryptographic hash functions. In this paper, we give a generalization of this method and
investigate the efficiency of our generalization. As a result, we provide several best MDS diffusions with respect to the number of
XORs that the diffusion needs. For instance, we give

• an involutory MDS diffusion F3
28 → F3

28 by 85 d-XORs and
• an involutory MDS diffusion F4

28 → F4
28 by 122 d-XORs

and hence present new records to the literature. Furthermore, we interpret the coding theoretical background of our generalization.

Keywords—maximum distance separable (MDS) matrices, subfield construction

1. Introduction

Block ciphers are the oldest and most common
way of secure communication. In particular, The
Advanced Encryption Standard (AES) [8] has been
intensely utilized and analyzed all over the world
since the day it was standardized. In the construction
of a modern block cipher like AES, there are
two main principles taken into account: confusion
and diffusion. The confusion property is generally
provided by S-boxes which are special nonlinear
mappings on a finite dimensional vector space over
F2, whereas the diffusion is often provided by a
maximum distance separable (MDS) matrix which
is the redundancy (check) part of a generator matrix
of an MDS code.

In general, if r-bit to r-bit S-boxes are used
during the construction of a block cipher, then an
MDS matrix over F2r (or GL(r,F2) in general) is

preferred for the maximum diffusion (see the wide
trail strategy approach for further detail in [7]).
Such a preference lets us easily count active S-boxes
through rounds. Note that counting active S-boxes
is an important process to show the resistance of the
cipher against linear and differential attacks.

The subfield construction, which is introduced
in [1], applies an unconventional usage of MDS
matrices in case r = 8. In particular, a k × k

MDS matrix over F24 is multiplied by the semi-
columns of the input column, instead of multiplying
a k × k MDS matrix over F28 by the input column
(see Proposition 2 below). This procedure gives
quite efficient MDS diffusions with respect to the
number of XORs in some cases (see [14, Table 2]
for example).

In this paper, we give a generalization of the
subfield construction (Theorem 1) relaxing most of
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the parameters. We then examine the efficiency of
our method with respect to the XOR counting proce-
dure. As a result, we observe that our generalization
gives the best MDS diffusions for many cases, see
Tables 1, 2, 3, and 4.

The rest of the paper is organized as follows. We
firstly recall some preliminary tools mostly from
coding theory in Section 2. We state and prove our
generalization, and examine its efficiency in Sec-
tion 3. Lastly we present final remarks, containing
the coding theoretical background, on our method
in Section 4.

2. Preliminaries

In this section, we briefly recall the fundamental
notions mostly coming from coding theory.

Let Fn2r denote the set of vectors of length n and
with entries from the finite field F2r of size 2r. The
function d : Fn2r × Fn2r → R given by d(u, v) :=

|{i : i ∈ {1, 2, . . . , n}, ui 6= vi}| satisfies the metric
properties and is called the Hamming distance. A
subset C of Fn2r endowed with the Hamming metric
is called a code. We define the minimum (Hamming)
distance of a code C by d(C) := min{d(u, v) :

u, v ∈ C, u 6= v}. There is an upper bound on d(C)
given by d(C) ≤ n+ 1− log2r(|C|) and called the
Singleton bound. A subset C of Fn2r satisfying the
Singleton bound is called an MDS code.

The main parameters of a code C in Fn2r is
denoted by (n, |C|, d(C))2r . In particular, if C is
a k-dimensional subspace of Fn2r over F2r , then we
denote the main parameters of C by [n, k, d(C)]2r .
MDS codes exist for many but not all parameters.
In particular, the MDS Conjecture, which is stated
below, formulates the existence of linear MDS codes
with respect to their parameters (see also [22, Con-
jecture 11.16] for example).

Conjecture 1 (The MDS Conjecture) The
parameters of a linear MDS code [n, k, n−k+1]2r

of length n and dimension k > 1 over F2r satisfy
the following.

n ≤


2r + 1 if k ∈ {2} ∪ {4, 5, . . . , 2r − 2},
2r + 2 if k ∈ {3, 2r − 1},
k + 1 if k ≥ 2r.

A linear code corresponds to a rowspace of a k×n
matrix over F2r . Such a matrix is called a generator
matrix of the code. In particular, linear MDS codes
can be uniquely represented by a k × n matrix [I :

M ] which is a concatenation of k×k identity matrix
I and k × (n − k) matrix M over F2r . Here, the
redundancy (check) part M of the generator matrix
is called an MDS matrix. The minimum distance of
a given linear MDS code equips the corresponding
MDS matrix as in the following well-known result.

Proposition 1 Let u be a nonzero k×1 matrix and
M be a k×k MDS matrix over F2r . Then the number
of minimum total nonzero entries in both u and Mu

is at least k + 1.

Construction of MDS matrices is an important and
intensely studied area in mathematics and cryptog-
raphy. We refer the reader to [9] which is a recent
and comprehensive survey in this area.

Now we define a bijection between vector spaces
F28 and F23 × F25 over F2: Let F28 = F2(θ) where
θ is a root of an irreducible polynomial of degree
8, F23 = F2(α) where α is a root of an irreducible
polynomial of degree 3, and F25 = F2(β) where β
is a root of an irreducible polynomial of degree 5
over F2. Then, for

u = u0,0 + u0,1θ + u0,2θ
2 + · · ·+ u0,7θ

7

where u0,i ∈ F2 for 0 ≤ i ≤ 7, we define

u1 = u0,0 + u0,1α + u0,2α
2

u2 = u0,3 + u0,4β + u0,5β
2 + u0,6β

3 + u0,7β
4
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and hence construct a bijection

u↔ (u1, u2).

(We sometimes use notation u1||u2 to denote
(u1, u2).) In that way, we obtain

1 + θ2 + θ3 + θ4 + θ6 ↔ (1 + α2, 1 + β + β3)

for example. This bijection idea can be easily ex-
tended from F28 ↔ F23 × F25 to

F2r1+r2+···+rs ↔ F2r1 × F2r2 × · · · × F2rs

for arbitrary positive integers ri (1 ≤ i ≤ s), and to
matrices directly. Remark that there always exists an
irreducible polynomial of any degree over F2 (see
[18] for further details).

We now give another method, first introduced in
[1] and called the subfield construction, to satisfy
the maximum byte-wise branching like in Proposi-
tion 1.

Proposition 2 Let r be an even integer, u be a
nonzero k × 1 matrix over F2r , u1 and u2 be k × 1

matrices over F2r/2 such that u = u1||u2, and M be
a k× k MDS matrix over F2r/2 . Then the minimum
total nonzero entries in both u and Mu1||Mu2 is at
least k + 1.

We omit the proof of Proposition 2 since The-
orem 1 in Section 3 covers Proposition 2, please
see the proof of Theorem 1 for the verification of
Proposition 2.

The efficiency of an MDS mapping is generally
measured by the number of XORs that the map-
ping needs. In particular, we focus on the finite
field multiplication between a constant finite field
element and a variable. The number of XORs that
the multiplication needs is determined with respect
to the irreducible polynomial which defines the
finite field. For example, consider the finite field
F23 = F(α) where α is a root of x3+x+1 ∈ F2[x],

the multiplication of α+α2 and the arbitrary element
y = y0 + y1α + y2α

2 (yi ∈ F2 for 0 ≤ i ≤ 2) is
given by

(α + α2)y = (α + α2)(y0 + y1α + y2α
2)

= (y1 + y2) + (y0 + y1)α

+(y0 + y1 + y2)α
2.

which corresponds to the vector (y1 + y2, y0 +

y1, y0 + y1 + y2). Here, the addition corresponds
to the XOR operation and hence we need to apply
1 + 1 + 2 = 4 XORs to execute the multiplication.
That is, the multiplication by α+α2 corresponds to
the transformation

(y0, y1, y2) 7→ (y1+y2, y0+y1, y0+y1+y2) (1)

which requires 4 XORs. The XOR counting proce-
dure given above is called the direct XOR (d-XOR)
counting [13].

It is possible to define d-XOR in a slightly differ-
ent way. Let f(x) = frx

r+fr−1x
r−1+· · ·+f1x+f0

be an irreducible polynomial of degree r over F2,
let α be a root of f , and define F2r = F(α). Here,
considering α, define

Mα =


0 0 . . . 0 f0
1 0 . . . 0 f1
0 1 . . . 0 f2
...

... . . . ...
...

0 0 . . . 1 fr−1

 .

We call Mα the companion matrix of α over F2.
There is a field isomorphism between F2r and {0}∪
{M i

α : 0 ≤ i ≤ 2r−2} ⊆ Fr×r2 . Here, the number of
ones in Mαi for some αi ∈ F2(α) and 0 ≤ i ≤ 2r−1
is equal to r plus the d-XOR of αi. For instance,
taking F23 = F(α) where α is a root of x3+x+1 ∈
F2[x], we see that

Mα =

 0 0 1

1 0 1

0 1 0

 .
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Also see that the companion matrix of α2 + α is

Mα2+α =M2
α +Mα =

 0 1 1

1 1 1

1 0 1

 .
Here, the number of ones in M2

α +Mα is 7 and
r = 3, hence the number of d-XORs of α2 + α is
7− 3 = 4 (see also the d-XOR of Equation (1)).

The d-XOR counting process can be extended to
matrices in Fk×k2r directly: Let A ∈ Fk×k2r and MA

denote the rk× rk companion matrix of A over F2

which is constructed by taking (MA)i,j =MAi,j
for

all 1 ≤ i, j ≤ k. Then the d-XOR of A is equal to
the number of ones in MA minus rk.

There are also some techniques to reduce the
number of XORs in such mappings. For instance,
the mapping in Equation (1) can be implemented as
follows:

1 Compute t0 := y1 + y2.
2 Return (t0, y0 + y1, y0 + t0).

In that way, it is possible to reduce the number of
XORs to 3 from 4. However, we need to wait for
t0 to apply Step 2 in this time. In other words, the
XOR depth here is 2 whereas the XOR depth in
Equation (1) is 1. We hence observe a trade-off
between the time and memory complexities. The
lowest possible of XORs ignoring the XOR depth
is called the sequential XOR (s-XOR) [11].

In general, for a fixed matrix having low d-
XORs, mostly it is possible to reduce the number
of XORs further considering the s-XOR procedure.
Therefore, finding mappings with lower d-XORs is
an important problem. We mean the d-XOR in the
rest of the paper while mentioning the number of
XORs unless otherwise stated. We refer the reader
to [3], [4], [5], [6], [11], [16], [21], [26] for various
types of optimization techniques.

An MDS matrix with less XORs is considered
more efficient than the others. In general, an MDS
mapping with less XORs provides similar efficiency
benefits.

In the subfield construction introduced in Propo-
sition 2, we multiply the number of XORs for the
matrix by 2 since the matrix is applied on two
different semi-columns.

In many block ciphers, MDS mappings are used
for encryption and their inverses are used for de-
cryption. Therefore, MDS mappings are considered
together with their inverses in many usage areas in
cryptography. Therefore, an MDS mapping whose
inverse is itself, which is also called involutory, has
a special interest in cryptography.

3. A Generalization of the Subfield Con-
struction and Its Efficiency Analysis

In this section, we generalize Proposition 2 and
then investigate the efficiency of this generalization
with respect to the XOR counting.

Theorem 1 Let u be a nonzero k × 1 matrix over
F2r1+r2+···+rs , ui be a k × 1 matrix over F2ri for
1 ≤ i ≤ s, and u = u1||u2|| . . . ||us. Let also Mi be
a k × k MDS matrix over F2ri for 1 ≤ i ≤ s and
v := M1u1||M2u2|| . . . ||Msus be the k × 1 matrix
obtained by concatenating M1u1,M2u2, . . . ,Msus.
Then the number of total nonzero entries in u and
v is at least k + 1.

Proof: Assume that u has j nonzero entries
for some 1 ≤ j ≤ k. Then, there exists at least
one 1 ≤ i ≤ s such that ui has ji nonzero entries
for some 1 ≤ ji ≤ j. This implies that Miui has at
least k+1−ji nonzero entries, hence the number of
nonzero entries in v must be greater than or equal
to k+1−ji. In other words, the number of nonzero
entries in v is greater than or equal to k+1−j since
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ji ≤ j. As a result, the number of nonzero entries
in both u and v is greater than or equal to k+1.

We would like to highlight the differences be-
tween Theorem 1 and Proposition 2:

• We do not have to use the same MDS matrix M
to multiply with u1 and u2 as in Proposition 2,
we can use different MDS matrices M1 and M2

to satisfy the MDS branching.
• Similarly, M as in Proposition 2 does not have

to be over F2r/2 , it can be over just a smaller
field. That is, r does not have to be even (or a
multiple of a certain fixed number).

• Additionally, we do not have to split u into two
as u1 and u2, we can split it into more pieces.

The following example illustrates Theorem 1.

Example 1 Let k = 2, s = 3, r1 = 2, r2 = 3,
r3 = 3, α ∈ F2r1 be a root of x2 + x + 1 ∈ F2[x]

and β ∈ F2r2 = F2r3 be a root of x3+x+1 ∈ F2[x].
Let also

M1 =

[
α 1 + α

1 1

]
,

M2 =

[
β + 1 β2 + 1

1 β

]
,

M3 =

[
1 β

1 1

]
.

Note that M1, M2 and M3 are MDS matrices.
Remark that we can separate each nonzero u ∈ F2

28

by u = u1||u2||u3 for some u1 ∈ F2
22 , u2 ∈ F2

23 , and
u3 ∈ F2

23 . The transformation

u 7→ v =M1u1||M2u2||M3u3

is an MDS diffusion, i.e. the number of nonzero
bytes in both u and v is at least 3.

We call the method in Theorem 1 generalized
subfield construction. We remark that the general-
ized subfield construction contains both the subfield

construction (where s = 2, M1 =M2, and r1 = r2)
and classical MDS matrix multiplication (where
s = 1 and r1 = r).

The generalized subfield construction has also the
following nice property that we use in the rest of
this section. We state it without proof since it is
straightforward.

Theorem 2 Consider the assumptions and nota-
tions of Theorem 1. Then, the MDS mapping is
involutory if and only if the MDS matrix Mi is
involutory for all 1 ≤ i ≤ s.

Remark 1 We would like to emphasize some points
on the generalized subfield construction: Theorem 1
seems a natural generalization of Proposition 2 but
not a much promising method with respect to the
XOR counting process. Interestingly, we observe
that we can produce the best MDS diffusions using
Theorem 1 in some cases. The following subsections
are devoted to examine the efficiency of the gener-
alized subfield construction for MDS diffusions.

3.1. The k = 2 Case for Involutory MDS Diffu-
sions

In this section, we focus on the involutory MDS
diffusions F2

2r → F2
2r using Theorem 1. We need

the following generic result for this purpose.

Theorem 3 Any 2× 2 involutory MDS matrix over
F2r is in the form of[

1 + (bc)2
r−1

b

c 1 + (bc)2
r−1

]
(2)

for some nonzero b, c ∈ F2r .

Proof: Assume that

M =

[
a b

c d

]

5
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is an involutory MDS matrix over F2r . Then, the
property M2 = I implies the Equation system

a2 + bc = 1, (3)

ab+ bd = 0, (4)

ca+ dc = 0, (5)

cb+ d2 = 1. (6)

Here, Equations (3) and (6) implies a = d since
the characteristic of F2r is 2. The Equations (4)
and (5) are then naturally satisfied. We obtain the
required form combining (3) by the fact that a = d

and
√
bc = (bc)2

r−1 since (bc)2
r
= bc in F2r .

Example 2 Let r = 8. We obtain the following
results by a computer search trying all possible b

and c in Theorem 3.

• Let F28 = F2(α), α be a root of x8 + x6 +

x5 + x3 + 1. The most efficient involutory MDS
matrix over this field with respect to the number
of XORs needs 32 XORs. One of such matrices
is [

α 1

α2 + 1 α

]
.

• Let F24 = F2(α), α be a root of x4+x+1. The
most efficient involutory MDS matrix over this
field with respect to the number of XORs needs
13 XORs. One of such matrices is[

α2 1

α α2

]
.

Therefore, the classical subfield construction
can be applied by 26 XORs.

• Let F23 = F2(α), α be a root of x3 + x + 1;
F25 = F2(β), β be a root of x5 + x2 + 1.
The most efficient involutory MDS matrices over
these fields with respect to the number of XORs
need 9 and 15 XORs, respectively. Samples of
such matrices are[

α α2 + 1

1 α

]
and

[
β4 + β 1

β3 β4 + β

]
.

Therefore, the generalized subfield construction
can be applied by 24 XORs.

This example shows that the generalized subfield
construction provides better results in case k = 2

and r = 8.

In general, Table 1 contains computational results
for different r values. As we observe from the table,
Theorem 1 gives better results when r increases.

r Prop. 1 (r) Prop. 2
(
r
2
+ r

2

)
Thm. 1

(
s∑

i=1

ri

)
2 7 NA

3 9 NA

4 13 14

5 15 NA 16 (2+3)

6 19 18 20 (2+4)

7 21 NA 22 (3+4)

8 32 26 24 (3+5)

9 27 NA 27 (3+3+3)

10 33 30 30 (3+7)

Table 1.
The least number of XORs for a 2× 2 MDS

diffusion over F2r . (NA means “not applicable”.
The bold font indicates the best value in the

row.)

Remark 2 It is important to note that the irre-
ducible polynomial used to construct the finite field
affects the number of XORs. In general, the irre-
ducible polynomials of the lowest number of terms
and highest gap1, for example x5 + x2 + 1 for
F25 , is preferred. However, such polynomials do not
guarantee the lowest number of XORs especially for
matrices. For example, the lowest number of XORs

1. The difference between the degrees of the two highest-degree
nonzero terms is called gap.
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for matrices of the form (2) in Theorem 3 is 35 when
we use x8 + x4 + x3 + x+1, whereas it is 32 when
we use x8 + x6 + x5 + x3 + 1 in case r = 8.

3.2. The k = 3 Case for Involutory MDS Diffu-
sions

In this section, we focus on the involutory MDS
diffusions F3

2r → F3
2r using Theorem 1. We need

the following main result presented by Güzel et al.
in [10]. (See also [12] and [20] as other resources
on such MDS diffusions.)

Theorem 4 [10] Any 3× 3 involutory MDS matrix
over F2r is in the form of a1 (a1 + 1)b0 (a1 + 1)b1

(a2 + 1)b−1
0 a2 (a2 + 1)b−1

0 b1
(a1 + a2)b

−1
1 (a1 + a2)b

−1
1 b0 a1 + a2 + 1


for some nonzero a1, a2, b0, b1 ∈ F2r satisfying a1 6=
a2, a1 + a2 6= 1, a1 6= 1, and a2 6= 1.

r Prop. 1 (r) Prop. 2
(
r
2
+ r

2

)
Thm. 1

(
s∑

i=1

ri

)
3 31 NA

4 43(ref. [10]) NA

5 54 NA

6 67 62
7 79 NA 74 (3+4)

8 108 (ref. [10]) 86 (ref. [10]) 85 (3+5)

Table 2.
The least number of XORs for a 3× 3 MDS

diffusion over F2r . (NA means “not applicable”.
The bold font indicates the best value in the

row.)

Example 3 Let r = 8. We obtain the following
results by a computer search trying all possible
a1, a2, b0 and b1 in Theorem 4.

• Let F28 be constructed over x8+x7+x6+x+1.
The most efficient involutory MDS matrix over
this field with respect to the number of XORs
needs 108 XORs (see [10]).

• Let F24 = F2(α), α be a root of x4+x+1. The
most efficient involutory MDS matrix over this
field with respect to the number of XORs needs
43 XORs (see [10] for example). Therefore, the
classical subfield construction can be applied
by 86 XORs.

• Let F23 = F2(α), α be a root of x3 + x + 1;
F25 = F2(β), β be a root of x5 + x2 + 1.
The most efficient involutory MDS matrices over
these fields with respect to the number of XORs
need 31 and 54 XORs, respectively. Samples of
such matrices are α2 + 1 1 α + 1

1 α2 + α α

α2 1 α


and  β2 1 β2

1 β4 + β2 + β β4 + β2 + β

β2 β4 + β2 + β β4 + β + 1

 .
Therefore, the generalized subfield construction
can be applied by 85 XORs.

This example shows that the generalized subfield
construction provides better results in case k = 3

and r = 8.

In general, Table 2 contains computational results
for different r values. As we observe from the table,
Theorem 1 gives better results when r increases.

3.3. The k = 4 Case for Involutory MDS Diffu-
sions

In this section, we focus on the involutory MDS
diffusions F4

2r → F4
2r using Theorem 1. Note

that such mappings are among the most intensely

7
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used MDS diffusions in cryptography. We use the
following form of matrices, which is presented by
Kurt Pehlivanoğlu et al. in [15], for our computer
search: A 4× 4 involutory MDS matrix over F2r of
the form


a0 a1b1 a2b2 a3b3

a1b
−1
1 a0 a3b

−1
1 b2 a2b

−1
1 b3

a2b
−1
2 a3b

−1
2 b1 a0 a1b

−1
2 b3

a3b
−1
3 a2b

−1
3 b1 a1b

−1
3 b2 a0

 (7)

for some nonzero a0, a1, a2, a3, b1, b2, b3 ∈ F2r is
called Generalized Hadamard.

Example 4 Let r = 8. We have the following
results.

• The most efficient involutory MDS matrix over
F28 with respect to the number of XORs in the
literature needs 144 XORs and such matrices
were given in [23].

• The most efficient involutory MDS matrix over
F24 with respect to the XOR count in the
literature needs 64 XORs and such matrices
were given in [15, Example 5]. Therefore, the
classical subfield construction can be applied
by 128 XORs.

• Let F23 = F2(α), α be a root of x3 + x + 1;
F25 = F2(β), β be a root of x5 + x2 + 1.
The most efficient involutory MDS matrices over
these fields with respect to the number of XORs
need 50 and 72 XORs, respectively, according
to our computer search on matrices of the form
(7). Samples of such matrices are


1 α α2 + α + 1 1

α 1 1 α2 + α + 1

α2 + 1 α 1 α

α α2 + 1 α 1



and 
1 β4 + β β2 1

1 1 β β2

β2 1 1 β4 + β

β β2 1 1

 .
Therefore, the generalized subfield construction
can be applied by 122 XORs.

This example shows that the generalized subfield
construction provides better results in case k = 4

and r = 8.

r Prop. 1 (r) Prop. 2
(
r
2
+ r

2

)
Thm. 1

(
s∑

i=1

ri

)
3 50 NA

4 64 (ref. [15]) NA

5 72 NA

8 144 (ref. [23]) 128 122 (3+5)

Table 3.
The least known number of XORs for a 4× 4

MDS diffusion over F2r in the literature. (NA
means “not applicable”. The bold font indicates

the best value in the row.)

In general, Table 3 contains computational results
for different r values. As we observe from the table,
Theorem 1 gives better results when r increases.

3.4. The k = 4 and k = 8 Cases for Involutory
and Non-Involutory MDS Diffusions

In this section, we focus on the involutory and
non-involutory MDS diffusions F4

28 → F4
28 and

F8
28 → F8

28 using Theorem 1. In particular, we give
an example below and hence update some parts of
a comprehensive table ([14, Table 2]) that presents
the efficiency of various methods for such MDS

8
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mappings in Table 4. We remark that the general-
ized subfield construction produces quite good (and
sometimes best) MDS diffusions.

Example 5 Kranz et al. compared the number of
XORs of 4 × 4 and 8 × 8 MDS and involutory
MDS matrices over GL(4,F2) and GL(8,F2) in
[14, Table 2]. We update this table as Table 4
considering the following results.

1 In [14, Table 2], we see that there are 4×4 MDS
matrices over GL(4,F2) with 58 XORs [24]. If
we apply these matrices for two semi-columns
as in Proposition 2 (or Theorem 1 in general),
then we obtain a diffusion F4

28 → F4
28 with 116

XORs.

2 As shown in Example 4, we can apply Theo-
rem 1 and obtain an involutory diffusion F4

28 →
F4
28 with 122 XORs.

3 There are 8× 8 MDS matrices over GL(4,F2)

with 380 XORs [15]. If we apply these matri-
ces for two semi-columns as in Proposition 2
(or Theorem 1 in general), then we obtain a
diffusion F8

28 → F8
28 with 760 XORs.

4 There are 8× 8 involutory MDS matrices over
GL(4,F2) with 407 XORs [15]. If we ap-
ply these matrices on two semi-columns as in
Proposition 2 (or Theorem 1 in general), then
we obtain 814 XORs.

4. Concluding Remarks

We would like to state some of our observations
on our generalization in this section. The parameters
r, ri, k, s mentioned below are from the notation of
Theorem 1.

1. Observe that the classical usage of MDS ma-
trices corresponds to the usage of linear MDS
codes. In the literature, there are also some

Method Ref. #XORs

MDS Branching on a 4× 1 Column over GL(8,F2)

Matrix in GL(8,F2)
4×4 (Subfield) [23] 136

Matrix in GL(8,F2)
4×4 (Circulant) [20] 128

Matrix in GL(8,F2)
4×4 [17] 106

Matrix in GL(8,F2)
4×4 (Circulant) [2] 136

Matrix in GL(8,F2)
4×4 (Toeplitz) [24] 123

Matrix in GL(8,F2)
4×4 (Subfield) [11] 122

Example 5(1) This paper 116

Involutory MDS Branching on a 4× 1 Column over GL(8,F2)

Matrix in GL(8,F2)
4×4 (Subfield) [23] 144

Matrix in GL(8,F2)
4×4 (Hadamard) [17] 136

Matrix in GL(8,F2)
4×4 (Circulant) [17] 132

Matrix in GL(8,F2)
4×4 (Subfield) [11] 136

Example 5(2) This paper 122

MDS Branching on a 8× 1 Column over GL(8,F2)

Matrix in GL(8,F2)
8×8 (Hadamard) [23] 768

Matrix in GL(8,F2)
8×8 (Circulant) [20] 688

Matrix in GL(8,F2)
8×8 (Circulant) [2] 784

Matrix in GL(8,F2)
8×8 (Toeplitz) [25] 680

Example 5(3) This paper 760

Involutory MDS Branching on a 8× 1 Column over GL(8,F2)

Matrix in GL(8,F2)
8×8 (Hadamard) [23] 816

Matrix in GL(8,F2)
8×8 (Hadamard) [11] 1152

Example 5(4) This paper 814

Table 4.
Comparison of MDS branchings with respect to
XOR counts. This table is indeed an updated
version of the related parts of [14, Table 2] by

adding our results.

different diffusion layers that corresponds to
the usage of nonlinear codes such as Kerdock
codes (see [19] for example). Our method is
between these two ideas: codes linear over F2

but nonlinear over F2r . Particularly, our method
uses codes which are linear over F2gcd(r1,...,rs)

where gcd denotes the greatest common divisor.
In other words, our method is an application of
nonlinear but additive MDS codes in cryptog-

9
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raphy.
2. The field F2r/2 is a subfield of F2r in Proposi-

tion 2. However, F2ri is not a subfield of F2r in
Theorem 1 if ri is not a divisor of r. Therefore,
it may not be suitable to name our method as
“generalized subfield construction” but we use
such a term anyway since our method is the
only generalization of Proposition 2 to the best
of our knowledge.

3. Consider the r = 8 case. The most efficient
irreducible polynomial of degree 8 over F2 is
x8 + x4 + x3 + x + 1 which needs 3 XORs
for reduction. On the other hand, the most
efficient irreducible polynomial of degree 4

over F2 is x4 + x + 1 which needs 1 XOR
for reduction. Therefore, it is expected that
Proposition 2 outperforms Proposition 1 since
2 × 1 < 3. However, our computations show
that the separation r1 = 3 and r2 = 5 is
more efficient than the separation r1 = r2 = 4

for r = 8 in Theorem 1, even if it sensually
seems the opposite. There are also many other
such examples in our computations presented in
Tables 1, 2, 3, and 4.

4. Our generalization gives better results when r

increases especially for involutory MDS diffu-
sions as we observe in Tables 1, 2 and 3.

5. The proper form of our generalization (i.e. the
form covered in Theorem 1 but not in Proposi-
tions 1 and 2) is not applicable as k increases
because of the MDS conjecture.

6. Our generalization seems promising when s

increases as we observe in Table 1 for r = 9.
7. Our generalization indicates that it is important

to study the MDS diffusions for not only r = 4

and r = 8 but also r = 2, 3, 5, 6 for daily life
applications.

8. Our generalization seems promising especially
for involutory MDS diffusions but we think that
it is a powerful method for also non-involutory

MDS diffusions as we observe in Table 4.
9. We remark that the results in this paper are

only for d-XORs, i.e. the case where the XOR
depth is 1. However, we also think that the
generalized subfield construction is also useful
for other cases in which the XOR depths are
greater. Such cases are mainly based on various
optimization techniques and intensely studied in
those days (see for example [3], [4], [5], [6],
[11], [16], [21], [26]). Therefore, the idea of
utilizing the generalized subfield construction
in such optimization techniques would be a
possible future work.
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