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Abstract 

 

Energy budget of open system is a critical aspect of its existence. Traditionally, at applying of energy continuity 

equation (ECE) for description of a system, ECE is considered as a declaration of local balance in the mathematical 

(infinitesimal) vicinity for the only point of interest and as such it does not contribute to entropy. In this paper, we 

consider transformation of ECE to account the effects in the physical (finite) vicinity with infinite number of energy 

links with environment. We define parameters of appropriate phase space and calculate Shannon’s, differential, and 

thermodynamic entropy. Shannon’s and differential entropies look sufficiently close while thermodynamic entropy 

demonstrates close character of variation in its functionality being different in its mathematical form. Physical 

applications to confirm contribution of a new concept to the real-world processes are also discussed.  

 

Keywords: Information uncertainty; Shannon’s entropy; thermodynamic entropy, continuity equation; energy 

exchange.  

 

1. Introduction  

1.1 Entropy 

Information theory was established by Shannon in 

1948 [1]. It allowed to introduce a remarkable measure of 

information – Shannon’s (information) entropy [2]. Since 

that, entropy plays a central role in statistical mechanics, and, 

as a result, in physics.  

A fundamental meaning of new concept was shortly 

confirmed by existence for a given probability distribution of 

notable complementary interpretation - quantity of 

information (after measurement) or uncertainty (before 

measurement) [3]. Within this way of thinking, Jaynes has 

seen a statistical mechanics as an application of 

informational theory, and thermodynamics as a special case 

of entropy maximization procedure [4]. 

In recent years, a concept of information entropy was 

being intensively developed within the framework of both, 

classic and quantum physics.  

These days, we can think of an entropy as a key concept 

of quantum information theory [5]. In this sense, an entropy 

of a quantum system is a measure of its randomness and has 

many applications in quantum communication protocols, 

quantum coherence, and so on [6-8]. 

Important role in above development belongs to the so 

called Bialynicki-Birula and Mycielski (BBM) inequality 

 

     1  nx npS S d ln                                (1) 

 

which can be considered as a new uncertainty relation in 

quantum mechanics, where Sx and Sp are entropy for position 

and momentum. This new relation has a clear interpretation 

in information theory as a formalism that relates the position 

and momentum uncertainties, where d denotes the dimension 

of the position and momentum space [9]. 

The study of Shannon entropy for a spinless non-

Hermitian particle in the presence of a magnetic field was 

conducted in [10]. Numerical analysis demonstrates that 

Shannon’s entropy satisfies the BBM relationship for ground 

and excited states independent of the value of the magnetic 

field. It was also shown that the magnetic field has an ability 

to modify the Shannon entropy which satisfies the BBM 

relationship of the model. 

Modification of Shannon's entropy and thermodynamic 

properties under the linear potential action was studied in 

[11]. It was noted that Shannon’s entropy of Majorana 

fermions satisfies BBM for fundamental and excited states. 

At this, an external force that acts on the Majorana fermions 

alters Shannon’s entropy, however, this alteration still obeys 

BBM relation of the model.  

Simulation of a Shannon entropy at abrupt 

heterojunctions in semiconductor materials in approximation 

of the soliton-like mass distribution (position-dependent 

mass) was investigated in [12]. It was shown that for the 

Hamiltonian operator to be Hermitian, Zhu-Kroemer 

ordering for the stationary Schrodinger equation can be 

employed. 

Numerical calculation of the Shannon entropies for a 

rectangular asymmetric multiple quantum well system with 

a constant total length was fulfilled in [13]. It is demonstrated 

that the Sx and Sp do not always decrease or increase 

monotonically with the confined potential depth, but their 

sum always satisfies BBM. 

A spherically confined hydrogen atom has been 

considered using two different confined potentials such as 

modified Kratzer and non-spherical oscillator potentials. 

BBM has been also tested. It was found that its validity 

depends on non-extensive parameter [14]. 

On the other hand, in classic physics, an entropy concept 

has taken important and prominently deserved place since 
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recognition of its remarkable meaning. However, the new 

results and fresh views to the well-known facts related to 

entropy are still being appeared regularly.  

As an example, indicate to the recent research which 

demonstrates that information content and its uncertainty as 

measured from the file compression procedure can 

unexpectedly provide new insights like quantifying of hidden 

order in non-equilibrium physics [15].  

Some uses of Shannon's entropy formula in information 

theory that have confirmed the functionality of this paradigm 

were considered in [16].  

Advent of nanostructures that straddle the border 

between the molecular and the macroscopic levels of 

physical understanding, has opened new applications for 

informational entropy [17].  

Analysis of entropy for obtaining of an uncertainty 

principle by utilizing of fundamental physical paradigm of 

continuity in the nanoscale level was conducted in [18-20].  

New reading of the far from equilibrium 

thermodynamical concepts was recently achieved due to 

using of entropic relations [21,22].  

Alternative approach to thermodynamic uncertainty 

relation as well as limitation to entropy variations for non-

equilibrium thermodynamical states was considered in [23]. 

Above results confirm existence of the deep-laid 

connection between entropy and behavior of physical 

system. Further, we will be presenting transformation of 

energy continuity equation (ECE) and, on this basis, 

evaluation of entropy for open system with infinite number 

of conserved links with environment. 

 

1.2 Extension of energy continuity equation 

In this research, we will be using a physical model of the 

conserved link between system and its environment. By its 

definition, this link calls for the conserved quantities (CQ) 

that meet generic requirement of conservation [24]. This 

requirement in differential shape represents balance in the 

local form and in the non-relativistic approximation for 

energy is given by an ECE  

 

 0
t





 


J                                                       (2.a) 

 

where J is flux of energy, ε is energy volume density, t is 

time, and  is Nabla operator [25, 26]. 

So, considered approach contains such exchange 

scenarios that include an energy dimension. Hence, we only 

deal with the scenarios in which the change in system state 

can be described in energy terms irrelevant of the nature of 

the exchange processes themselves. Further discussion about 

employed approach can be found in [24]. 

By default, notation (2.a) appeals to a mathematical 

(infinitesimal) space-time vicinity (STV) for the only point 

of interest. As a result, (2.a) assumes a predetermined 

description of an energy exchange process in the only point 

and eliminates any chance for uncertainty in definition of 

parameters (2.a). Therefore, (2.a) brings no contribution to 

entropy. 

However, validity of (2.a) becomes questionable if we do 

step aside from the mathematical to the physical (finite) STV, 

further PSTV. Obvious reason of that lies in breaking of the 

space-time predetermination which inevitably brings 

randomness, uncertainty, and missing information, i.e., 

Shannon’s entropy.  

To reflect emergence of PSTV uncertainty, (2.a) can be 

extended to the system of infinite number of ECE 
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where n → ∞ [25]. 

Below, it is assumed that PSTV is surrounded by a 

permeable boundary that supports the non-zero mass flow, 

then PSTV can be considered as an open thermodynamic 

system. For description of this system, we combine three 

kinds of energy flux under common symbol J: (a) default 

heat transfer, (b) work transfer by the transport of CQ like 

charge, momentum, angular momentum, and mass, (c) 

enthalpy flow via the mass transfer across permeable 

boundary.  

So, we make step from STV (2.a) to PSTV (2.b), and our 

aim is to estimate an appropriate increment in entropy that 

this step can cause.  

 

2. Transformation of ECE  

In ECE (2.a), conduct equivalent mathematical 

transformation.  

So, let STV be the closed manifold oriented by inward-

pointing normal n at each point of the boundary S. Suppose 

the direction of dJ is determined by the unit vector m, m = 

(cos φx, cos φy, cos φz), where φ =  (dJ, n), 

 

,cos i
i

dJ

dJ
                                            (3) 

 

dJi is i-th component of dJ, dS is a shorthand for ndS, i = {x, 

y, z} in the Cartesian system.  

Multiply both sides of (2.a) by elementary volume dV and 

use (3), so we have 

 

( ) ( )
dU

dJ d dJ dS
dt

     m S m n                          (4) 

 

where m·n = cos φ, dU = ε·dV. 

Divide (4) by J·dS and observe Q = J·dS dt, so 

 

(ln )
dU

d y
Q

x                                                (5.a) 

 

or, equivalently, 

 

dU

Q
x


                       (5.b) 

 

where δQ = dJ·dS dt, random x = cos φ, deterministic y 

(energy exchange rate) = J/J0, normalizing constant J0 > 0. 
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Note that relations (5) explicitly include factor x. At 

variable nature of x, it naturally accounts an infinite n in 

PSTV approximation (2.b). 

 

3. Factor x as indicator of uncertainty 

Physically, factor x determines the instantaneous status 

of an energy exchange pattern between PSTV and its 

environment. 

It should be noted that violation of (2.a) leads to widening 

of the uncertainty interval for quantity (dU/Q) in (5). In this 

sense, emergence of uncertainty in (5) could be considered 

as a natural adjustment to get to the higher confidence for the 

observed results. 

Note that in alignment with above, generally, (5) cannot 

be considered as a continuity equation in its conventional 

meaning anymore. 

So, at fixed x, we deal the mathematical STV with, and 

(5) is a regular ECE asserting the predefined energy transfer 

in dependence on y and certain match between the amount of 

energy brought to the STV boundary and that of finally 

acquired by STV, i.e., dU = Q. 

In contrast to that, in PSTV approximation, random x is 

taken from some range, hence uncertainty is being emerged, 

and it is no longer mandatory for dU and Q to be the same. 

In this sense, the set of x controls the set of possible scenarios 

of energy exchange at every given y, when the particular 

scenario is realized on the random basis. 

We see from above that simple reformulation of x allows 

us to easily switch between the mathematical (2.a) and the 

physical (2.b) method of description. In turn, the latter 

provides a natural way to switch from the only possible 

scenario of energy exchange to many of them. This 

switching can be done by just changing of type and value of 

x. 

 

4. Function ϒ as measure of phase volume 

By definition, in this model variables x and y are 

independent, so from (5.a) 

 

( , ) lnx y
dU

dy x y
Q

                          (6) 

 

where δϒ(x,y) is an instantaneous efficiency of energy 

exchange with suitable phase space M ⊆ R2 for all possible 

states (Figure 1). 

 

 
Figure 1. Phase space M for all possible microstates of 

instantaneous efficiency of energy exchange δϒ between 

PSTV and its surroundings. In the plot, by an abscissa axis 

a energy rate y = J/J0 is indicated, by an ordinate axis an 

instantaneous efficiency δϒ. Space M is marked by a light-

grey area (taken from [24]). 

 

Now, introduce function 

 

1

1 0
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y

M
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
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which after integration can be expressed as 

 

lny y y                         (8) 

 

By its appearance, ϒ describes the phase volume for random 

variations of δϒ. 

Function ϒ is of maximum in the stationarity point y = 1, 

while its minimum is at the bounds of y-range for energy 

exchange (Figure 2). In the considered case, these bounds are 

[0, e], where e is the base of natural logarithm. 

Eq. (7) can be rewritten as an identity 
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where |a| denotes a modulus of a. Identity (9) can be also 

written as 

 

(1) –  (0)  1

(1) –  ( )  1e

  

  





             (10) 

 

which assumes that the y-ranges [0,1] and [1,e] mandatorily 

contain the full bunch of PSTV exchange scenarios no matter 

which variations x (δϒ) happen. At this, the range 0 ≤ y ≤ 1 

deals with the preferable transportation of energy inwards 

PSTV, while the range 1 ≤ y ≤ e with the opposite 

transportation of energy outwards PSTV [26]. 

In other words, (7) means that at arbitrary y, the existing 

phase volume ϒ does not guarantee dU = Q, however it can 

guarantee the maximum possible proximity of dU and Q at 

bidirectional transmission between PSTV and environment 

on the confidence interval [0, y]. Generally, this transmission 

is not the error-free (ϒ ≠ 1). 

Remind that Shannon-Hartley theorem [27] states that 

theoretically it is possible to provide an error-free 

transmission through the noisy channel if channel capacity C 

exceeds the information transmission rate R, i.e., if 

 

C R                       (11) 

 

If (11) does not hold, then transmission should include 

the more or less percentage of errors. 

In our case, function ϒ can be considered as equivalent 

of C while y as equivalent of R. Therefore, rewrite (11) as 

 

y                        (12) 

 

Using (8), it assumes that theoretically (12) holds in the  

range 0 ≤ y ≤ 1, and violates in the range 1 < y ≤ e.  As a 

result, in the real-world application the probability to observe 

the error-free energy exchange process is higher in the range 

0 ≤ y ≤ 1 compared the range 1 < y ≤ e. 

In above way, (7,9) directly refers to the context of the 

theorem [27] as it determines the measure of error 

occurrence for energy exchange process in the noisy channel 

(PSTV ↔ environment) in terms of volume ϒ and bandwidth 

y. At this, (9) provides conditions to guarantee the lossless 

(dU = Q) bidirectional transportation of energy through 
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PSTV boundary, whereas (7) indicates to the minimum 

portion of errors we should expect in the best case possible. 

For example, given y = 1/e, then from (8) ϒ = 2/e ≈ 0.73. 

As 1 – 0.73 = 0.27, we should expect that about 27% of 

transmitted energy is dissipated as a useless heat. 

All abovesaid prompts us to use the framework of 

information theory. So, now we are in a good position to 

calculate an entropy caused by the STV → PSTV jump. 

 

 
Figure 2. Phase volume ϒ for all possible microstates of 

instantaneous efficiency of energy exchange δϒ. In the plot, 

designation of the horizontal axis is the same as in the Figure 

1, by an ordinate axis the phase volume ϒ is indicated. Phase 

volume at arbitrary y = yf is marked by a light-grey area. 

 

5. Calculation of entropy 

5.1 Shannon’s entropy 

As it was mentioned above, ϒ can be interpreted as a  

phase volume for space M (Figure 2). Then in M, the 

maximum number of possible microstates W at given rate y 

is (dϒ/dy)dy [28, 29]. Therefore, from (8) and using Gibbs’ 

definition [28], Shannon’s entropy up to a constant additive 

A0 is 

 

0ln ln | ln |S W y A                 (13)   

 

It is important that (13) fully coincides with the main part 

of differential entropy (16) discussed below.  

 

5.2 Differential entropy 

Although differential entropy cannot be considered as the 

mathematically rigorous extension of information entropy 

because of the known limitation 
0

limln( )


   [30], we 

consider dynamics of its main part yet believing that it may 

provide useful auxiliary information, where ∆ is the size of 

discretizing for probability density function (PDF). 

Moreover, we are only interested in the difference of 

differential entropy ∆Sx between adjacent states which 

obviously lacks above shortcoming. Also, we will consider 

dynamics of ∆Sx, taking value of Sx at y = 0 as the anchor 

one. 

So, let g(x) be the PDF for random x, i.e.       

 

[ 1, 1]( ) 0 forg x x                                                  (14.a) 

 

[ 1, 1]( ) 0 atg x x                              (14.b)  

  

then from (6) at each y, PDF is  
 

( )
( ) , [ 1,1]

| ln |

g xy
f x x

y
                                           (15) 

 

[31], where |lny| is taken to keep f y(x) ≥ 0, y is a parameter. 

Calculation of f y(x) is done in assumption that x is the 

random at each given deterministic y. 

Now, introduce an entropy probability distribution for  

instantaneous random δƳ as 

 
1

1

( ) ln( ( ))
y yxS f x f x dx



                                         (16)    

           

Insert (15) to (16) and simplify, then Shannon’s entropy is 

 

ln | ln | x
xS y H                                               (17) 

 

with the plot shown in Figure 3, where Hx is an entropy 

probability distribution in the range [0,ln2] for x on the 

compact support [-1, 1] 

 

 

1

1

( )ln( ( ))xH g x g x dx


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Now, we can observe meaning of the constant A0 in (13), i.e., 

A0 = Hx. 

 

  
Figure 3. Shannon’s entropy ΔSx for PSTV. In the plot, 

designation of the horizontal axis is the same as in the Figure 

1, by an ordinate axis Shannon’s entropy ΔSx is indicated. 

The spectrum nodes y1
± and y2

± match the roots of entropy 

ΔSx. Allowable ΔSx is located within two dashed area (taken 

from [24]).  

 

6. Physical applications of calculated entropy  

6.1 Bunch of evolutionary scenarios 

As shown in [24], spectrum of ϒ at 1/e ≤ y ≤ e becomes 

discrete 

 

1
exp[ ]ny

n
                                        (19) 

 

where n = 1,2… . 

Then, from (17), using (19)  

 

lnS H n
n x

                                  (20) 

 

and solution for entropy is localized within the area restricted 

by the roots of ΔSn (20) for bounds of Hx that, at the same 

time, are the first and second harmonic of the spectrum (19) 

as shown in Figure 3 [24].  

As the peak of ΔSx fits to the peak of Hx (18), then  

according to the principle of maximum entropy production 

[32], such scenario deals with the most probable and the 

fastest path of PSTV evolution. In Figure 3 appropriate curve 
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crosses the points of the first harmonic of the discrete 

spectrum, i.e., y1
- and y1

+ (Figure 3).  

In the same way, minimum ΔSx fits to the minimum Hx.  

Then, using [32] one more time, it accommodates 

requirements for the least probable and the slowest path of 

evolution. In Figure 3, curve addressing the least probable 

evolutionary scenario crosses the points of the second 

harmonic i.e., y2
- and y2

+.  

The other scenarios fall in the y-range [y1, y2] so that the  

probability of realization decreases from y1 to y2.  

The more thorough investigation [24] shows that at y =  

y2
±, the probability of evolutionary scenario (assumes quality 

changes in energy structure of PSTV) matches the probability 

of non-evolutionary scenario (plain mode of receiving and 

losing of energy). At |ln y1| ≥ |ln y| ≥ |ln y2|, probability of the 

evolutionary scenario is higher, at all other y the non-

evolutionary scenario predominates (Figure 3). 

 

6.2 Thermodynamic uncertainty relation 

Ratio 

 

1
( ) BE
T

k                          (21) 

 

is known as a thermodynamic uncertainty relation (TUR), 

where kB denotes the Boltzmann constant, T is temperature, 

E is energy, and arguments ∆E and ∆(1/T) could be, 

generally, replaced with some functions of these arguments 

[33]. 

Write ΔU = (ΔU/ΔT)ΔT, then (5.b) can be expressed as 

 

( / )U T T
=

Q
x

  
                                   (22) 

 

Apply to (22) Clausius inequality for entropy [34] 

 

  Q T S                                                (23) 

 

then it is possible to determine the physical conditions when 

TUR is valid.  

 

6.3 Lower limit for thermodynamic entropy 

Recently, the new limiting condition was shaped in 

nonequilibrium thermodynamics for total entropy rate in 

Markov jump processes [17,18] dealing with the state 

arbitrary far from an equilibrium, which could be written as 
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2

2 B

t J

Jk

S


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
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
                                (24) 

 

where Ṡt is total entropy rate, <J> is an average flux, <δJ> 

is variance of flux fluctuations.  

Show that (18) can be stemmed from (2.a,b). So, combine  

(5.b) with (23), then we obtain 

 

2

22

dS J

Jk
B


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                         (25) 

 

Having (25) averaged on the time interval τ ~ Δt, and 

denoting Ṡt =ΔS/Δt, we have solution that up to a constant 

multiple coincides with 24). 

So, we see that presented approach (2.b) allows to predict 

possible way of PSTV energy development (section 6.1), 

provide useful information for working conditions of TUR 

(section 6.2), derive lower entropy constraint in the non-

equilibrium thermodynamics (section 6.3). Hence, (2.b) can 

be considered as a common basis for several physical 

applications. 

  

7. Discussion 

Generalization of physical uncertainties was considered  

in a number of articles. As shown in [35], in approximation 

of the highest energies it is possible to bring in to the classic 

TUR an extra term related to the internal energy that causes 

appearance of the lower boundary for inverse temperature. 

Technically, eq. (2.b) could be also thought as the 

consequence of applying to (2.a) some additional uncertainty 

(energy) which transforms (2.a) to (2.b) and, ultimately, 

emerges as constraint for Shannon’s entropy. 

In [36], authors examine collection in which energy E, 

temperature T and multiplicity N can vary. Then, with the 

support of non-extensive statistics they suggest 

interconnection for all varying factors that formalizes the 

known Lindhard’s TUR [37]. As it is known, the non-

extensive statistics does not use conventional Boltzmann-

Gibbs statistical mechanics. The latter seems interesting first 

of all for study of the objects with complicate structure like 

nanostructures.  

Results [38] presume that an indefinity in the 

fundamental pattern allows use of the framework of 

information concept. In this way, it seems acceptable to seek 

confirmation of uncertainty links using the methods of 

information concept. We think that it aligned with our 

analysis in the sections 1.2, 2 where we discussed the 

“uncertainty” value of (2.b) unlike quite deterministic (2.a).  

Presence of resembling entropy limitation was discussed  

in [17-19,39]. Existence of an uncertainty bound for the 

small-scale fluctuations in equilibrium thermodynamics, and 

for the large-scale fluctuations arbitrary far from equilibrium 

for Markovian processes in non-equilibrium 

thermodynamics was demonstrated in [17]. In [18], at the 

nonequilibrium steady states of Markovian processes, a few 

universal bounds valid beyond the Gaussian regime was 

derived. Authors [39] declared existence of a new class of 

thermodynamic uncertainty inequalities, which have 

revealed that dissipation constrains fluctuations in steady 

states arbitrarily far from equilibrium. A possible way to 

come to the identical constraint for the thermodynamic 

entropy based on (2.b) and Clausius inequality for PSTV was 

demonstrated in [19]. 

Generalizing the said above in [17-19,39], an entropy 

constraint for PSTV could be given as 

 

2

1

2
Bd

k
S

y
                                      (26) 

 

where y = < ∆J >/< J >. 

Integrating (26) on y, we obtain  

 

1

| |2
B

SC
y

S
k

                                (27) 

 

where CS is an integration constant. 

Assuming CS is bounded like Hx in (18), we obtain that  

solution (27) could also have the quasi-continuous y-
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spectrum that in its form (shown in Figure 4) is close to the 

depicted in Figure 3. 

Of course, (17) and (27) are parametrically different  

equations, however, our purpose is to demonstrate similarity 

in behavior of these two dissimilar methods. 

Novelty of considered approach, primarily, lies in  

analytic solution of (2.b) and finding of reasonable physical 

applications for the found solution. Discovered ϒ-solution 

deals with average measure for uncertainty of energy 

exchange process in open system with infinite number of 

conserved energy channels with environment, and as such, 

has natural connection with an entropy. This foundation 

permits to calculate an increment in Shannon’s and 

differential entropy, as well as study conditions to constrain 

thermodynamic entropy. Follow this way, it is possible to 

forecast possible scenarios of energy development in open 

system, to draw existence of the lower threshold of entropy 

in the non-equilibrium thermodynamics, and obtain 

conditions for validity of TUR, i.e., describe sufficiently 

unrelated physical phenomena. 

 

 
Figure 4. Lower threshold for thermodynamic entropy ΔSy in 

PSTV. In the plot, designation of the horizontal axis is the 

same as in the Figure 1, by the ordinate axis the lower 

threshold for thermodynamic entropy ∆Sy is indicated. 

Meaning of the points y1
± and y2

± is identical to the y-points 

in the Figure 3. 
 

8. Conclusions 

This report presents a nontraditional formalism to  

Estimate alteration of Shannon’s, differential, and 

thermodynamic entropy in PSTV approximation. Found 

entropy provides a new look at the process of energy 

exchange in open system with unlimited number of 

conserved energy links. Generalizing, PSTV approximation 

(2.b) acts as a common basis that demonstrates its value in 

several dissimilar physical applications.  

 

Nomenclature 
ε : volume energy density[ J/m]3  

J : energy flux [J/m2·s] 

kB : Boltzmann constant [J/K] 

Q : energy transfer [J] 

t : time [s] 

T : absolute temperature [K] 

U : internal energy [J] 

All other variables are dimensionless. 
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