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Abstract

In the paper, the author discovers the best constants α1, α2, α3, β1, β2 and β3 for the
double inequalities
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to be valid for all a, b > 0 with a ̸= b and n = 1, 2, · · · , where

C ≡ C(a, b) = a2 + b2

a + b
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are respectively the contraharmonic, centroidal, arithmetic, harmonic and Toader means
of two positive numbers a and b, (a, n) = a(a + 1)(a + 2)(a + 3) · · · (a + n − 1) denotes the
shifted factorial function. As an application of the above inequalities, the author also find
a new bounds for the complete elliptic integral of the second kind.
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1. Introduction
In [19], Toader introduced a mean

T (a, b) = 2
π

∫ π/2

0

√
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∫ π/2

0

√
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for r ∈ [0, 1] is the complete elliptic integral of the second kind. The quantities

H ≡ H(a, b) = 2ab

a + b
, A ≡ A(a, b) = a + b

2
, C ≡ C(a, b) = 2(a2 + ab + b2)

3(a + b)
,

S(a, b) =

√
a2 + b2

2
, C ≡ C(a, b) = a2 + b2

a + b

are called in the literature the harmonic, arithmetic, centroidal, quadratic and contrahar-
monic means of two positive real numbers a and b with a ̸= b. For p ∈ R and a, b > 0 with
a ̸= b, the p-th power mean Mp(a, b) is defined by

Mp(a, b) =


(

ap + ap

2

)1/p

, p ̸= 0,
√

ab , p = 0.

(1.1)

It is well known that

H(a, b) = M−1(a, b) < A(a, b) = M1(a, b) < C(a, b) < S(a, b) = M2(a, b) < C(a, b)

for all a, b > 0 with a ̸= b.
There are many bounds for the Toader mean in terms of various elementary means, see

for example, [6,7,9–15,17,22–28], and recent papers [16,29–32]. In particular, we mention
here several interesting results.

In [20], Vuorinen conjectured that

M3/2(a, b) < T (a, b) (1.2)

for all a, b > 0 with a ̸= b. This conjecture was verified by Qiu and Shen [17] and by
Barnard, Pearce, and Richards [3].

In [1], Alzer and Qiu presented that

T (a, b) < M(ln 2)/ ln(π/2)(a, b) (1.3)

for all a, b > 0 with a ̸= b, which gives a best possible upper bound for Toader mean in
terms of the power mean.

In [8], the authors demonstrated that the double inequality

αS(a, b) + (1 − α)A(a, b) < T (a, b) < βS(a, b) + (1 − β)A(a, b) (1.4)

holds for all a, b > 0 with a ̸= b if and only if α ≤ 1
2 and β ≥ 4−π

(
√

2 −1)π .
In [18], the authors proved that the double inequalities

α1C(a, b) + (1 − α1)A(a, b) < T (a, b) < β1C(a, b) + (1 − β1)A(a, b) (1.5)

hold for all a, b > 0 with a ̸= b if and only if α1 ≤ 1/4, β1 ≥ 4/π − 1.
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In [11], the authors proved that the double inequalities
α1C(a, b) + (1 − α1)A(a, b) < T (a, b) < β1C(a, b) + (1 − β1)A(a, b) (1.6)

hold for all a, b > 0 with a ̸= b if and only if α1 ≤ 3/4, β1 ≥ 12/π − 3.
In [12] it was proved that the double inequality

α1T (a, b) + (1 − α1)H(a, b) < A(a, b) < β1T (a, b) + (1 − β1)H(a, b) (1.7)

holds for all a, b > 0 with a ̸= b if and only if α1 ≤ π
4 and β1 ≥ 4

5 .
The main aim of this paper is to give some improvements of (1.5), (1.6) and (1.7).

Theorem 1.1. The double inequality
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holds for all a, b > 0 with a ̸= b if and only if
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holds for all a, b > 0 with a ̸= b if and only if
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Theorem 1.3. The double inequality
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holds for all a, b > 0 with a ̸= b if and only if
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2. Basic knowledge and lemmas
In order to establish our main results we need some basic knowledge and lemmas, which

we present in this section.
For real numbers a, b and c with c ̸= 0, −1, −2, ..., the Gaussian hypergeometric function

is defined by

F (a, b; c; x) =2 F1(a, b; c; x) =
∞∑

n=0

(a, n)(b, n)
(c, n)

xn

n!
, |x| < 1. (2.1)
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Here, (a, 0) = 1 for a ̸= 0 and (a, b) denotes the shifted factorial function

(a, n) = a(a + 1)(a + 2)(a + 3) · · · (a + n − 1)

for n = 1, 2 . . ..
For 0 < r < 1, denote r′ =

√
1 − r2 . It is known that Legendre’s complete elliptic

integrals of the first and second kind are defined respectively by
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∫ π/2

0
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See [4, 5]. For 0 < r < 1, the following formulas were presented in [2, Appendix E,
pp. 474–475]:

dK
dr

= E − (r′)2K

r(r′)2 ,
dE
dr

= E − K

r
,

d(E − (r′)2K)
dr

= rK,

d(K − E)
dr

= rE

(r′)2 , E

( 2
√

r

1 + r

)
= 2E − (r′)2K

1 + r
.

Lemma 2.1 ([2, pp. 70, Exercises,13(a)]). f(r) = 2E(r) − r′2K(r) is increasing and
log-convex from (0, 1) onto (π/2, 2).

Lemma 2.2. The function
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2
π
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)2
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Proof. Making use of series expansion we have
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it follows from (2.3) that the function Fn(r) can be rewritten as

Fn(r) =
∞∑

k=n

(1
2 , k)2

4((k + 1)!)2 r2(k−n) (2.4)

So the function Fn(x) is strictly increasing on (0, 1). Moreover, it is easy to obtain λn =

limr→0+ Fn(r) = ( 1
2 ,n)2

4((n+1)!)2 and by Lemma 2.1, one can get µn = limr→1− Fn(r) = 16−5π
4π −∑n−1

k=1
( 1

2 ,k)2

4((k+1)!)2 . the proof of Lemma 2.2 is complete. □

3. Proofs of main results
Now we are in a position to prove our main results.

Proof of Theorem 1.1. Since A(a, b), C(a, b) and T (a, b) are symmetric and homoge-
neous of degree 1, without loss of generality, we assume that a > b > 0. Let r = a−b

a+b ∈
(0, 1). Then

T (a, b) = 2
π

A(a, b)[2E(r) − (1 − r2)K(r)], (3.1)

C(a, b) = A(a, b)(1 + r2). (3.2)

we clearly see that inequality (1.8) is equivalent to
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π
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(
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( 1

2 ,k)2
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r2n+2

= Fn(r) < β1. (3.3)

Therefore, Theorem 1.1 follows easily from (3.3) and Lemma 2.1. □

Proof of Theorem 1.2. Since A(a, b), C(a, b) and T (a, b) are symmetric and homoge-
neous of degree 1, without loss of generality, we assume that a > b > 0. Let r = a−b

a+b ∈
(0, 1). Then

C(a, b) = A(a, b)(1 + 1
3

r2). (3.4)
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we clearly see that inequality (1.8) is equivalent to

α2 <
T (a, b) − 3

4C(a, b) − 1
4A(a, b) − A(a, b)

∑n−1
k=1

( 1
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(
a−b
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)2k+2
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(
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)2n+2

=
2
π

(
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)
−
(
1 + 1

4r2
)

−
∑n−1

k=1
( 1

2 ,k)2

4((k+1)!)2 r2k+2

r2n+2

= Fn(r) < β2. (3.5)

Therefore, Theorem 1.2 follows easily from (3.5) and Lemma 2.2. □
Proof of Theorem 1.3. Since A(a, b), H(a, b) and T (a, b) are symmetric and homoge-
neous of degree 1, without loss of generality, we assume that a > b > 0. Let r = a−b

a+b ∈
(0, 1). Then

H(a, b) = A(a, b)(1 − r2). (3.6)

we clearly see that inequality (1.10) is equivalent to
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4
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∑n−1
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( 1

2 ,k)2
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(
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A(a, b)
(

a−b
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= 4
5

2
π

(
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)
−
(
1 + 1
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)
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( 1
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= 4
5

Fn(r) < β3. (3.7)

Therefore, Theorem 1.3 follows easily from (3.7) and Lemma 2.2. □

4. New bounds for the complete elliptic integral of the second kind
By the virtue of Theorem 1.1, new lower and upper bounds for the complete elliptic

integral E(r) of the second kind are given as follows.

Theorem 4.1. For r ∈ (0, 1) and r′ =
√

1 − r2 , we have

π

2

[
α

1 + r′

2

(1 − r′

1 + r′

)2n+2
+ 1

4
1 + r′2

1 + r′ + 3(1 + r′)
8

+ 1 + r′

2

n−1∑
k=1

(1
2 , k)2

4((k + 1)!)2

(1 − r′

1 + r′

)2k+2]
< E(r)

<
π

2

[
β

1 + r′

2

(1 − r′

1 + r′

)2n+2
+ 1

4
1 + r′2

1 + r′ + 3(1 + r′)
8

+ 1 + r′

2

n−1∑
k=1

(1
2 , k)2

4((k + 1)!)2

(1 − r′

1 + r′

)2k+2]
. (4.1)

where

α =

(
1
2 , n

)2

4((n + 1)!)2 and β = 16 − 5π

4π
−

n−1∑
k=1

(1
2 , k)2

4((k + 1)!)2 .

Let n = 1 and n = 2 in (4.1), one get

Corollary 4.2. For r ∈ (0, 1) and r′ =
√

1 − r2 , we have

π

2

[(9r′2 + 14r′ + 9)2

128(1 + r′)3

]
< E(r) <

π

2

[16 − 5π

4π

1 + r′

2

(1 − r′

1 + r′

)4
+ 5r′2 + 6r′ + 5

8(1 + r′)

]
. (4.2)
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Corollary 4.3. For r ∈ (0, 1) and r′ =
√

1 − r2 , we have

π

2

[1 + r′

512

(1 − r′

1 + r′

)6
+ (9r′2 + 14r′ + 9)2

128(1 + r′)3

]
< E(r)

<
π

2

[256 − 81π

64π

1 + r′

2

(1 − r′

1 + r′

)6
+ (9r′2 + 14r′ + 9)2

128(1 + r′)3

]
. (4.3)

Remark 4.4. In [31, Corollary 3.4], it was presented that

π

2

(
1 + r′7/4

1 + r′−1/4

)1/2

< E(r) <
π

2

(
1 + r′13/12

1 + r′5/12

)3/2

(4.4)

for all r ∈ (0, 1).
The lower bound in (4.2) for E(r) is better taht the lower bound in (4.4). Indeed, Let

x = (r′)1/4 ∈ (0, 1) [
(9r′2 + 14r′ + 9)2

128(1 + r′)3

]2

−

( 1 + r′7/4

1 + r′−1/4

)1/2
2

=
[

(9x8 + 14x4 + 9)2

128(1 + x4)3

]2

−

( 1 + x7

1 + x−1

)1/2
2

= (1 + x2)(1 − x)4

16384(1 + x4)6 P (x) > 0,

for x ∈ (0, 1), where
P (x) = 6561x26 + 9860x25 + 9897x24 + 6672x23 + 47570x22 + 65288x21 + 59826x20

+ 31184x19 + 131863x18 + 170300x17 + 146495x16 + 60448x15 + 187612x14

+ 230000x13 + 187612x12 + 60448x11 + 146495x10 + 170300x9 + 131863x8

+ 31184x7 + 59826x6 + 65288x5 + 47570x4 + 6672x3 + 9897x2 + 9860x + 6561.

Remark 4.5. In [16, corollary 3.5], it was established that

π

2

√
6(1 + r′2) + 4r′

4
< E(r) <

√
(1 + r′2) + (π2

2
− 4)r′ (4.5)

The following equivalence relations show that the lower bound in (4.2) for E(r) is better
than the lower bound in (4.5):[

(9x2 + 14x + 9)2

128(1 + x)3

]2

− (
√

6(1 + x2) + 4x

4
)2

= (417x4 + 1532x3 + 2246x2 + 1532x + 417)(1 − x)4

16384(1 + x)6 > 0,

for x ∈ (0, 1).

Remark 4.6. In [21, theorem 4.4], the following double inequality are proved.
For all r ∈ (0, 1), we have

π

2

√
α

[7r′4 + 18r′2 + 7
16(1 + r′2)

]
+ (1 − α)

[3r′2 + 2r′ + 3
8

]

< E(r) <
π

2

√
β

[7r′4 + 18r′2 + 7
16(1 + r′2)

]
+ (1 − β)

[3r′2 + 2r′ + 3
8

]
(4.6)

with the best possible constants α = 3/16, β = 4(16/π2 − 3/2).
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The following equivalence relations show that the lower bound in (4.2) for E(r) is better
than the lower bound in (4.6)[

1
128

(9 + 14x + 9x2)2

(1 + x)3

]2

−
[

3
16

(
7x4 + 18x2 + 7

16(1 + x2)

)
+ 13

16

(
(3x2 + 2x + 3)

8

)]

= (225x4 + 830x3 + 1218x2 + 830x + 225)(1 − x)6

16384(1 + x)6(1 + x2)
> 0,

for x ∈ (0, 1).

Remark 4.7. The following double inequality was derived by Zhang et al. in [30, Corollary
3.1] : Let l(r) = (1 + r)/2 and u(r) = (3 + r2)/4, then

π

2

[
u(r′)

4
+ 3l(r′)

4

]
< E(r) <

π

2
[
σu(r′) + (1 − σ)l(r′)

]
(4.7)

holds for all r ∈ (0, 1), where σ = 2(4/π − 1).
The following equivalence relations show that the lower bound in (4.2) for E(r) is better

than the lower bound in (4.7)
1

128
(9 + 14x + 9x2)2

(1 + x)3 −
(

3(1 + x2)
16

+ 3(1 + x)
8

)

= (8x2 + 15x + 9)(1 − x)3

128(1 + x)3 > 0,

for x ∈ (0, 1).
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