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Abstract: Recently, adaptive test approaches have become a viable alternative to 

traditional fixed-item tests. The main advantage of adaptive tests is that they reach 

desired measurement precision with fewer items. However, fewer items mean that 

each item has a more significant effect on ability estimation and therefore those 

tests are open to more consequential results from any flaw in an item. So, any items 

indicating differential item functioning (DIF) may play an important role in 

examinees' test scores. This study, therefore, aimed to investigate the effect of DIF 

items on the performance of computer adaptive and multi-stage tests. For this 

purpose, different test designs were tested under different test lengths and ratios of 

DIF items using Monte Carlo simulation. As a result, it was seen that computer 

adaptive test (CAT) designs had the best measurement precision over all 

conditions. When multi-stage test (MST) panel designs were compared, it was 

found that the 1-3-3 design had higher measurement precision in most of the 

conditions; however, the findings were not enough to say that 1-3-3 design 

performed better than the 1-2-4 design. Furthermore, CAT was found to be the least 

affected design by the increase of ratio of DIF items. MST designs were affected 

by that increment especially in the 10-item length test. 

1. INTRODUCTION 

Traditional linear tests that have been the milestone of educational assessment since the 1900's 

are generally administered using paper-pencil and have been a popular way to measure 

examinees' knowledge, skills, and abilities (Weiss & Kingsbury, 1984; Yan et al., 2014). 

However, especially over the past 40 years, computer-based tests have gained popularity over 

linear tests thanks to great advances in computer technology, thereby becoming a viable 

alternative to those paper-pencil tests (Keng, 2008; Luecht & Sireci, 2011; Magis et al., 2017; 

Yan et al., 2014). According to Yan et al. (2014) computer-based tests can be classified into 

three main groups; namely, linear, adaptive, or multi-stage. 

Computer-based linear tests are the computerized version of traditional linear tests. As in linear 

tests, all individuals answer the same items in these tests, and the test length is fixed (Magis et 

al., 2017; Sarı, 2016; Yan et al., 2014). On the other hand, the primary purpose of computer 

adaptive tests (CAT) is to select items from the item pool so as to match the ability level of the 
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individual and to ensure that test is neither too easy nor too difficult for the individual (Thai, 

2015; Yan et al., 2014, Zheng & Chang, 2014). In the process, an item is administered and 

answered and the individual's ability level (theta) at that point is estimated according to the 

answer. Depending on that estimated theta, the next item is chosen from the pool and 

administered. Until the stopping criteria are met, the process goes on (Tay, 2015; Weiss & 

Kingsbury, 1984). Individuals only face items convenient to their ability levels and do not spend 

time with items which are too easy or too difficult for them. Thus, the main advantage of CAT 

over linear tests is that they reach the desired measurement precision with fewer items (Wainer, 

2000; Wang, 2013; Wang, 2017). 

The other type of computer-based tests which has become popular, especially in recent years, 

is multi-stage test (MST), which combines the many advantages of linear tests and CAT while 

minimizing their disadvantages (Hendrickson, 2007; Magis et al., 2017). MST which can be 

considered as a variation of adaptive testing differs from CAT in test adaptation level. While 

test adaptation occurs at item level in CAT, adaptation occurs at item set (module) level in 

multi-stage testing (Hendrickson, 2007; Yan, 2010). In MST, a set of items which is named as 

the module is administered to the examinee, examinees' ability is estimated based on his/her 

responses to that module, and s/he is routed to the next module at the next stage (Hendrickson, 

2007; Wang, Lin, Chang, & Douglas, 2016). In MST, each module can be assembled so as to 

have desired contextual and statistical specifications; thus, test developers have more control 

over the construction of the desired test form when compared to CAT. Although, MST has less 

adaptation points than those of CAT, they provide more efficient test assembly and more 

controlled content balancing. Furthermore, MST allows some item review and change previous 

answers within each module. However, going back to previous stages and reviewing items in 

previous module/s are not allowed in MST. (Hendrickson, 2007; Sarı & Huggins-Manley, 2017; 

Wainer, 2000; Wang, 2017). In addition to their advantages, MST also has some disadvantages 

such as requiring more items to get the same measurement precision with CAT (Berger, 

Verschoor, Eggen & Moser, 2019). Besides, since MST modules are designed so as to be at 

optimum difficulty only at target ability levels (e.g., three levels at low, medium, and high 

proficiency), final ability estimations may not be as accurate as CAT designs (Rome, 2017). 

The increase in computer-based testing application has brought some problems especially in 

test fairness issue (Chu & Lai, 2013; Gierl, Lai & Li, 2013; Zwick, 2010). Test fairness and 

equity issues are related with items presenting some bias towards a specific group of students. 

Non-bias items only measure ability of individuals that is intended to be measured without 

being affected by unrelated factors such as gender, socio-economic status, etc. On the other 

hand, bias items are affected by those factors which are not related with the characteristic which 

is intended to be measured. Because test results are used in critical decision-making situations 

that may affect individuals' future, test fairness becomes even more significant (Camilli & 

Shepard, 1994; Crocker & Algina, 1986; Hambleton & Swaminathan, 1991). Differential item 

functioning analyses are one of the most popular methods used to get information on the bias. 

Potentially problematic items are identified with DIF analyses and expert opinions are obtained 

on whether those items are really problematic or not (Zumbo, 1999). 

1.1. DIF and Adaptive Testing 

The quality of adaptive testing applications largely depends on item pool quality (Han & Guo, 

2011). Therefore, large item pools should be developed for those applications and each item in 

that pool should be checked in order to ensure that they satisfy the main fairness and equity 

issues (Gierl, Lai & Li, 2013). However, even if the item writing process is well planned and 

carefully designed, it is not easy to avoid the effects of DIF completely. Many factors which 

are not related with an item such as computer familiarity, testing environment, physical 

impairments, etc. may cause DIF (Birdsall, 2011). Independent of the item content, the context 
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in which the item is presented, for instance, item order, may also affect item parameters and 

may become a source for DIF (National Research Council, 1999). Besides, although items in 

the pool have no DIF initially, some may become DIF items over time. As a result of repeatedly 

usage of items over time, they may become known for other individuals prior to their 

administration. Even if this is not the case, the interaction between the item and test taker may 

change because of several reasons, which is known as item parameter drift. Therefore, the 

changing interaction between an item and a test taker may cause different item characteristics 

than initially calibrated item characteristics (Aksu-Dunya, 2017; Han & Guo, 2011). Parameter 

drift on items could be defined as a kind of DIF since items behave differently in groups which 

are involved in different testing applications (Aksu-Dunya, 2017; Babcock & Albano, 2012). 

Item parameter drift is a serious threat to validity and fairness (Han & Guo, 2011). DIF analyses 

may be more important for adaptive testing applications than they are for linear tests. Since the 

number of items administered in adaptive tests is fewer than in linear tests, each item has greater 

effect on final ability estimation. Therefore, any flaw in an item may cause more consequential 

results (Zwick, 2010; Gierl et al., 2013; Zwick & Bridgeman, 2014).  So, DIF items may play 

an important role in examinees' test scores. Besides, performing the test application via 

computer may reveal some possible sources of DIF such as computer familiarity, anxiety, and 

environment that are not found in traditional tests (Zwick, 2010). These factors have increased 

the importance of DIF analyses in computer adaptive tests.  Steinberg et al. (2000) stated that 

adaptive tests may be more sensitive to the effects of DIF on validity than linear tests. In 

addition, the presence of bias may affect the order of administration of the items because the 

next item/module in CAT and MST is determined according to the answers to the previous 

item/module (Zwick, 2010). It is important to note that concentration of biased items on certain 

modules for the MST may also pose a problem. 

1.2. Purpose of the Study 

Despite the importance of the existence of DIF items in adaptive testing is known, DIF studies 

in adaptive tests are limited to a few studies in the literature (Chu & Lai, 2013; Gierl et al., 

2013; Lei, Chen & Yu, 2006; Piromsombat, 2014). Besides, those studies were limited to the 

investigation and comparison of DIF detection methods under different conditions (Chu & Lai, 

2013; Gierl et al., 2013; Lei, Chen & Yu, 2006) and the investigation of the effect of DIF items 

on ability estimation on CAT (Piromsombat, 2014). No studies were found in the literature 

focusing on comparison of CAT and MST approaches in case of the presence of DIF items in 

the test. The current study aims to investigate the performances of two adaptive testing 

approaches, CAT and MST, in case of the presence of DIF items under different conditions. 

Therefore, the results of the study are likely to contribute to the literature focusing on DIF in 

adaptive testing applications. To this end an answer for the following research question is 

sought in the context of this research: 

- How does the test performance of CAT and MST change in case of the presence of DIF 

items on the test under different test lengths (10-20-30-40 item), test designs (CAT, 1-3-3 

MST and 1-2-4 MST), and ratio of DIF items (10%, 20% and 30%)? 

2. METHOD 

Within the scope of the research, it is aimed to examine the effect of the inclusion of items that 

have differential item functioning (DIF) in the test on the effectiveness of CAT and MST under 

different conditions. The data used in the research were generated by the simulation method 

and different test designs were compared under different conditions in a controlled manner. The 

related study is a Monte Carlo simulation study in which the data are simulated. Simulation 

data were preferred because it was difficult to meet all the conditions discussed in the study 

simultaneously in real data. 
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2.1. Research Design 

In this study, test performances of three different adaptive test designs (CAT, 1-3-3 MST and 

1-2-4 MST) were compared in case the test consists of DIF items. Those MST designs were 

some of the most popular ones. Two-stage test designs have only one adaptation point which 

may make them open for routing errors more (Yan, et al., 2014; Zenisky et. al, 2010). On the 

other hand, it was stated that more than three stages add little to the accuracy of ability 

estimations and increase the complexity of test designs (Yan et al., 2014). In general, maximum 

four modules in one stage and three stages were thought to be enough (Armstrong et al., 2004; 

Zenisky et al., 2010). The preferred test designs in this study were among the most popular ones 

used in the literature. 

The manipulated factors were test length with four levels and ratio of DIF items in the test with 

three levels. Three different test designs (CAT, MST 1-2-4 and MST 1-3-3) were compared 

under three different DIF item ratio and four different test length conditions. All manipulated 

conditions were fully crossed within each of three test designs, which resulted in 36 conditions 

(Three Test Designs, Four Test Length and Three DIF Item Ratio). For each condition, 30 

replications were performed and the whole simulation processes were performed by using R 

programming language (R Core Team, 2018). Detailed information on simulation processes is 

given as follows: 

2.2. Data Generation 

Five thousand examinees were randomly generated based on standard normal distribution and 

the same theta values were used for all test designs. Generated theta values were restricted to 

be generated between -3 and 3 in order to eliminate the effect of outliers. Besides, an item pool 

of 600 items was generated using the three-parameter logistic model. Discrimination, difficulty, 

and guessing parameters were randomly sampled from Uniform (0.5, 2.0), N (0, 1) and Uniform 

(0, 0.25) distributions, respectively. Difficulty parameters were restricted to be in the range of 

[-3, 3]. Descriptive statistics related to item pool are given in Table 1. 

Table 1. Descriptive statistics of item pool. 

 a parameter b parameter c parameters 

N 600 600 600 

Mean 1.268 -0.097 0.125 

Standard Deviation 0.442 1.22 0.074 

Minimum 0.501 -2.967 0.0002 

Maximum 1.999 2.988 0.249 

As can be seen in Table 1, the discrimination values (a parameter) had a minimum value of 

0.501 and a maximum of 1.999 with a mean of 1.268.  The item pool had items with a wide 

range of discrimination. Item difficulties ranged from -2.967 to 2.988 with a mean of -0.097 

indicating that the item pool had items with a wide difficulty range in the specified range of [-

3, 3]. Guessing parameter ranged from 0.0002 to 0.249 with a mean of 0.125. When the test 

information function of that item pool was examined, it was seen that items in the pool gave 

high information especially around the point where the ability level was 0 and covered the [-3, 

3] ability range as intended. 

2.2.1. Generation of DIF items 

Item pool was developed to have 200 items on each difficulty level and 600 items in total. After 

that, 20% of the items on each difficulty level were randomly selected and rendered into DIF 

items. In order to make those items indicate DIF, +1 constant was added to the initial b 
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parameters and that value was considered as the focal group b parameter. For DIF items, the 

difference between b parameters of focal and reference groups was set as +1 (bfocal – 

breference = 1) and those items always worked in favor of the reference group, which means 

that all of them had uniform DIF (U-DIF). As a result, there were 40 U-DIF and 160 Non-DIF 

items in each level and 120 U-DIF and 480 Non-DIF items in total. 

2.3. CAT and MST Simulations 

After generation of item parameters, theta values and formation of DIF items, CAT, and MST 

environments were constructed. For CAT and MST simulations conducted on the same item 

pool and the same theta values, the commonly manipulated variable is the test length (10-20-

30-40) and the rate of DIF items in the test (10% - 20% - 30%). Besides, panel designs (1-2-4 

and 1-3-3) were manipulated within MST simulation. RMSE, bias, and correlation values were 

calculated and averaged across 30 replications and the performance of simulations was 

interpreted based on those values. In order to make better comparisons; maximum item 

exposure rates, IRT model, ability estimation method, and item/module selection method were 

fixed for both CAT and MST. Maximum Fisher Information (MFI) method was used in item 

selection and Expected A Posteriori (EAP) estimation method was used in ability estimation 

for both CAT and MST. MFI method is preferred since it provides the selection of the item that 

provides the maximum information each time. Although this method is quite popular, it has the 

disadvantage that items with high discrimination levels are chosen more because they provide 

more information and choosing those same items over and over leads to item exposure problem 

(Hambleton, Jac ve Pieters, 2000; van der Linden & Pashley, 2010; Wang, 2017); hence, this 

method should be used carefully. Controlling the item exposure can be an effective method to 

prevent this situation. As another method, Hambleton et al. (2000) suggested that the item be 

chosen randomly among items that provide maximum information at the relevant skill level. In 

our study, both of those methods were implemented. The maximum item use rate was fixed as 

0.25 for CAT and four separate parallel panels were created for MST to ensure that the 

maximum item use rate was 0.25. Besides, ‘randomesque’ method was used and instead of 

choosing the most informative item, items were randomly selected from among the most 

informative ones at that ability level. As the ability estimation method, two most common 

methods are maximum likelihood (MLE) and Bayesian methods. However, MLE can be 

problematic since it cannot be estimated for individuals who answer all items correctly or 

incorrectly. This is particularly problematic for the early stages of computer adaptive tests and 

is not recommended when the test length is short. The use of MLE is not recommended until a 

true or false answer is received (Hambleton & Swaminathan, 1991; Wang, 2017). Bayesian 

methods are more consistent for short-length tests. The combination that is generally suggested 

for item selection and ability estimation in adaptive tests is the EAP estimation in ability 

estimation together with the maximum information method in item selection (van der Linden, 

2008; van der Linden & Pashley, 2010). That is why, MFI with EAP combination was preferred 

in this study. 

All simulation processes were carried out with the help of the catR and mstR packages that are 

conjugate of each other. Detailed explanations of simulations are given as follows: 

2.3.1. CAT simulations 

CAT environment was created via catR package and 12 different conditions in total (4 test 

lengths x 3 ratios of items with DIF), including four different test lengths (10-20-30-40) and 

three different ratios of items with the DIF (10 % - 20% - 30%) were examined as specified 

earlier. As a starting rule, the initial ability level was set to 0 and this value was used for each 

condition. According to this rule, the initial ability levels of individuals were accepted as '0' 

(zero) and the first item that the individual would encounter was determined accordingly. 
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2.3.2. MST simulations 

To create MST environment, xxIRT and mstR pckages were used. In MST simulation, 24 

different conditions in total, including four different test lengths, three different ratios of items 

with DIF, and two other test designs (1-2-4 and 1-3-3) were examined. In the 1-3-3 MST design, 

a single module was used in the first stage, while there were three modules each in the second 

and third stages. For that 1-3-3 design, which included 7 modules in total, a single module 

common to all individuals was created at the first stage, and the difficulty level of this module 

was determined as medium. The three modules in the second and third stages had three different 

difficulty levels (easy, medium, and hard). Each individual answered three modules, each one 

from a different stage, in total. Similarly, in the 1-2-4 panel design, individuals responded to a 

total of three modules. Individuals who answered a single module in the first stage were directed 

to one of the two different modules in the second stage according to the ability estimations 

obtained from the first module. After completing this second stage, they were directed to one 

of the four modules in the third stage, considering the abilities estimated at the end of the second 

stage. The number of items in the modules and the number of items required to form a panel 

differed according to test lengths and panel design and are presented in detail in Table 2. 

Table 2. Number of items in modules and panels. 

Panel 

Design 

 Test Length 

 10 20 30 40 

1-3-3 
Module length 3-3-4 6-7-7 10-10-10 13-13-14 

Number of items used in panel 24 48 70 94 

1-2-4 
Module length 3-3-4 6-7-7 10-10-10 13-13-14 

Number of items used in panel 25 48 70 95 

Since the modules in a panel are at different ability levels, the number of items used while 

creating the related panel is more than the test length, e.g, in the 1-3-3 design, in the condition 

that the test length was 40, individuals answered a total of 40 items, 13 each in the first two 

stages, and 14 in the last stage. However, while 13 items were needed in the first stage, 39 and 

42 items were needed in the second and third stages for the modules at three different levels, 

respectively. As a result, a total of 94 items were used. For both panel designs, 10%, 20%, and 

30% of the items in the modules in the second stage were selected among the items with DIF, 

e.g., in the case where the test length was 10, under the condition that the rate of items with DIF 

is 20%, 8 of the items were selected among the items that did not show DIF and 2 of them 

showed DIF. It was ensured that the selected 2 DIF items were included in the modules of the 

second stage. 

Within the scope of the study, four different panels were created, so that the maximum panel, 

module, and item exposure became comparable with the CAT. Four different panels were 

obtained through an open source "mixed integer linear programming solver" (lp_solve 5.5) 

included in the xxIRT package, and it was ensured that the items used in one panel were not 

included in the other panels. “Bottom-up” method was used in the creation of the panels. In this 

method, firstly, four different parallel forms were created for each module. In order to ensure 

that the modules were parallel, information function targets were determined at the module 

level and the modules were structured to meet those targets. The items in the modules were 

chosen to provide maximum information at the specified skill levels. After the construction of 

four parallel forms for each module, those modules were assigned to the panels randomly and 

parallel panels were obtained. Thanks to the parallelism of the constructed modules, these 

modules could be used alternately between the panels (Yan et al., 2014). 
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2.4. Data Analysis 

In the analysis of data, Root Mean Square Error (RMSE), bias, and correlation (ρ) values 

between estimated and true ability parameters were used to evaluate the results obtained from 

CAT and MST. 𝜃𝑗 represents the estimated ability parameter, 𝜃𝑗  represents the true ability 

parameter, and N represents the total number of individuals. RMSE and bias values were 

calculated with the help of the following formulas: 

𝑅𝑀𝑆𝐸 =  √
∑ (�̂�𝑗−𝜃𝑗)2𝑁

𝑗=1

𝑁
            𝐵𝑖𝑎𝑠 =  

∑ |(�̂�𝑗−𝜃𝑗)|𝑁
𝑗=1

𝑁
         (1) 

The correlation value was obtained by the following formula, with the standard error values of 

the estimated (𝜎�̂�𝑗
) and true (𝜎𝜃𝑗 

) ability parameters. 

  (2) 

RMSE, bias, and correlation values were calculated for each of the 30 replications and 

interpretations were made based on the average of those values. Based on the calculated values, 

evaluations were made as to which of the two MST and one CAT application gave higher 

measurement accuracy than the others under different conditions. After those evaluations, 

whether the differences between the test designs (CAT, MST 1-3-3 and MST 1-2-4) reached a 

significant level were examined by ANOVA analysis. Post-Hoc analyses were made for the 

design groups that differed significantly from each other and the results were interpreted. 

3. RESULTS 

In this section, results of CAT and MST simulations are presented in detail. Findings are 

evaluated for each condition under different DIF item ratio. 

3.1. Results of the Condition that the Ratio of DIF Items is 10% 

In this part, ratio of DIF items in the test was fixed at 10% and the performance of three test 

design was examined under different test lengths. RMSE, bias and correlation values are 

presented in Table 3. 

Table 3. RMSE, bias and correlation values of test designs under test length and DIF item ratio. 

  RMSE Bias Correlation 

DIF 

Item 

Ratio 

Test 

Length 
CAT 

MST 

(1-3-3) 

MST 

(1-2-4) 
CAT 

MST 

(1-3-3) 

MST 

(1-2-4) 
CAT 

MST 

(1-3-3) 

MST 

(1-2-4) 

10% 

10 items 0.269 0.382 0.389 0.212 0.299 0.307 0.963 0.924 0.921 

20 items 0.192 0.282 0.306 0.151 0.221 0.240 0.982 0.963 0.953 

30 items 0.164 0.246 0.253 0.130 0.193 0.200 0.987 0.974 0.969 

40 items 0.155 0.236 0.238 0.122 0.184 0.187 0.989 0.977 0.974 

20% 

10 items 0.268 0.408 0.400 0.211 0.318 0.312 0.963 0.913 0.916 

20 items 0.192 0.284 0.320 0.151 0.223 0.252 0.982 0.962 0.949 

30 items 0.164 0.252 0.270 0.130 0.197 0.213 0.987 0.971 0.964 

40 items 0.153 0.242 0.241 0.121 0.190 0.191 0.989 0.975 0.973 

30% 

10 items 0.269 0.448 0.451 0.212 0.348 0.352 0.963 0.894 0.892 

20 items 0.194 0.301 0.303 0.153 0.237 0.238 0.981 0.955 0.954 

30 items 0.166 0.276 0.269 0.131 0.218 0.212 0.987 0.962 0.965 

40 items 0.153 0.246 0.259 0.121 0.194 0.204 0.989 0.970 0.967 
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As indicated in Table 3, RMSE values range from [0.155, 0.269] for CAT design, [0.236, 0.382] 

for MST 1-3-3 design, and [0.238, 0.389] for MST 1-2-4 design. The bias values ranged 

between [0.122 - 0.212] for the CAT design, [0.184-0.299] for the MST 1-3-3 design, and 

[0.187-0.307] for the MST 1-2-4 design. It was seen that CAT application had the lowest and 

MST 1-2-4 application had the highest RMSE and bias values for all test lengths. However, in 

MST 1-3-3 and 1-2-4 designs, those values seemed to be quite close to each other throughout 

all test lengths. In addition, it was observed that as the number of items increased, the bias 

values decreased and the difference between the designs decreased. Finally, when the 

correlation values were examined, it was observed that those values varied between the range 

of [0.963-0.989] for CAT, [0.924-0.977] for the MST 1-3-3 design and [0.921- 0.974] for the 

MST 1-2-4 designs. Looking at the correlation values in Table 3, it was determined that the 

design with the highest correlation value throughout all test lengths was CAT and the design 

with the lowest correlation value was the MST 1-2-4 design. Correlation values increased as 

the number of items increased for all test designs and got closer to each other. 

3.2. Results of the Condition that the Ratio of DIF Items is 20% 

In this part, ratio of DIF items in the test was fixed at 20% and the performance of three test 

design was examined under different test lengths. As indicated in Table 3, RMSE values range 

from [0.153, 0.268] for CAT, [0.242, 0.408] for MST 1-3-3, and [0.241, 0.400] for MST 1-2-4 

design. The lowest RMSE value for all test lengths was obtained in CAT, while the highest 

RMSE value was found in the MST 1-3-3 design for the 10 and 40-item tests, and the MST 1-

2-4 design for the 20 and 30-item tests. When the bias values were examined, it was seen that 

the CAT design had values in the range of [0.121, 0.211], the MST 1-3-3 design was in the 

range of [0.190, 0.318], and the MST 1-2-4 design was in the range of [0.191, 0.312]. As is 

seen in Table 3, the lowest bias values belong to CAT whereas the highest bias is in the MST 

1-3-3 design for 10 items, and in the MST 1-2-4 design for other test lengths. When the test 

designs were compared in terms of correlation, the design with the highest correlation across 

all test lengths was CAT [0.963, 0.989], the lowest correlation was in the MST 1-3-3 design for 

the 10-item test, and the MST 1-2-4 design for the other test lengths. As the number of items 

increased for all designs, the correlation values increased and got closer to each other. 

3.3. Results of the Condition that the Ratio of DIF Items is 30% 

Finally, values were examined for the condition that DIF item ratio was fixed at 30%. As 

indicated in Table 3, considering the RMSE values, the lowest RMSE value for all test lengths 

was obtained in the CAT design. The RMSE values for the MST 1-3-3 and 1-2-4 designs appear 

to be quite close to each other for all test lengths. When the bias values were examined, it was 

observed that the lowest bias values were calculated in the CAT design at all test lengths and 

MST designs gave very close results to each other. When the test designs were compared in 

terms of correlation values, the design with the highest correlation value across all test lengths 

is the CAT design [0.963-0.989] (Table 3). As the test length increased, the bias value for all 

designs decreased and correlation values increased as the number of items increased for all 

designs. 

3.4. ANOVA Analysis 

After the interpretation of RMSE, bias and correlation values, separate one-way ANOVA tests 

were conducted in order to observe whether those values differ significantly between test 

designs. Three separate one-way ANOVA analyses were performed for each DIF item ratio 

(10%, 20% and 30%), in which the RMSE, bias, and correlation values were taken as the 

dependent variable and the test design as the independent variable, and the findings were 

analyzed separately for each test length. While the assumption of normal distribution was 

provided in the analyses, the assumption of homogeneity of variances was violated in some 
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cases. In cases where that assumption was violated, the Welch test was used and in other cases 

the data in the ANOVA table (Table 3) were interpreted. ANOVA results are given in detail for 

each DIF item ratio condition as follows: 

3.4.1. Ratio of DIF items is 10% 

As a result of ANOVA analysis, it was seen that RMSE, bias, and correlation values 

significantly differed between test designs at each test length (p<.05). According to the results 

of the Post-Hoc comparison, the difference in RMSE, bias, and correlation values reached a 

significant level among all designs at all test lengths. In short, the lowest values for RMSE and 

bias were obtained in CAT design at all test lengths and those values differed significantly from 

the values of the MST designs. The highest RMSE and bias values were observed in the MST 

1-2-4 design at all test lengths and differed significantly from others. For the correlation, the 

highest values were obtained in CAT and the lowest values were obtained in the MST 1-2-4 

design along all test lengths. The difference in correlation values between the designs was 

significant over all test lengths. When all the results were considered together, it was concluded 

that the CAT design that had the lowest RMSE, bias, and the highest correlation values provided 

the highest measurement precision. On the other hand, the MST 1-2-4 design, which had the 

highest RMSE and bias and the lowest correlation values, was the design with the lowest 

measurement precision. 

3.4.2. Ratio of DIF items is 20% 

As a result of ANOVA analyses made for the condition that the DIF item ratio was 20%, RMSE, 

bias, and correlation value differences among designs were found to be significant for all cases. 

Therefore, it was concluded that CAT was the test that provided the highest measurement 

accuracy among the three designs. The design with the highest RMSE was MST 1-3-3 for the 

10 and 40-item tests, and MST 1-2-4 for the 20 and 30-item tests. The difference between the 

MST designs reached a significant level in the 10, 20, and 30-item tests. The highest values of 

the bias were in the MST 1-3-3 design for 10 items, and in the MST 1-2-4 design for the other 

test lengths. The lowest correlation was obtained from the MST 1-3-3 design in the 10-item test 

and the MST 1-2-4 design in the other test lengths. When all the results were considered 

together, it was concluded that the CAT design with the lowest RMSE and bias and the highest 

correlation values provided the highest measurement precision. Besides, the lowest 

measurement precision was obtained in the MST 1-3-3 design in the 10-item test and in the 

MST 1-2-4 design for other test lengths. 

3.4.3. Ratio of DIF items is 30% 

It was seen that RMSE, bias, and correlation values significantly differed between test designs 

at each test length (p<.05) as in the previous DIF item ratios. When the Post-Hoc comparison 

results were analyzed in terms of the RMSE variable, there was a significant difference between 

all designs for the 10, 30, and 40-item tests; however, in the 20-item test, it was seen that the 

mean difference of .001 between the MST 1-3-3 and MST 1-2-4 designs could not reach a 

significant level. When the mean differences of the bias values of the designs were examined, 

it was concluded that all three designs differed significantly from each other for all test lengths. 

Finally, for the correlation values, Post-Hoc results were examined and it was concluded that 

there was a significant difference between all designs for all test lengths. Therefore, the highest 

measurement accuracy was obtained for the CAT design as this measurement precision was 

maintained over all test lengths and it was significantly higher than the precision of other 

designs. It can be seen that the values of the MST designs were very close to each other. The 

lowest measurement precision for the 30-item test was observed in the MST 1-3-3 design, and 

for the other conditions it was in the MST 1-2-4 design. 
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Finally, in order to descriptively see the effects of the increase in the rate of items with DIF in 

the test on RMSE, bias and correlation values, graphs were formed and presented in Figure 1. 

Looking at the RMSE graph, RMSE values for CAT were quite close to each other at different 

DIF ratios; however, it was observed that an increase in the DIF ratio increased the RMSE value 

in the MST designs, especially in the 10-item test where the test length was the lowest. For 

MST designs, the effect of the increase in DIF ratio on the RMSE decreased as the number of 

items increased. Similarly, the bias values were close to each other at different DMF ratios for 

CAT. In the MST designs, the increase in the DIF ratio in the 10-item test affected the bias 

values considerably, and this effect decreased as the test length increased. Looking at the 

correlation graph in Figure 1c, similar comments can be made to the comments made for RMSE 

and bias. It was found that the correlation values decreased as the DIF ratio increased for the 

CAT designs. 

It was determined that the increase in DIF item ratio indicated the most serious effect for the 

10-item test. For CAT, the increase in the DIF item ratio did not have a great effect. Those 

findings showed that CAT was the least affected test design by the increase in the ratio of items 

with DIF in the test. Two MST designs generally indicated parallel findings which were 

especially affected by the change in DIF item ratio in the 10-item test, and this effect decreased 

as the test length increased. 

Figure 1. Change of RMSE, bias, and correlation values with the increase of DIF item ratio. 
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Figure 1a. RMSE values. Figure 1b. Bias values.  

Figure 1c. Correlation values.  
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4. DISCUSSION and CONCLUSION 

Within the scope of this study, it was aimed to examine the effect of the inclusion of items that 

have differential item functioning (DIF) in the test on the effectiveness of computer adaptive 

test (CAT) and multi-stage test (MST) under different conditions. For this purpose, data were 

generated by the simulation method and the performances of different test designs (CAT, MST 

1-3-3 and MST 1-2-4) were compared under different test lengths and DIF-item ratios. 

In order to evaluate test performances, RMSE, bias, and correlation values were considered 

together. When the obtained results were analyzed in terms of RMSE and bias, it was seen that 

the CAT design had the lowest values for all conditions. When the MST 1-3-3 and 1-2-4 designs 

were compared, a general interpretation couldn’t be made. While the RMSE value of the 1-2-4 

design was significantly higher than that of the 1-3-3 design throughout all test lengths in the 

condition that the DIF rate was 10%. When it was 20%, the RMSE of MST 1-3-3 was higher 

in the 10 and 40-item test length, and it was higher for the 30-item test when the ratio was 30%. 

Similar to the RMSE, in the condition that the DIF item rate was 10%, while the bias value of 

the 1-2-4 design was significantly higher than that of the 1-3-3 design throughout all test 

lengths; the 1-3-3 design gave higher bias values in the 10 and 40-item test when it was 20%, 

and in the 30-item test when it was 30%. Finally, the findings obtained from the correlation 

values indicate that CAT had the highest correlation value in all conditions. The lowest 

correlation values were obtained for 1-3-3 design in 20% DIF-10 items, 30% DIF-30 item 

conditions, and 1-2-4 design in all other conditions. 

In addition, when we looked at how the increase in the DIF ratio affected the performance of 

the test designs, it was observed that the CAT gave similar results in terms of RMSE, bias and 

correlation, regardless of the ratio of items with DIF (Figure 1). However, the same was not the 

case for MST designs. The increase in the DIF ratio in the MST designs generally led to an 

increase in the RMSE and bias values and a decrease in the correlation values. In particular, the 

10-item tests were more affected by the increase in the DIF item ratio than that in the CAT, and 

this effect decreased as the number of items increased. 

When the information given above is interpreted, it can be concluded that CAT provided better 

measurement accuracy compared to the other two MST designs under all test length and DIF 

item ratio conditions. In addition, the design that was least affected by the increase in the ratio 

of items with DIF was CAT. Therefore, it can be interpreted that CAT could reduce the effect 

of DIF more than other designs. When the two MST designs were compared, it was seen that 

the 1-3-3 design offered higher measurement accuracy in most conditions. However, those 

findings were not sufficient to say that the 1-3-3 design outperformed the 1-2-4 design. 

The main finding from this study is that the CAT was the design that minimized the effect of 

DIF throughout all test lengths. The finding that CAT can regulate the effect of DIF is in line 

with the findings obtained from the study of Piromsombat (2014). Piromsombat examined the 

effect of DIF items in the test on ability estimation on CAT and revealed that CAT can modulate 

the effect of DIF if it comes early in the test, especially when the DIF level is moderate. In other 

cases, CAT reduced the effect of DIF. Besides, that the number of adaptation points in CAT is 

higher than that in MST can result in higher CAT measurement accuracy (Sarı, 2016; Thai, 

2015). For example, while the 1-3-3 panel design has only two adaptation points, regardless of 

the number of items, there are 19 adaptation points in a 20-item CAT.  This finding may be the 

result of this fact. Since CAT has more adaptation points than MST desings have, CAT may 

control the DIF effect in a better way. Another finding obtained from this specific study is that 

the effect of increase in DIF item ratio on CAT performance is lower compared to the effect on 

MST designs. MST designs were highly affected by the increase in DIF item rate, especially 

when the number of items was 10, which is also thought to be relevant with the number of 

adaptation points. As stated before, CAT has more adaptation points than MST has, regulating 
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the DIF effect better. Therefore, it is expected that CAT offers better measurement accuracy 

compared to MST designs and is less affected by the DIF item ratio in the presence of an item 

with DIF in the test. Since no other studies examining the effect of DIF items on adaptive tests 

have been found in the literature, the discussion on this finding has been limited. 

Apart from the DIF effect, studies that CAT and MST designs were compared in the literature 

were also examined. Kim and Plake (1993) examined measurement precision of CAT and MST 

in terms of first stage module length (10, 15 and 20 items), total test length (40, 45 and 50 

items), number of second stage modules (6, 7, 8 modules), and item difficulty distribution in 

the first stage module. It has been revealed that CAT gives better results in terms of 

measurement accuracy than MST does. In the study conducted by Patsula (1999), the accuracy 

of the ability estimations obtained from different CAT designs, paper-and-pencil tests, and 

MST designs (number of stages, number of modules in each stage, and number of items in each 

module) were compared and it was determined that CAT produced the most accurate ability 

estimation and that the increase in the number of modules in each stage affected the 

measurement precision and effectiveness. In another study, Sarı (2016) investigated the 

precision of the results obtained from CAT and MST, while the number of content areas varied 

in tests of different lengths. The main finding of the study was that CAT gave better results than 

the other two MST designs for all conditions and the two MST designs offered comparable 

results. In addition, Tay (2015) stated that CAT has more adaptation points than those of MST, 

therefore they are more effective designs. The common result obtained from the studies in the 

literature is that CAT gives better results than MST does in different studies and under different 

conditions. This inference based on those studies shows parallelism with the finding that the 

CAT performance obtained as a result of the study is higher than the MST performance. 

The last finding to state, not related with DIF again, was that when available findings were 

examined, it was seen that the RMSE and bias values decreased and the correlation values 

increased as the test length increased for all designs. Therefore, it can be concluded that 

increasing the test length increases the measurement accuracy. Similar to this finding, Sarı 

(2016) also revealed in his study that increasing the test length resulted in a decrease in the 

RMSE and bias value and an increase in correlation for both CAT and MST. Another finding 

obtained as a result of the research was that regarding the comparison of MST designs among 

themselves, the 1-3-3 design offered high measurement accuracy in a larger number of 

conditions, but the available findings were not sufficient to say that the 1-3-3 design 

outperforms the 1-2-4 design. There is no study in the literature comparing those two designs. 

Findings from different studies are needed to make a discussion about the relevant finding. 

Based upon the results of our particular study, some recommendations for practitioners are 

stated as follows. Firstly, it has been seen that CAT gives better results compared to MST for 

situations where items with DIF are present in the test. In cases with similar conditions to this 

study, the use of CAT may be recommended. Secondly, MST designs were more affected by 

items with DIF than those with CAT. Both MST designs used could not regulate the effect of 

DMF, and the measurement accuracy was more negatively affected compared to that of CAT. 

If MST is to be used, DIF analyses must be performed. Lastly, especially when the test is 10-

items length, the increase in the DIF rate negatively affects the measurement accuracy of the 

MST. In those cases, the use of MST should not be preferred or should be used very carefully. 

When RMSE, bias, and correlation values were carefully examined, it can be said that values 

were getting closer with the increment of test length and they were very close especially after 

30 items for all designs. Therefore, a test with at least 30 items can be recommended to use in 

cases where the presence of DIF is suspected. Those findings were thought to make a significant 

contribution to the literature since there were no studies found in the literature focusing on 

comparing CAT and MST approaches in case of the presence of DIF items in the test. 
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4.1. Further Research 

The data set used in the research is limited to simulation data and the item pool used in the 

study is limited to the item parameters determined by the researcher. It can be recommended to 

work with real data set in future research. An item pool can also be created with different item 

parameter distributions and values and the study can be repeated. Besides, only dichotomously 

scored (1-0) items were taken into account within the scope of the study. Similar studies can be 

done with polytomously scored items. On the other hand, items were produced to show only 

uniform DIF when generating items with DIF. Similar studies can be done by adding items 

indicating non-uniform DIF. The study can be replicated by changing the effect size of the 

generated DIF items. In addition, since only fixed length was used as test termination rule in 

this study, the research can be repeated by using different test termination rules. Another 

limitation of the study is that only two designs were used for the MST. Therefore, the study can 

be repeated with different MST designs. 
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