
Erzincan Üniversitesi Erzincan University

Fen Bilimleri Enstitüsü Dergisi Journal of Science and Technology

2023, 16(1), 196-211 2023, 16(1), 196-211

ISSN: 1307-9085, e-ISSN: 2149-4584

Araştırma Makalesi

DOI: 10.18185/erzifbed.1105551

Research Article

*Corresponding Author: ruhi.tas@trt.net.tr 196
Ruhi Taş, https://orcid.org/0000-0002-7741-7715

Smart Contract Security Vulnerabilities

Ruhi Taş 1*

1 Turkish Radio Television Co.

Received:18/04/2022, Revised: 14/09/2022, Accepted: 15/09/2022, Published: 30/03/2023

Abstract

A smart contract is a concept of computer protocols that helps to facilitate blockchain technology. This

blockchain-based smart contract is a public ledger of all participating transactions. It is considered a self-

executable application and contains predetermined rules. It also operates by decentralizing networks that are

shared between all parties, and this execution of contracts between parties could be securely done without a

middleman or a third party. With blockchain technology, developers could provide an efficient framework and

ensure security issues. While the new blockchain has successfully been developed to prevent the problems of

fraud and hacking, there is still a considerable risk concerning security and confidentiality. Therefore, we should

not underestimate this matter. This study aims to review the potential risks that may take place on blockchain-

based smart contracts. In addition, the options that may assist application developers in order to provide viable

guidance, and to avoiding these security vulnerabilities.

Keywords: Blockchain, Smart Contract, Vulnerability, Ethereum, Solidity

Akıllı Sözleşme Güvenlik Zaafiyetleri

Öz

Akıllı sözleşme, blok zinciri teknolojisini kolaylaştırmaya yardımcı olan bir bilgisayar protokolleri kavramıdır.

Bu blok zinciri tabanlı akıllı sözleşme, katılan tüm işlemlerin halka açık bir defteridir. Kendi kendine

çalıştırılabilir bir uygulama olarak kabul edilir ve önceden belirlenmiş kurallar içerir. Ayrıca, tüm taraflar

arasında paylaşılan ağları merkezi olmayan hale getirerek çalışır ve taraflar arasındaki bu sözleşmelerin

yürütülmesi, bir aracı veya üçüncü bir taraf olmadan güvenli bir şekilde yapılabilir. Blockchain teknolojisi ile

geliştiriciler verimli bir çerçeve sağlayabilir ve güvenlik sorunlarını sağlayabilir. Yeni blok zinciri,

dolandırıcılık ve bilgisayar korsanlığı sorunlarını önlemek için başarıyla geliştirilmiş olsa da, güvenlik ve

gizlilik konusunda hala önemli bir risk var. Bu nedenle bu konuyu hafife almamalıyız. Bu çalışma, blockchain

tabanlı akıllı sözleşmelerde yer alabilecek potansiyel risklerin incelenmesi amaçlamaktadır. Ayrıca

geliştiricilere rehberlik ederek, olası güvenlik açıklarından kaçınmak için uygulama geliştiricilere yardımcı

olunması sağlanmıştır.

Anahtar Kelimeler: Blok zinciri, Akıllı sözleşmeler, Zaafiyet, Ethereum, Solidity

https://orcid.org/0000-0002-7741-7715

Smart Contract Security Vulnerabilities

197

1. Introduction

Satoshi Nakamoto proposed a system with several rules to build the blockchain infrastructure

in 2008. In particular, he created the first cryptocurrency, a form of digital money based on

cryptography, which prioritizes the level of security [1]. In 2009, Bitcoin cryptocurrency was

created and started to be traded on the market. It gained popularity as a result of the use of the

Bitcoin blockchain infrastructure. Bitcoin is the first application that managed to disable central

control [2]. Blockchain, which uses a decentralized structure, offers a reliable system thanks to

its immutability and distributed record structure. Particularly, participants who do not know

each other confirm the accuracy of the transactions within the framework of certain rules and

keep them [3]. The blockchain provides an unalterable permanent record of transactions on a

network. The system uses a decentralized ledger similar to a database. In this system, the people

involved in the system can see the records of all transactions, if they wish. This feature causes

it to differentiate from traditional databases [4]. In the following process, their usability in

alternative areas has emerged. It has spread to a wide area such as supply chain [5], agricultural

practices, insurance [6], health [7] to secure digital rights management [8], pharmaceuticals [9],

financial transactions, and trade and commerce [10].

A smart contract is a leading product of Ethereum blockchain; and it is one of the most useful

cryptocurrencies. Ethereum [11] allows other blockchain applications to be built on it [12].

With the use of smart contracts in blockchain systems, special applications have started to be

developed within contract-based privatized sectors [13]. It is stated that blockchain technology

provides security and a stable working environment, especially in online transactions. However,

the lack of standards and weaknesses in application development can pose serious risks. These

vulnerabilities could take place at different levels: the blockchain framework level, the peer-to-

peer network level, and the blockchain application at the reasonable contract level. In this study,

we primarily focus on security matters and how to prevent these vulnerabilities which may take

place on the blockchain-based smart contracts.

2. What is Smart Contract?

A smart contract is code developed as a script that is pinned to a blockchain or similar

distributed infrastructure. Triggered by the blockchain transaction and verified over the

network, it is used to execute predefined actions. Since the terms of a smart contract are

transparently stored on the blockchain, it can always be checked whether all parties are working

as intended. In this way, trust problems between the related parties are reduced. Smart contracts

can be written as software scripts, just like scripts running in non-blockchain applications. The

term smart contract and the underlying idea predates the emergence of Bitcoin. Szabo [14]

defined the smart contract as a piece of computerized transaction. The protocol, which meets

the terms of payment, contract terms such as confidentiality or execution, enables the realization

of transactions in accordance with the criteria by making the necessary transactions. Solidity,

Ethereum The design of such systems has legal, economic and technical bases. Therefore, smart

contracts require interdisciplinary analysis.

Smart Contract Security Vulnerabilities

198

3. Potential Risks of Smart Contract Implementations on Blockchain

The Smart Contract definition was first proposed by Nick Szabo in 1994 [14]. According to the

structure defined by Szabo, it has been stated that the contracts that have to be used in some

cases can be converted into codes that computers can process. In this way, it will be able to be

stored and copied in the system. When applied to the blockchain, it can be activated as a control

mechanism in the nodes on the network [15]. Smart contracts are the writing of a contract on

the lines of code, and the transactions are executed according to the terms of this contract [16].

Contracts developed to provide the necessary controls are uploaded to the nodes. Later, other

nodes in the blockchain will be enabled to communicate with the same mechanism. Smart

contracts ensure that transactions between nodes are carried out securely.

Smart contract programming requires different features from the standard application

development methods. If there is any failure of the applications, the cost for defective software

could be high. The expected changes could also be difficult, which can be compared to a

hardware design and programming. It is usually written in a simple language of smart contract

languages, expressions, operators, functions, and variables. Although they are already quite

abstract and difficult to understand, the components of a smart contract can be expressed in part

by name from anywhere in the program; sometimes it is almost impossible to see how different

parts interact and fit.

Smart contracts are self-distributed computer programs which are executed on the blockchain

framework. Popular applications of smart contracts include cryptocurrencies and online

gambling; those applications often involve financial transactions which consider as a part of the

contract. Similar to conventional programs, smart contracts are written in Solidity [9], and can

contain security vulnerabilities which could potentially lead to attacks. Unlike ordinary

programs, the problem is overcome by an inability to correct smart contracts.

In recent years, some studies have demonstrated that all blockchain-based smart contracts

contain some security vulnerabilities [17] and could encounter the attacks which can potentially

lead to devastating losses [18, 19]. For example, structure attacks; such as forks [20], DDoS

attacks [18], majority attacks [21], and double spending [22]. There is an increasing number of

occurrences in smart contracts, and financial losses have been reported [18]. These attacks have

been found to exploit the vulnerabilities in smart contracts. To give an example, there is an

incident of a DAO attack, and this is considered as a result of a minor error in the DAO contract

[23]. Moreover, on June 17, 2016, there were over 3.5 million of Ether have been stolen from

the DAO smart contract [24].

According to a report published in 2018, the smart contract contains approximately 4.4 million

dollars with an Ethereum value at that time, this could be a potential vulnerability for hackers

to exploit it [25, 26]. Currently, 4.008 DApps and 7.16K smart contracts are executing on the

blockchain networks (Figue 1) [27]. The most widespread blockchain networks have several

security concerns that could be exploited by hackers.

Smart Contract Security Vulnerabilities

199

Figure 1. DApps per Month [27].

4. Material and Methods

In order to obtain the articles on this topic, we first establish a possibility of the following search

criterias: search queries “smart contract vulnerabilities”, “contract vulnerabilities”, “smart

contract attacks” applied to Arxiv [28] (143 article), and IEEExplore [29] (443 article) digital

library and general search. We will then obtain search results by reviewing title and abstracts.

Non-English articles and those with different topics will also be eliminated.

5. Conclusions

As a result of the examination of the articles that meet the criteria, vulnerabilities in smart

contracts that can easily be mistaken have been identified.

Reentrancy Attacks

Reentrancy attack on the smart contracts is a well-known vulnerability because this kind of

attack allows attackers to take control of the flow on smart contracts. It is also known as an

“unknown call,” or a “recursive call” vulnerability. Multiple parallel external initializations are

possible using the structures call family. If the global state is not managed suitably, a contract

may be vulnerable to delay attacks [30]. Hackers can take over the control flow, and make

changes to your data that the calling function is not expected [31]. When the linked cross-

function is in a racing state, two different functions will then operate on the same global state

[30]. Smart contracts have found the opportunity to be used with Blockchain 2.0. In particular,

Ethereum has started to be used in the infrastructure of crypto money. The particularly risky

situation is when one contract calls another, the current execution has to wait for the call to

finish. This can cause a problem especially when the recipient of the call is using the

intermediate state the caller is in [32, 33]. An attacker can perform a parallel attack by using

two different functions that share at the same state [34]. It is advised to use a built-

in transfer() function, specifically when we make external calls to another untrusted contracts.

http://solidity.readthedocs.io/en/latest/units-and-global-variables.html#address-related

Smart Contract Security Vulnerabilities

200

We also need to confirm all logics that could change the state variables that could happen before

it sent out of the contract [35].

A code written in this way can be easily exploited by an attacker. Line 15 contains a bypassable

vulnerability that can be recalled by the attacker (Figure 2).

Figure 2. Reentry sample code

Figure 3. Reentry Attacker sample code

In cases where the necessary control is not performed by calling the same function again on the

30th and 34th lines, the transactions in the other expenditure can be started before the

expenditure transaction is concluded (Figure 3).

Smart Contract Security Vulnerabilities

201

Gas Limit Attacks

This attack is possible in a contract that accepts basic data and uses it to make another contract

through the low-level address.call () function, as is often the case in multi-signed and

transactional situations [31]. It is claimed that we could avoid this potential vulnerability by

looping over arrays of unknown length, setting an upper limit for the array length, and

controlling the loop by inspecting the gas limit [36].

Figure 4. Gas Limit sample code

It is necessary to ensure that there are no undesirable consequences if other transactions are

processed while waiting for the next iteration of the PaymentOut() function. Therefore, this

pattern should only be used if absolutely necessary (Figure 4).

Arithmetic Issues (Integer Overflow)

Integer overflow is a type of errors that can be found in many programming languages. It could

cause a serious security vulnerability in blockchain applications. For example, if a loop counter

overflow and creates an infinite loop, the contract then can be completely frozen. This overflow

can be used by an attacker, especially when there is an increasing number of iterations in the

loop which has been registered by new users of the agreement [30, 37]. Therefore, when writing

contracts, we need to utilize a secure math libraries for all arithmetic operations, such as

OpenZeppelin’s SafeMath library [38].

Even the “solidity” library used in the example below has a great influence on whether the

system malfunctions or not. When version 0.8.0 is used, the system works properly as a result

of compilation (Figure 5, Figure 6).

Smart Contract Security Vulnerabilities

202

Figure 5. Overflow sample code

Figure 6. Overflow compile error

Delegatecall

A message except that the calls DELEGATECALL offered under the contract is the same as

the destination address in the code calls. The destination address in the code call contract (Jiang

et al., 2018) is carried out under a separate message call from the same DELEGATECALL

called the message there are certain types of calls. When using DELEGATECALL, both the

library contract and the possible negotiating conditions of the interview contract should be

considered [30].

Smart Contract Security Vulnerabilities

203

Figure 7. Delegatecall sample code

At first, HackMe works according to whether the pwn function is present in the Contract (Figure

7). Since there is no pwn function, HackMe's fallback function is triggered, which calls the Lib

contract with the pwn function's signature. That the lib contract has the pwn function definition

and the owner is set to msg.sender. With context protection msg.sender can now be used as

owner of HackMe contract.

State Variable Visibility

Visibility is used to determine whether the functions should be invoked by users internally or

externally from different contracts [30]. Variables or functions can be defined as public, private,

or internal [27]. Private variables can only be accessed by a declaring contract itself, and

internal variables can be accessed by defining contracts and the contracts derived from them

[38]. It is obligatory to determine a visibility of all functions that are used in a contract in a

controlled manner.

Smart Contract Security Vulnerabilities

204

It is important to define public, internal and private accessibility in the example so that it does

not cause clarity (Figure 8).

Figure 8. State variable sample code

Bad Randomness

Ethereum has been exploited as a platform for a variety of blockchain applications, especially

the ones that relate to random numbers, for instance the lottery and timestamps. Generating

random numbers on the blockchain is technically difficult, and these numbers can simply be

manipulated by attackers. Block.timestamp is one of the methods that has been adopted, but it

is considered as a perilous tool, because Miners have an opportunity to select, modify, and

manipulate those random numbers. Therefore, the utilize of block variables as a source should

be avoided [38]. The following function can be used as the simplest random method (Figure 9).

Figure 9. Randomness sample code

External Contract Referencing

Reusing codes developed in Ethereum systems and interacting with other smart contracts in the

network can provide plus benefits. Basically, many contracts call for a relationship with each

other. Allowing such calls can help attackers use it as an attack surface. Any address in this

state can be unintentionally used as a contract, the code in the address represents the type of

Smart Contract Security Vulnerabilities

205

contract being issued. This can be dangerous, especially if the person who wrote the code is

hiding something malicious in the code [32]. Avoid using external contracts for sensitive

operations is an imperative safety measure, and if an external contract is required, the incoming

data must be checked.

In the example below (Figure 10), the attacker was able to disable Line 77. In order to prevent

this, It should be defined in the constructor section. encryptionLibrary = new

Rot13Encryption();

Figure 10. External Conract sample code

Short Address/Parameter Attack

Parameter attack is considered as a classical SQL injection attack. As an attack method; If the

EVM detects a substream when dealing with data types up to 256 bits, it adds 0 to the end of

the address. The attacker is able to create this attack by removing the last zeros from an Ether

address ending with 0 or multiple 0s at addresses in this situation [39].

If the necessary checks are not made, the system accepts both in the use made without the

address below and the 00s at the end.

0xc3DC35818d54FDA1C4943bA98938cb6F46A91700

Smart Contract Security Vulnerabilities

206

If the code in Figure 11 is checked for msg.data.length on line 88, it will not be accepted with

ashortaddress.

Figure 11. Short address sample code

Timestamp Dependency/Manipulation

Miners are generally considered as nodes that can interfere with transactions as an attacker.

Potential danger is recognized if they have the opportunity to manipulate environmental

variables and can profit from it. A miner can control the timestamp and gain an unfair

advantage. They can use block numbers and the average time between blocks to estimate the

current time [32], [40]. In the article published in 2019 by Mei et al. [41] Timestamp

dependency was found to be the most common vulnerability [40].

In the simple roultte game below (Figure 12), miner spin can play with 1 Ether and then win

for the next block. The 15 second rule should be applied. This rule is that the timestamp between

two blocks within 15 seconds should not be more than 15 seconds. If the difference is phase, it

should be rejected.

Figure 12. Timestamp sample code

Smart Contract Security Vulnerabilities

207

Denial Of Service (DOS)

DOS attacks are attacks that all internet-connected digital systems have to deal with from time

to time. As a result of such an attack, it may be possible that the contracts become unusable for

a while. This attack can freeze these contracts for an indefinite period or even indefinitely [32],

[42].

In the example below, an attacker could repeatedly attack a new account, stressing the system

unusable (Figure 13).

Figure 13. DOS sample code

In order to avoid this attack, gas must be used in every account creation. It will also help in

checking require(msg.sender == owner || now > unlockTime) for account.

tx.origin Authentication

Solidity has a distinctive method to check who is calling by using a function msg.sender [43].

We may use tx.origin to test who is calling as an alternative to msg.sender. As a result, an attack

can be formed. A transactional attack is a form of phishing attack that can simply drain a

contract of all funds [44].

Smart Contract Security Vulnerabilities

208

Figure 14. tx.origin sample code

If the control is not performed on line 45 of the code shown in Figure 14, the attacker can show

himself in the state of ownership. For this reason, it should be edited as require (tx.origin ==

msg.sender).

6. Discussion

Several testing tools have recently emerged. Applications must be automatically checked for

common security vulnerabilities from static analysis tool platforms, especially before a

deployment of applications. [45], Chainsecurity [46], and Smartcheck [47] are some of them.

The first written smart contract must be loaded on these systems, and a detailed result report

must be examined by the system. A single application cannot detect all vulnerabilities (Table

1). Therefore, it will be efficacious to exploit different testing tools. It has been shown that

while reentry attacks can be caught by all scanning programs, different results are obtained in

different applications of other vulnerable parts.

When starting a new project, the first of the latest version should be preferred. Never use

tx.origin for authorization checks [44]. In cases where randomness is needed, using an external

source of randomness is a mandatory. Do not use the status check as the block timestamp may

cause weaknesses. In addition to a frequent examination, we need to avoid a looping over

especially when there is an unknown size of data structure. Using a safe library for arithmetic

operations is another imperative safety measure that we must follow [38]. We should cautiously

pay attention to the use of different contracts, and also avoid the codes that are obtained from

untrusted sources [30].

Oyente was developed by researchers from the National University of Singapore in January

2016. Oyente can be defined as a symbolic execution tool that works directly with the Ethereum

virtual machine (EVM) bytecode. Oyente is able to detect many vulnerabilities of Ethereum,

especially the TheDAO bug. Currently, Oyente is available as a Docker image for easy testing

and installation. It is available at https://github.com/melonproject/oyente and can be

downloaded and tested [48].

https://github.com/melonproject/oyente

Smart Contract Security Vulnerabilities

209

Table 1. Tools matrix

Tool
Analysis

Method

Source Reentry Timespend

Manipulation

Tx.origin

Ovente Heuristic
source

code(.sol)

yes yes yes

Chainsecurity Formal

Byte code and

source

code(.sol)

yes no no

Smartcheck
Analytic and

Heuristic

source

code(.sol)

yes yes yes

Unlike other examples, SmartCheck is a tool developed as a static analysis tool. SmartCheck

translates Solidity source code into an XML-based intermediate representation and checks it

against XPath patterns. Smartcheck is designed based on current knowledge of Solidity

vulnerabilities. It has been noted that SmartCheck has limitations, as some error detection

requires more sophisticated techniques such as defect analysis or even manual inspection [49].

7. Conclusion

We have done extensive research on vulnerability articles and online websites. This study

identified several security vulnerabilities in the new blockchain-based smart contracts that are

frequently used by many sectors. In this study, application developers have been advised to

minimize their weaknesses. To improve smart contract security and its performance, we

strongly suggest all users to employ safe practices and procedures. Nonetheless, in order to

ensure the highest level of security, additional testings and repeating security audits on the

blockchain-based smart contracts are required. Further research could be implemented if there

is any present of unascertained vulnerabilities and practicable prevention.

Ethics in Publishing

There are no ethical issues regarding the publication of this study.

Conflict of Interest

The authors have no conflicts of interest to declare.

References

[1] https://bitcoin.org/bitcoin.pdf, [Accessed]: 01.07.2022.

[2] https://bitcoin.org/en/ [Accessed]: 13.10.2022.

[3] Lauslahti, K., Mattila, J. , Seppala, T. (2017) Smart Contracts How Will Blockchain

Technology Affect Contractual Practices?. ETLA Reports, 1-27.

[4] Dorri, A. , Kanhere, S. S., Jurdak, R., Gauravaram, P. (2017) Blockchain for IoT security

and privacy: The case study of a smart home. IEEE. International Conference on Pervasive

Computing and Communications Workshops (PerCom) Workshops, 618-623.

Smart Contract Security Vulnerabilities

210

[5] Leng, K., Bi, Y., Jing, L., Fu, H. C., Van Nieuwenhuyse, I. (2018) Research on

agricultural supply chain system with double chain architecture based on blockchain

technology. Future Generation Computer Systems, 86, 641-649.

[6] Raikwar, M., Mazumdar, S., Ruj, S., Sen Gupta, S., Chattopadhyay, A., Lam, K.Y. (2018)

A Blockchain Framework for Insurance Processes. IFIP International Conference on New

Technologies, Mobility and Security (NTMS), 1-4.

[7] Amofa, S., Sifah, E. B., Kwame O. Agyekum, B. Abla, S., Xia, Q., Gao, J. (2018) A

Blockchain-based Architecture Framework for Secure Sharing of Personal Health Data.

IEEE. International Conference on e-Health Networking, Applications and Services

(Healthcom), 1-6.

[8] Ma, Z., Huang, W., Gao, H. (2018) Secure DRM Scheme Based on Blockchain with High

Credibility. Chinese Journal of Electronic, 27(5), 1025-1036.

[9] Azaria, A., Ekblaw, A., Vieira, T., Lippman, A. (2016) MedRec: Using Blockchain for

Medical Data Access and Permission Management. International Conference on Open and

Big Data, 25-30.

[10] Chen, B., Tan, Z., Fang, W. (2018) Blockchain-Based Implementation for Financial

Product Management. International Telecommunication Networks and Applications

Conference,1-3.

[11] http://arxiv.org/abs/2007.00286 [Accessed]: 01.07.2022.

[12] Kemmoe, V. Y., Stone, W., Kim, J., Kim, D., Son, J. (2020) Recent Advances in Smart

Contracts: A Technical Overview and State of the Art. IEEE Access, 8, 117782-117801.

[13] Li, X., Jiang, P., Chen, T., Luo, X., Wen, Q. (2020) A survey on the security of blockchain

systems. Future Generation Computer Systems, 107, 841-853.

[14] https://nakamotoinstitute.org/static/docs/micropayments-and-mental-transaction-

costs.pdf [Accessed]: 01.07.2022.

[15] https://www.inve topedia.com/terms/s/smart-contracts.asp [Accessed]: 12.07.2022.

[16] https://ordina-jworks.github.io/blockchain/2017/05/10/Blockchain-

Introduction.html#smart-contracts [Accessed]: 13.09.2022.

[17] Ribeiro, S. L.I., Barbosa, A. P. (2020) Risk Analysis Methodology to Blockchain-based

Solutions. Conference on Blockchain Research & Applications for Innovative Networks

and Services (BRAINS), 59-60.

[18] http://arxiv.org/abs/1904.03487 [Accessed]: 13.11.2022.

[19] Xu, J. J. (2016) Are blockchains immune to all malicious attacks?. Financ Innovation,

2(1), 25.

[20] Wang, S., Wang, C., Hu, Q. (2019) Corking by Forking: Vulnerability Analysis of

Blockchain. IEEE Conference on Computer Communications, 829-837.

[21] Dey, S. (2018) Securing Majority-Attack in Blockchain Using Machine Learning and

Algorithmic Game Theory: A Proof of Work. Computer Science and Electronic

Engineering, 7-10.

[22] Ramezan, G., Leung, C., Wang, J. Z. (2018) A Strong Adaptive, Strategic Double-

Spending Attack on Blockchains. International Conference on Internet of Things and

IEEE Green Computing and Communications and IEEE Cyber, Physical and Social

Computing and IEEE Smart Data, 1219-1227.

[23] Zhao, X., Chen, Z., Chen, X., Wang, Y., Tang, C. (2017) The DAO attack paradoxes in

propositional logic. International Conference on Systems and Informatics, 1743-1746.

[24] https://www.wired.com/2016/06/50-million-hack-just-showed-dao-human/ [Accessed]:

23.10.2022.

 [25] https://www.investopedia.com/news/ethereum-smart-contracts-vulnerable-hacks-4-

million-ether-risk/ [Accessed]: 13.10.2022..

Smart Contract Security Vulnerabilities

211

[26] https://www.findlaw.com/legalblogs/technologist/reports-ethereum-smart-contracts-are-

far-from-secure/ [Accessed]: 14.10.2022.

[27] https://www.stateofthedapps.com/stats [Accessed]: 14.10.2022.

[28] https://arxiv.org/ [Accessed]: 13.10.2022..

[29] https://ieeexplore.ieee.org/Xplore/home.jsp [Accessed]: 13.10.2022.

[30] https://blog.sigmaprime.io/solidity-security.html#reentrancy [Accessed]: 14.10.2022.

[31] Atzei, N., Bartoletti, M., Cimoli, T. (2017) A Survey of Attacks on Ethereum Smart

Contracts (SoK). Principles of Security and Trust, 164-186.

[32] Dika, A., Nowostawski, M. (2018) Security Vulnerabilities in Ethereum Smart Contracts.

IEEE International Conference on Internet of Things and IEEE Green Computing and

Communications and IEEE Cyber, Physical and Social Computing and IEEE Smart Data,

955-962.

[33] Luu, L., Chu, D.H., Olickel, H., Saxena, P., Hobor, A. (2016) Making Smart Contracts

Smarter. ACM SIGSAC Conference on Computer and Communications Security, 254-

269.

[34] https://consensys.github.io/smart-contract-best-practices/attacks/ [Accessed]: 13.10.2022.

[35] http://arxiv.org/abs/1902.06710 [Accessed]: 15.07.2022.

[36] Grech, N., Kong, M., Jurisevic, A., Brent, L., Scholz, B., Smaragdakis, Y. (2018)

MadMax: surviving out-of-gas conditions in Ethereum smart contracts. ACM Programing

Language, 1-27.

[37] Nan, Y., Yang, Z., Wang, X., Zhang, Y., Zhu, D., Yang, M. (2018) Finding Clues for Your

Secrets: Semantics-Driven, Learning-Based Privacy Discovery in Mobile Apps. Network

and Distributed System Security Symposium.

[38] https://yos.io/2018/10/20/smart-contract-vulnerabilities-and-how-to-mitigate-

them/#vulnerability-all-data-is-public/ [Accessed]: 14.10.2022.

[39] https://medium.com/huzzle/ico-smart-contract-vulnerability-short-address-attack-

31ac9177eb6b [Accessed]: 13.10.2022.

[40] Tikhomirov, S., Voskresenskaya, E., Ivanitskiy, I., Takhaviev, R., Marchenko, E.,

Alexandrov, Y. (2018) SmartCheck: Static Analysis of Ethereum Smart Contracts.

EEE/ACM 1st International Workshop on Emerging Trends in Software Engineering for

Blockchain, 9-16.

[41] Mei, X., Ashraf, I., Jiang, B., Chan, W. K. (2019) A Fuzz Testing Service for Assuring

Smart Contracts. IEEE International Conference on Software Quality, Reliability and

Security Companion, 544-545.

[42] Saad, M., Njilla, L., Kamhoua, C., Kim, J., Nyang, D., Mohaisen, A. (2019) Mempool

optimization for Defending Against DDoS Attacks in PoW-based Blockchain Systems.

IEEE International Conference on Blockchain and Cryptocurrency, 285-292.

[43] https://consensys.github.io/smart-contract-best-practices/development-

recommendations/solidity-specific/tx-origin/ [Accessed]: 14.10.2022.

[44] https://medium.com/coinmonks/solidity-tx-origin-attacks-58211ad95514[Accessed]:

14.10.2022.

[45] https://github.com/enzymefinance/oyente [Accessed]: 14.10.2022.

[46] https://chainsecurity.com/audits/ [Accessed]: 14.10.2022.

[47] https://smartdec.net/ [Accessed]: 14.10.2022.

[48] https://medium.com/haloblock/how-to-use-oyente-a-smart-contract-security-analyzer-

solidity-tutorial-86671be93c4b [Accessed]: 14.10.2022.

[49] Tikhomirov, S., Voskresenskaya, E., Ivanitskiy, I., Takhaviev, R., Marchenko, E.,

Alexandrov, Y. (2018) SmartCheck: Static Analysis of Ethereum Smart Contracts.

IEEE/ACM 1st International Workshop on Emerging Trends in Software Engineering for

Blockchain, 9-16.

