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Abstract − In this paper, we derive two interesting formulas for square and square pyramidal num-

bers. We focus on the linear recurrence relation with constant coefficients for square and square

pyramidal numbers. Then we deal with the relationship between generalized Fibonacci polynomi-

als and these numbers. Also, we give some determinant representations of these numbers.
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1. Introduction

A square number is an integer that is the square of an integer. The nth square number is denoted by n2 or

Sn . For example, S0 = 0, S1 = 1, S2 = 4, S3 = 9 (sequence A000290 in the OEIS [1]). The difference between

two square number is given by the identity

n2 = (n −1)2 +2(n −1)+1, (Sn = Sn−1 +2(n −1)+1) (1.1)

The Sn is also equal to the sum of the first n odd numbers as follows:

Sn =
n∑

i=1
(2i −1)

For calculating square numbers, there are various recursive approaches. For example,

Sn = Sn−1 + (n −1)+n,

Sn = Sn−1 +2n −1,

Sn = 2Sn−1 −Sn−2 +2
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Şahin / JNRS / 11(1) (2022) 91-99 92

Another interesting sequence obtained in the form of sums of square numbers is the square pyramidal

numbers. The number of stacked spheres in a pyramid with a square base is counted by a square pyramidal

number, which is a natural number (sequence A000330 in the OEIS [2]). The nth square pyramidal number

is denoted by Pn . Pn can be obtained in different ways[3–5], some of which are

Pn =
n∑

i=0
Si

= 1+4+·· ·+n2

= n(n +1)(2n +1)

6

=
(

n +2

3

)
+

(
n +1

3

)

= 1

4
T2n

= 1

4

(
2n +2

3

)

= 2(t1 + t2 +·· ·+ tn−1)+ tn

where tn and Tn are the nth triangular and triangular pyramidal numbers, respectively.

Square pyramid numbers are one of the numbers that are discussed in Greek mathematics [6]. It is known

that Archimedes worked on formulas related to these numbers [7]. The problem of finding the formula for

the sums of the progressions of the squares can be found in the work of Fibonacci [8]. Lucas and Watson

focused on the cannonball problem and studied square pyramid numbers [9, 10]. In [11], the authors ex-

amined spreading and covering numbers and discussed the relationship between spreading numbers and

square pyramidal numbers. More recently, Agarwal has studied several different types of figurative numbers

in detail and discussed their computation through simple recurrence relations, patterns and properties, and

mutual relationships [12].

The acquisition of a sequence using linear recurrence both expands the field of application and offers new

opportunities for obtaining its properties. The presence of linear recurrence of triangular numbers and tri-

angular pyramidal numbers is seen in [13]. When the literature is examined, it is noteworthy that there are

few studies on the repetition relations of square numbers and square pyramidal numbers. It can be said

that one of the important reasons for this is that these numbers are obtained with the help of easier formu-

las without the need for recurrence. The following question is likely to come to mind. "One cannot imagine

a much simpler formula than n2, so what is the virtue of expressing this in a much more complicated fash-

ion?" Our main focus here is not to find a simpler formula, but rather to offer a different perspective by

showing that these numbers can be obtained by linear recurrence.

In Section 2, we obtain a linear recurrence for each square and square pyramidal number. In Section 3,

we show that square numbers and square pyramid numbers are the special cases of generalized Fibonacci

polynomials defined by MacHenry in [14]. Thus, the opportunities offered by generalized Fibonacci poly-

nomials can be used for these numbers. Some of these are combinatorial calculations, determinant and

permanent representation, generating matrices, etc.
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2. Recurrence Relation

In this section, we focus on the recurrence relation of square numbers and square pyramidal numbers.

Theorem 2.1. Let n ≥ 2 be any integer and Sn be the nth square number. Then,

Sn = 4Sn−1 + (−7)Sn−2 +8Sn−3 −8Sn−4 +·· · (−1)n8S1 (2.1)

Proof.

We proceed by induction on n. The result clearly holds for n = 2. Now suppose that the result is true for

all positive integers less than or equal to n where n > 1. We prove it for (n+1). In fact, by using definition of

Sn , we obtain that

Sn+1 = Sn +2n +1

= 4Sn−1 + (−7)Sn−2 +8Sn−3 −8Sn−4 +·· · (−1)n8S1 +2n +1

= 4(Sn −2(n −1)−1)−7(Sn−1 −2(n −2)−1)

+8(Sn−2 −2(n −3)−1)+·· ·+ (−1)n8(Sn−(n−2) −2(n − (n −1))−1)+2n +1

= 4Sn + (−7)Sn−1 +8Sn−2 −8Sn−3 +·· · (−1)n8S2

+ (−16)(n −1)−8+8(n −1)+4+16(n −2)+8−2(n −2)−1

−16(n −3)−8+16(n −4)+8+·· · (−1)n+116+ (−1)n+18+2n +1

Let n be any odd integer. Then,

Sn+1 = 4Sn + (−7)Sn−1 +8Sn−2 −8Sn−3 +·· · (−1)n8S2

−16(n −1−n +2+n −3−·· ·−n + (n −1))

+8(n −1)+4−2(n −2)−1+2n +1

= 4Sn + (−7)Sn−1 +8Sn−2 −8Sn−3 +·· · (−1)n8S2

−16
(n −1)

2
+8(n −1)+4−2(n −2)−1+2n +1

= 4Sn + (−7)Sn−1 +8Sn−2 −8Sn−3 +·· · (−1)n8S2 +8

The proof is similar when n is an even integer. Therefore, equation (2.1) holds for all positive integers n ≥ 2.

Theorem 2.2. Let n ≥ 2 be any integer and Pn be the nth square pyramidal number. Then,

Pn = 5Pn−1 + (−11)Pn−2 +15Pn−3 −16Pn−4 +16Pn−5 −·· · (−1)n16P1 (2.2)

Proof.

We proceed by induction on n. The result clearly holds for n = 2. Now suppose that the result is true for

all positive integers less than or equal to n where n > 1. We prove it for (n+1). In fact, by using definition of
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Pn , we obtain that

Pn+1 = Pn + (n +1)2

= 5Pn−1 −11Pn−2 +15Pn−3 +16(−Pn−4 +Pn−5 −·· · (−1)nP1)+ (n +1)2

= 5(Pn −n2)−11(Pn−1 − (n −1)2)+15(Pn−2 − (n −2)2)

−16(Pn−3 − (n −3)2)+·· ·+ (−1)n−116(P3 −32)

+(−1)n16(P2 −22)+ (n +1)2

= 5Pn −11Pn−1 +15Pn−2 −16Pn−3 +16Pn−4 −·· · (−1)n16P2

−5n2 +11(n −1)2 −15(n −2)2 +16(n −3)2 −·· ·

+(−1)n16(n − (n −2))2 + (n +1)2

= 5Pn −11Pn−1 +15Pn−2 −16Pn−3 +·· · (−1)n16P2 −16n2

+11n2 +16(n −1)2 −5(n −1)2 −16(n −2)2 + (n −2)2

+16(n −3)2 −·· · (−1)n16(n − (n −2))2 + (n +1)2

= 5Pn −11Pn−1 +15Pn−2 −16Pn−3 +·· · (−1)n16P2

+11n2 −5(n −1)2 + (n −2)2

−16[n2 − (n −1)2 + (n −2)2 −·· ·+ (−1)(n − (n −2))2]

+(n +1)2

Let n be any odd integer. Then,

Pn+1 = 5Pn −11Pn−1 +15Pn−2 −16Pn−3 +·· · (−1)n16P2

+11n2 −5(n −1)2 + (n −2)2

−16[(2n −1)+ (2(n −2)−1)+ (2(n −4)−1)+·· ·

+ (2(n − (n −3))−1)]+ (n +1)2

= 5Pn −11Pn−1 +15Pn−2 −16Pn−3 +·· · (−1)n16P2

+11n2 −5(n −1)2 + (n −2)2

−16[2.(
n +1

2
)2 −2− n −1

2
]+ (n +1)2

= 5Pn −11Pn−1 +15Pn−2 −16Pn−3 +·· · (−1)n16P2

+11n2 −5(n −1)2 + (n −2)2 −8(n +1)2 +32+8n −8+ (n +1)2

= 5Pn −11Pn−1 +15Pn−2 −16Pn−3 +·· · (−1)n16P2 +16

The proof is similar when n is an even integer. Therefore, Equation (2.2) holds for all positive integers n ≥ 2.
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3. Generalized Fibonacci Polynomials, Square and Square Pyramidal Numbers

This section concentrates on the relationship between the generalized Fibonacci polynomials and square

and square pyramidal numbers.

MacHenry [14] defined generalized Fibonacci(Fk,n(t )) where ti (1 ≤ i ≤ k) are constant coefficients of the

core polynomial

P (x; t1, t2, . . . , tk ) = xk − t1xk−1 −·· ·− tk

which is denoted by the vector t = (t1, t2, . . . , tk ). Fk,n(t ) is defined inductively by

Fk,n(t ) = 0, n < 0 (3.1)

Fk,0(t ) = 1

Fk,n(t ) = t1Fk,n−1(t )+·· ·+ tk Fk,n−k (t )

In [15], the authors defined matrices A(k) as,

A(k) =



0 1 0 . . . 0

0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1

tk tk−1 tk−2 . . . t1


k×k

and showed that the last column of An
(k) would be obtained as,


Fk,n−k+1(t )

Fk,n−k+2(t )

· · ·
Fk,n(t )

 (3.2)

In addition, in [15], the authors obtained Fk,n(t ) (n,k ∈N, n ≥ 1) as,

Fk,n(t ) = ∑
a⊢n

(
|a|

a1,...,ak

)
t a1

1 . . . t ak

k (3.3)

Where the notation a ⊢ n and |a| are used instead of
k∑

j=1
j a j = n and

k∑
j=1

a j , respectively.

Some of the important properties of generalized Fibonacci polynomials can be found in [14, 16–18].

Theorem 3.1. For all n ≥ 0,

Fn,n(4,−7,8, · · · , (−1)n−18) = Sn+1

and

Fn,n(5,−11,15,−16, · · · , (−1)n−116) = Pn+1

Proof.

The proof follows directly from Equations (2.1), (2.2), and (3.1).
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Corollary 3.2. Let n be any positive integer, then

Sn+1 =
∑

a⊢n

(
|a|

a1,a2, · · · , an

)
4a1 (−7)a2 8a3 . . . ((−1)n−18)an

Proof.

The proof follows directly from Theorem 3.1 and Equation (3.3).

Corollary 3.3. Let n be any positive integer, then

Pn+1 =
∑

a⊢n

(
|a|

a1,a2, · · · , an

)
5a1 (−11)a2 15a3 16a4 . . . ((−1)n−116)an

Proof.

The proof follows directly from Theorem 3.1 and Equation (3.3).

Example 3.4. We obtain S6 and P6 using Corollary 3.2 and 3.3. First, let’s explain the a ⊢ 5 and |a| as follows:

a1+ 2a2+ 3a3+ 4a4+ 5a5 = 5

5 0 0 0 0 −→ 5!
5! = 1

3 1 0 0 0 −→ 4!
3! = 4

2 0 1 0 0 −→ 3!
2! = 3

1 0 0 1 0 −→ 2!
1! = 2

0 0 0 0 1 −→ 1!
1! = 1

0 1 1 0 0 −→ 2!
1! = 2

1 2 0 0 0 −→ 3!
2! = 3

Then,

∑
a⊢5

(
|a|

a1,a2, . . . , a5

)
4a1 (−7)a2 8a3 (−8)a4 8a5 =1.45 +4.43.(−7)+3.428+2.4.(−8)+1.8+2.(−7).8+3.4.(−7)2

=36

and

∑
a⊢5

(
|a|

a1,a2, . . . , a5

)
5a1 (−11)a2 15a3 (−16)a4 16a5 =1.55 +4.53.(−11)+3.5215+2.5.(−16)+1.16+2.(−11).15+3.5.(−11)2

=91

The two corollary given below are obvious from Equation (3.2) and Theorem 3.1.
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Corollary 3.5. Let n be any positive integer and

AS =



0 1 0 . . . 0

0 0
. . . 0 . . . 0

...
...

. . .
. . .

. . .
...

0 0 . . . 0 1 0

0 0 . . . 0 0 1

(−1)n−18 (−1)n−28 . . . 8 −7 4


n×n

Then last column of matrix (AS)n is

[S2,S3, . . . ,Sn+1]T

Corollary 3.6. Let n be any positive integer and

AP =



0 1 0 0 . . . 0

0 0
. . . 0 0 . . . 0

...
...

. . .
. . .

. . .
. . .

...

0 0 . . . 0 1 0 0

0 0 . . . 0 0 1 0

0 0 . . . 0 0 0 1

(−1)n−116 (−1)n−216 . . . 16 15 −11 5


Then last column of matrix (AP )n is

[P2,P3, . . . ,Pn+1]T

Lemma 3.7. [19] Let An be an n ×n lower Hessenberg matrix for all n ≥ 1 and define det(A0) = 1. Then,

det(A1) = a11 and for n ≥ 2

det(An) = an,n det(An−1)+
n−1∑
r=1

[(−1)n−r an,r (
n−1∏
j=r

a j , j+1)det(Ar−1)] (3.4)

In [16], the authors obtained generalized Fibonacci polynomials with the help of determinant. Consider-

ing Theorem 3.1 and the determinant representation of generalized Fibonacci polynomials, the following

corollaries are obtained.

Corollary 3.8. Let n be any integer such that n ≥ 1, and let AS
n = [ai , j ]i , j=1,2,...,n be an n ×n Hessenberg

matrix defined as

ai , j =



−1, if i = j −1;

4, if i = j ;

−7, if i = j +1;

(−1)i− j 8, if i − j = k > 1;

0, otherwise

(3.5)

Then,

det(AS
n) = Sn+1
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We proceed by induction on n. The result clearly holds for n = 1. Now suppose that the result is true for all

positive integers less than n. We prove it for n. In fact, by using (3.4) we obtain that

det(AS
n) =

n∑
k=1

[
(−1)k−1ak,1(a1,2)k−1 det(AS

n−k )
]

= 4det(AS
n−1)−7AS

n−2 +
n∑

k=3

[
(−1)k−1(−1)k−18(−1)k−1 det(AS

n−k )
]

= 4Sn −7Sn−1 +
n∑

k=3

[
(−1)k−18Sn−k+1

]
= 4Sn −7Sn−1 +8Sn−2 −8Sn−3 +·· ·+ (−1)n−18S1

= Sn+1

Corollary 3.9. Let n be any integer such that n ≥ 1, and let AP
n = [ai , j ]i , j=1,2,...,n be an n ×n Hessenberg

matrix defined as

ai , j =



−1, if i = j −1;

5, if i = j ;

−11, if i = j +1;

15, if i = j +2

(−1)i− j 16, if i − j = k > 2;

0, otherwise

Then,

det(AP
n ) = Pn+1

Proof.

The proof is similar to the proof of Corollary 3.8.
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