

RESEARCH ARTICLE

Sharp inequalities for Toader mean in terms of other bivariate means

Wei-Dong Jiang

Department of Information Engineering, Weihai Vocational college, Weihai City, Shandong Province, 264210, China

Abstract

In the paper, the author discovers the best constants α_1 , α_2 , α_3 , β_1 , β_2 and β_3 for the double inequalities

$$
\alpha_1 A \left(\frac{a-b}{a+b}\right)^{2n+2} < T(a,b) - \frac{1}{4}C - \frac{3}{4}A - A \sum_{k=1}^{n-1} \frac{\left(\frac{1}{2},k\right)^2}{4\left((k+1)!\right)^2} \left(\frac{a-b}{a+b}\right)^{2k+2} < \beta_1 A \left(\frac{a-b}{a+b}\right)^{2n+2}
$$
\n
$$
\alpha_2 A \left(\frac{a-b}{a+b}\right)^{2n+2} < T(a,b) - \frac{3}{4}\overline{C} - \frac{1}{4}A - A \sum_{k=1}^{n-1} \frac{\left(\frac{1}{2},k\right)^2}{4\left((k+1)!\right)^2} \left(\frac{a-b}{a+b}\right)^{2k+2} < \beta_2 A \left(\frac{a-b}{a+b}\right)^{2n+2}
$$

and

$$
\alpha_3 A \left(\frac{a-b}{a+b}\right)^{2n+2} < \frac{4}{5}T(a,b)+\frac{1}{5}H-A-A\sum_{k=1}^{n-1} \frac{(\frac{1}{2},k)^2}{5((k+1)!)^2} \left(\frac{a-b}{a+b}\right)^{2k+2} < \beta_3 A \left(\frac{a-b}{a+b}\right)^{2n+2}
$$

to be valid for all $a, b > 0$ with $a \neq b$ and $n = 1, 2, \dots$, where

$$
C \equiv C(a, b) = \frac{a^2 + b^2}{a + b}, \quad \overline{C} \equiv \overline{C}(a, b) = \frac{2(a^2 + ab + b^2)}{3(a + b)}, \quad A \equiv A(a, b) = \frac{a + b}{2},
$$

$$
H \equiv H(a, b) = \frac{2ab}{a + b}, \quad T(a, b) = \frac{2}{\pi} \int_0^{\pi/2} \sqrt{a^2 \cos^2 \theta + b^2 \sin^2 \theta} \, d\theta
$$

are respectively the contraharmonic, centroidal, arithmetic, harmonic and Toader means of two positive numbers *a* and *b*, $(a, n) = a(a+1)(a+2)(a+3)\cdots(a+n-1)$ denotes the shifted factorial function. As an application of the above inequalities, the author also find a new bounds for the complete elliptic integral of the second kind.

Mathematics Subject Classification (2020). Primary 33E05, Secondary 26E60

Keywords. Toader mean, complete elliptic integrals, arithmetic mean, centroidal mean, contraharmonic mean

Email address: jackjwd@163.com

Received: 20.04.2022; Accepted: 28.10.2022

1. Introduction

In [19], Toader introduced a mean

$$
T(a,b) = \frac{2}{\pi} \int_0^{\pi/2} \sqrt{a^2 \cos^2 \theta + b^2 \sin^2 \theta} \, d\theta = \begin{cases} \frac{2a}{\pi} \mathcal{E} \left(\sqrt{1 - \left(\frac{b}{a}\right)^2} \right), & a > b, \\ \frac{2b}{\pi} \mathcal{E} \left(\sqrt{1 - \left(\frac{b}{a}\right)^2} \right), & a < b, \\ a, & a = b, \end{cases}
$$

where

$$
\mathcal{E} = \mathcal{E}(r) = \int_0^{\pi/2} \sqrt{1 - r^2 \sin^2 \theta} \, d\theta
$$

for $r \in [0, 1]$ is the complete elliptic integral of the second kind. The quantities

$$
H \equiv H(a, b) = \frac{2ab}{a+b}, \quad A \equiv A(a, b) = \frac{a+b}{2}, \quad \overline{C} \equiv \overline{C}(a, b) = \frac{2(a^2 + ab + b^2)}{3(a+b)},
$$

$$
S(a, b) = \sqrt{\frac{a^2 + b^2}{2}}, \quad C \equiv C(a, b) = \frac{a^2 + b^2}{a+b}
$$

are called in the literature the harmonic, arithmetic, centroidal, quadratic and contraharmonic means of two positive real numbers *a* and *b* with $a \neq b$. For $p \in \mathbb{R}$ and $a, b > 0$ with $a \neq b$, the *p*-th power mean $M_p(a, b)$ is defined by

$$
M_p(a,b) = \begin{cases} \left(\frac{a^p + a^p}{2}\right)^{1/p}, & p \neq 0, \\ \sqrt{ab}, & p = 0. \end{cases}
$$
\n
$$
(1.1)
$$

It is well known that

$$
H(a,b) = M_{-1}(a,b) < A(a,b) = M_1(a,b) < \overline{C}(a,b) < S(a,b) = M_2(a,b) < C(a,b)
$$

for all $a, b > 0$ with $a \neq b$.

There are many bounds for the Toader mean in terms of various elementary means, see for example, $[6,7,9-15,17,22-28]$, and recent papers $[16,29-32]$. In particular, we mention here several interesting results.

In [20], Vuorinen conjectured that

$$
M_{3/2}(a,b) < T(a,b) \tag{1.2}
$$

for all $a, b > 0$ with $a \neq b$. This conjecture was verified by Qiu and Shen [17] and by Barna[rd,](#page-8-2) Pearce, and Richards [3].

In [1], Alzer and Qiu presented that

$$
T(a,b) < M_{(\ln 2)/\ln(\pi/2)}(a,b) \tag{1.3}
$$

for all $a, b > 0$ with $a \neq b$, whi[ch](#page-7-0) gives a best possible upper bound for Toader mean in terms [o](#page-7-1)f the power mean.

In [8], the authors demonstrated that the double inequality

$$
\alpha S(a,b) + (1 - \alpha)A(a,b) < T(a,b) < \beta S(a,b) + (1 - \beta)A(a,b) \tag{1.4}
$$

holds for all $a, b > 0$ with $a \neq b$ if and only if $\alpha \leq \frac{1}{2}$ $\frac{1}{2}$ and $\beta \geq \frac{4-\pi}{(\sqrt{2}-1)\pi}$.

In [[1](#page-7-2)8], the authors proved that the double inequalities

$$
\alpha_1 C(a, b) + (1 - \alpha_1) A(a, b) < T(a, b) < \beta_1 C(a, b) + (1 - \beta_1) A(a, b) \tag{1.5}
$$

hold for all $a, b > 0$ with $a \neq b$ if and only if $\alpha_1 \leq 1/4, \beta_1 \geq 4/\pi - 1$.

In [11], the authors proved that the double inequalities

$$
\alpha_1 \overline{C}(a,b) + (1 - \alpha_1)A(a,b) < T(a,b) < \beta_1 \overline{C}(a,b) + (1 - \beta_1)A(a,b) \tag{1.6}
$$

hold for all $a, b > 0$ with $a \neq b$ if and only if $\alpha_1 \leq 3/4, \beta_1 \geq 12/\pi - 3$. In [[12\]](#page-7-3) it was proved that the double inequality

$$
\alpha_1 T(a,b) + (1 - \alpha_1)H(a,b) < A(a,b) < \beta_1 T(a,b) + (1 - \beta_1)H(a,b) \tag{1.7}
$$

holds for all $a, b > 0$ with $a \neq b$ if and only if $\alpha_1 \leq \frac{\pi}{4}$ $\frac{\pi}{4}$ and $\beta_1 \geq \frac{4}{5}$ $\frac{4}{5}$.

Th[e m](#page-8-3)ain aim of this paper is to give some improvements of (1.5), (1.6) and (1.7).

Theorem 1.1. *The double inequality*

$$
\alpha_1 A \left(\frac{a-b}{a+b}\right)^{2n+2} < T(a,b) - \frac{1}{4}C - \frac{3}{4}A - A \sum_{k=1}^{n-1} \frac{\left(\frac{1}{2},k\right)^2}{4\left(\left(k+1\right)!\right)^2} \left(\frac{a-b}{a+b}\right)^{2k+2} \\
&< \beta_1 A \left(\frac{a-b}{a+b}\right)^{2n+2} \tag{1.8}
$$

holds for all $a, b > 0$ *with* $a \neq b$ *if and only if*

$$
\alpha_1 \le \frac{\left(\frac{1}{2}, n\right)^2}{4((n+1)!)^2} \quad \text{and} \quad \beta_1 \ge \frac{16 - 5\pi}{4\pi} - \sum_{k=1}^{n-1} \frac{\left(\frac{1}{2}, k\right)^2}{4((k+1)!)^2}.
$$

Theorem 1.2. *The double inequality*

$$
\alpha_2 A \left(\frac{a-b}{a+b}\right)^{2n+2} < T(a,b) - \frac{3}{4}\overline{C} - \frac{1}{4}A - A \sum_{k=1}^{n-1} \frac{\left(\frac{1}{2},k\right)^2}{4\left((k+1)!\right)^2} \left(\frac{a-b}{a+b}\right)^{2k+2} \\
&< \beta_2 A \left(\frac{a-b}{a+b}\right)^{2n+2} \tag{1.9}
$$

holds for all $a, b > 0$ *with* $a \neq b$ *if and only if*

$$
\alpha_2 \le \frac{\left(\frac{1}{2}, n\right)^2}{4((n+1)!)^2} \quad \text{and} \quad \beta_2 \ge \frac{16 - 5\pi}{4\pi} - \sum_{k=1}^{n-1} \frac{\left(\frac{1}{2}, k\right)^2}{4((k+1)!)^2}.
$$

Theorem 1.3. *The double inequality*

$$
\alpha_3 A \left(\frac{a-b}{a+b}\right)^{2n+2} < \frac{4}{5}T(a,b) + \frac{1}{5}H - A - A \sum_{k=1}^{n-1} \frac{\left(\frac{1}{2},k\right)^2}{5\left((k+1)!\right)^2} \left(\frac{a-b}{a+b}\right)^{2k+2} \\
&< \beta_3 A \left(\frac{a-b}{a+b}\right)^{2n+2} \tag{1.10}
$$

holds for all $a, b > 0$ *with* $a \neq b$ *if and only if*

$$
\alpha_3 \le \frac{\left(\frac{1}{2}, n\right)^2}{5((n+1)!)^2} \quad \text{and} \quad \beta_3 \ge \frac{16 - 5\pi}{5\pi} - \sum_{k=1}^{n-1} \frac{\left(\frac{1}{2}, k\right)^2}{5((k+1)!)^2}.
$$

2. Basic knowledge and lemmas

In order to establish our main results we need some basic knowledge and lemmas, which we present in this section.

For real numbers *a*, *b* and *c* with $c \neq 0, -1, -2, \dots$, the Gaussian hypergeometric function is defined by

$$
F(a, b; c; x) =_2 F_1(a, b; c; x) = \sum_{n=0}^{\infty} \frac{(a, n)(b, n)}{(c, n)} \frac{x^n}{n!}, \quad |x| < 1. \tag{2.1}
$$

Here, $(a, 0) = 1$ for $a \neq 0$ and (a, b) denotes the shifted factorial function

$$
(a, n) = a(a + 1)(a + 2)(a + 3) \cdots (a + n - 1)
$$

for $n = 1, 2...$

For $0 < r < 1$, denote $r' = \sqrt{1 - r^2}$. It is known that Legendre's complete elliptic integrals of the first and second kind are defined respectively by

$$
\begin{cases}\n\mathcal{K} = \mathcal{K}(r) = \int_0^{\pi/2} \frac{1}{\sqrt{1 - r^2 \sin^2 \theta}} d\theta = \frac{\pi}{2} F\left(\frac{1}{2}, \frac{1}{2}; 1; r^2\right),\\
\mathcal{K}' = \mathcal{K}'(r) = \mathcal{K}(r'),\\
\mathcal{K}(0) = \frac{\pi}{2},\\
\mathcal{K}(1) = \infty\n\end{cases}
$$

and

$$
\begin{cases}\n\xi = \mathcal{E}(r) = \int_0^{\pi/2} \sqrt{1 - r^2 \sin^2 \theta} \, d\theta = \frac{\pi}{2} F\left(-\frac{1}{2}, \frac{1}{2}; 1; r^2\right), \\
\mathcal{E}' = \mathcal{E}'(r) = \mathcal{E}(r'), \\
\mathcal{E}(0) = \frac{\pi}{2}, \\
\mathcal{E}(1) = 1.\n\end{cases}
$$

See $[4, 5]$. For $0 < r < 1$, the following formulas were presented in [2, Appendix E, pp. 474–475]:

$$
\frac{d\mathcal{K}}{dr} = \frac{\mathcal{E} - (r')^2 \mathcal{K}}{r(r')^2}, \quad \frac{d\mathcal{E}}{dr} = \frac{\mathcal{E} - \mathcal{K}}{r}, \quad \frac{d(\mathcal{E} - (r')^2 \mathcal{K})}{dr} = r\mathcal{K},
$$

$$
\frac{d(\mathcal{K} - \mathcal{E})}{dr} = \frac{r\mathcal{E}}{(r')^2}, \quad \mathcal{E}\left(\frac{2\sqrt{r}}{1+r}\right) = \frac{2\mathcal{E} - (r')^2 \mathcal{K}}{1+r}.
$$

Lemma 2.1 ([2, pp. 70, Exercises,13(a)])**.** $f(r) = 2\mathcal{E}(r) - r'^2 \mathcal{K}(r)$ *is increasing and log-convex from* $(0, 1)$ *onto* $(\pi/2, 2)$ *.*

Lemma 2.2. *[Th](#page-7-4)e function*

$$
F_n(r) = \frac{\frac{2}{\pi} \left(2\mathcal{E}(r) - r'^2 \mathcal{K}(r) \right) - \left(1 + \frac{1}{4}r^2 \right) - \sum_{k=1}^{n-1} \frac{\left(\frac{1}{2}, k \right)^2}{4((k+1)!)^2} r^{2k+2}}{r^{2n+2}} \tag{2.2}
$$

is strictly increasing from $(0,1)$ *onto* (λ_n, μ_n) *, where*

$$
\lambda_n = \frac{\left(\frac{1}{2}, n\right)^2}{4((n+1)!)^2}
$$
, and $\mu_n = \frac{16 - 5\pi}{4\pi} - \sum_{k=1}^{n-1} \frac{\left(\frac{1}{2}, k\right)^2}{4((k+1)!)^2}$.

Proof. Making use of series expansion we have

$$
\frac{2}{\pi} \left(2\xi(r) - r'^2 \mathcal{K}(r) \right) - \left(1 + \frac{1}{4}r^2 \right)
$$
\n
$$
= 2 \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}, k \right) \left(\frac{1}{2}, k \right)}{(k!)^2} r^{2k} - (1 - r^2) \sum_{k=0}^{\infty} \frac{\left(\frac{1}{2}, k \right) \left(\frac{1}{2}, k \right)}{(k!)^2} r^{2k} - \left(1 + \frac{1}{4}r^2 \right)
$$
\n
$$
= 2 \sum_{k=2}^{\infty} \frac{\left(-\frac{1}{2}, k \right) \left(\frac{1}{2}, k \right)}{(k!)^2} r^{2k} - \sum_{k=2}^{\infty} \frac{\left(\frac{1}{2}, k \right) \left(\frac{1}{2}, k \right)}{(k!)^2} r^{2k} + \sum_{k=1}^{\infty} \frac{\left(\frac{1}{2}, k \right) \left(\frac{1}{2}, k \right)}{(k!)^2} r^{2k+2}
$$
\n
$$
= \sum_{k=2}^{\infty} \frac{-\left(k + \frac{3}{2} \right) \left(\frac{1}{2}, k - 1 \right) \left(\frac{1}{2}, k \right)}{(k!)^2} r^{2k} + \sum_{k=1}^{\infty} \frac{\left(\frac{1}{2}, k \right) \left(\frac{1}{2}, k \right)}{(k!)^2} r^{2k+2}
$$
\n
$$
= \sum_{k=1}^{\infty} \frac{\left(\frac{1}{2}, k \right)^2}{4 \left((k+1)! \right)^2} r^{2k+2}.
$$
\n(2.3)

it follows from (2.3) that the function $F_n(r)$ can be rewritten as

$$
F_n(r) = \sum_{k=n}^{\infty} \frac{\left(\frac{1}{2}, k\right)^2}{4((k+1)!)^2} r^{2(k-n)} \tag{2.4}
$$

So the function $F_n(x)$ $F_n(x)$ is strictly increasing on $(0,1)$. Moreover, it is easy to obtain $\lambda_n =$ $\lim_{r\to 0^+} F_n(r) = \frac{\left(\frac{1}{2},n\right)^2}{4((n+1)!)^2}$ and by Lemma 2.1, one can get $\mu_n = \lim_{r\to 1^-} F_n(r) = \frac{16-5\pi}{4\pi}$ $\sum_{k=1}^{n-1}$ $\frac{\left(\frac{1}{2},k\right)^2}{4\left(\left(k+1\right)!\right)^2}$. the proof of Lemma 2.2 is complete. □

3. Proofs of main results

Now we are in a position to prove [our](#page-3-0) main results.

Proof of Theorem 1.1. Since $A(a, b)$, $C(a, b)$ and $T(a, b)$ are symmetric and homogeneous of degree 1, without loss of generality, we assume that $a > b > 0$. Let $r = \frac{a-b}{a+b} \in$ (0*,* 1). Then

$$
T(a,b) = \frac{2}{\pi}A(a,b)[2\mathcal{E}(r) - (1 - r^2)\mathcal{K}(r)],
$$
\n(3.1)

$$
C(a,b) = A(a,b)(1+r^2).
$$
\n(3.2)

we clearly see that inequality (1.8) is equivalent to

$$
\alpha_{1} < \frac{T(a,b) - \frac{1}{4}C(a,b) - \frac{3}{4}A(a,b) - A(a,b)\sum_{k=1}^{n-1} \frac{(\frac{1}{2},k)^{2}}{4((k+1)!)^{2}} \left(\frac{a-b}{a+b}\right)^{2k+2}}{A(a,b)\left(\frac{a-b}{a+b}\right)^{2n+2}}
$$

$$
= \frac{\frac{2}{\pi}\left(2\mathcal{E}(r) - r'^{2}\mathcal{K}(r)\right) - \left(1 + \frac{1}{4}r^{2}\right) - \sum_{k=1}^{n-1} \frac{(\frac{1}{2},k)^{2}}{4((k+1)!)^{2}}r^{2k+2}}
$$

$$
= F_{n}(r) < \beta_{1}.
$$
(3.3)

Therefore, Theorem 1.1 follows easily from (3.3) and Lemma 2.1. \Box

Proof of Theorem 1.2. Since $A(a, b), \overline{C}(a, b)$ and $T(a, b)$ are symmetric and homogeneous of degree 1, without loss of generality, we assume that $a > b > 0$. Let $r = \frac{a-b}{a+b} \in$ (0*,* 1). Then

$$
\overline{C}(a,b) = A(a,b)(1 + \frac{1}{3}r^2).
$$
\n(3.4)

we clearly see that inequality (1.8) is equivalent to

$$
\alpha_2 < \frac{T(a,b) - \frac{3}{4}\overline{C}(a,b) - \frac{1}{4}A(a,b) - A(a,b)\sum_{k=1}^{n-1} \frac{\left(\frac{1}{2},k\right)^2}{4\left((k+1)!\right)^2} \left(\frac{a-b}{a+b}\right)^{2k+2}}{A(a,b)\left(\frac{a-b}{a+b}\right)^{2n+2}}
$$
\n
$$
= \frac{\frac{2}{\pi}\left(2\mathcal{E}(r) - r'^2\mathcal{K}(r)\right) - \left(1 + \frac{1}{4}r^2\right) - \sum_{k=1}^{n-1} \frac{\left(\frac{1}{2},k\right)^2}{4\left((k+1)!\right)^2} r^{2k+2}}{r^{2n+2}}
$$
\n
$$
= F_n(r) < \beta_2. \tag{3.5}
$$

Therefore, Theorem 1.2 follows easily from (3.5) and Lemma 2.2. □

Proof of Theorem 1.3. Since $A(a, b)$, $H(a, b)$ and $T(a, b)$ are symmetric and homogeneous of degree 1, without loss of generality, we assume that $a > b > 0$. Let $r = \frac{a-b}{a+b} \in$ (0*,* 1). Then

$$
H(a,b) = A(a,b)(1 - r2).
$$
\n(3.6)

2

)2*k*+2

we clearly see that inequality (1.10) is equivalent to

$$
\alpha_3 < \frac{\frac{4}{5}T(a,b) + \frac{1}{5}H(a,b) - A(a,b) - A(a,b) \sum_{k=1}^{n-1} \frac{(\frac{1}{2},k)^2}{5((k+1)!)^2} \left(\frac{a-b}{a+b}\right)^{2k+2}}{A(a,b) \left(\frac{a-b}{a+b}\right)^{2n+2}}
$$
\n
$$
= \frac{4}{5} \frac{\frac{2}{\pi} \left(2\mathcal{E}(r) - r'^2 \mathcal{K}(r)\right) - \left(1 + \frac{1}{4}r^2\right) - \sum_{k=1}^{n-1} \frac{(\frac{1}{2},k)^2}{4((k+1)!)^2} r^{2k+2}}{r^{2n+2}}
$$
\n
$$
= \frac{4}{5} F_n(r) < \beta_3. \tag{3.7}
$$

Therefore, Theorem 1.3 follows easily from (3.7) and Lemma 2.2. □

4. New bounds for the complete elliptic integral of the second kind

By the virtue of Th[eore](#page-2-2)m 1.1, new lower a[nd](#page-5-0) upper bounds [for](#page-3-0) the complete elliptic integral $\mathcal{E}(r)$ of the second kind are given as follows.

Theorem 4.1. For
$$
r \in (0, 1)
$$
 and $r' = \sqrt{1 - r^2}$, we have
\n
$$
\frac{\pi}{2} \bigg[\alpha \frac{1 + r'}{2} \left(\frac{1 - r'}{1 + r'} \right)^{2n + 2} + \frac{1}{4} \frac{1 + r'^2}{1 + r'} + \frac{3(1 + r')}{8} + \frac{1 + r'}{2} \sum_{k=1}^{n-1} \frac{\left(\frac{1}{2}, k \right)^2}{4 \left((k+1)! \right)^2} \left(\frac{1 - r'}{1 + r'} \right)^{2k + 2} \bigg]
$$
\n
$$
< \mathcal{E}(r)
$$
\n
$$
< \frac{\pi}{2} \bigg[\beta \frac{1 + r'}{2} \left(\frac{1 - r'}{1 + r'} \right)^{2n + 2} + \frac{1}{4} \frac{1 + r'^2}{1 + r'} + \frac{3(1 + r')}{8} + \frac{3(1 + r')}{8} + \frac{1 + r'}{2} \sum_{k=1}^{n-1} \frac{\left(\frac{1}{2}, k \right)^2}{4 \left((k+1)! \right)^2} \left(\frac{1 - r'}{1 + r'} \right)^{2k + 2} \bigg]. \tag{4.1}
$$

where

$$
\alpha = \frac{\left(\frac{1}{2}, n\right)^2}{4((n+1)!)^2} \quad \text{and} \quad \beta = \frac{16 - 5\pi}{4\pi} - \sum_{k=1}^{n-1} \frac{\left(\frac{1}{2}, k\right)^2}{4((k+1)!)^2}.
$$

Let $n = 1$ and $n = 2$ in (4.1), one get

Corollary 4.2. *For* $r \in (0,1)$ *and* $r' = \sqrt{1 - r^2}$ *, we have*

$$
\frac{\pi}{2} \left[\frac{(9r'^2 + 14r' + 9)^2}{128(1+r')^3} \right] < \mathcal{E}(r) < \frac{\pi}{2} \left[\frac{16 - 5\pi}{4\pi} \frac{1+r'}{2} \left(\frac{1-r'}{1+r'} \right)^4 + \frac{5r'^2 + 6r' + 5}{8(1+r')} \right]. \tag{4.2}
$$

Corollary 4.3. *For* $r \in (0,1)$ *and* $r' = \sqrt{1 - r^2}$ *, we have*

$$
\frac{\pi}{2} \left[\frac{1+r'}{512} \left(\frac{1-r'}{1+r'} \right)^6 + \frac{(9r'^2 + 14r' + 9)^2}{128(1+r')^3} \right] < \mathcal{E}(r)
$$
\n
$$
< \frac{\pi}{2} \left[\frac{256 - 81\pi}{64\pi} \frac{1+r'}{2} \left(\frac{1-r'}{1+r'} \right)^6 + \frac{(9r'^2 + 14r' + 9)^2}{128(1+r')^3} \right].\n \tag{4.3}
$$

Remark 4.4. In [31, Corollary 3.4], it was presented that

$$
\frac{\pi}{2} \left(\frac{1 + r'^{7/4}}{1 + r'^{-1/4}} \right)^{1/2} < \mathcal{E}(r) < \frac{\pi}{2} \left(\frac{1 + r'^{13/12}}{1 + r'^{5/12}} \right)^{3/2} \tag{4.4}
$$

for all $r \in (0,1)$.

The lower bound in (4.2) for $\mathcal{E}(r)$ is better taht the lower bound in (4.4). Indeed, Let $x = (r')^{1/4} \in (0, 1)$

$$
\left[\frac{(9r^{\prime 2} + 14r^{\prime} + 9)^2}{128(1+r^{\prime})^3} \right]^2 - \left[\left(\frac{1+r^{\prime 7/4}}{1+r^{\prime -1/4}} \right)^{1/2} \right]^2
$$

$$
= \left[\frac{(9x^8 + 14x^4 + 9)^2}{128(1+x^4)^3} \right]^2 - \left[\left(\frac{1+x^7}{1+x^{-1}} \right)^{1/2} \right]^2
$$

$$
= \frac{(1+x^2)(1-x)^4}{16384(1+x^4)^6} P(x) > 0,
$$

for $x \in (0,1)$, where

$$
P(x) = 6561x^{26} + 9860x^{25} + 9897x^{24} + 6672x^{23} + 47570x^{22} + 65288x^{21} + 59826x^{20}
$$

+ 31184x¹⁹ + 131863x¹⁸ + 170300x¹⁷ + 146495x¹⁶ + 60448x¹⁵ + 187612x¹⁴
+ 230000x¹³ + 187612x¹² + 60448x¹¹ + 146495x¹⁰ + 170300x⁹ + 131863x⁸
+ 31184x⁷ + 59826x⁶ + 65288x⁵ + 47570x⁴ + 6672x³ + 9897x² + 9860x + 6561.

Remark 4.5. In [16, corollary 3.5], it was established that

$$
\frac{\pi}{2} \frac{\sqrt{6(1+r^2)+4r'}}{4} < \mathcal{E}(r) < \sqrt{(1+r^2)+(\frac{\pi^2}{2}-4)r'} \tag{4.5}
$$

The following e[quiv](#page-8-1)alence relations show that the lower bound in (4.2) for $\mathcal{E}(r)$ is better than the lower bound in (4.5):

$$
\left[\frac{(9x^2+14x+9)^2}{128(1+x)^3}\right]^2 - \left(\frac{\sqrt{6(1+x^2)+4x}}{4}\right)^2
$$

=
$$
\frac{(417x^4+1532x^3+2246x^2+1532x+417)(1-x)^4}{16384(1+x)^6} > 0,
$$

for $x \in (0, 1)$.

Remark 4.6. In [21, theorem 4.4], the following double inequality are proved. For all $r \in (0,1)$, we have

$$
\frac{\pi}{2}\sqrt{\alpha\left[\frac{7r'^4+18r'^2+7}{16(1+r'^2)}\right]+(1-\alpha)\left[\frac{3r'^2+2r'+3}{8}\right]}
$$

$$
<\mathcal{E}(r)<\frac{\pi}{2}\sqrt{\beta\left[\frac{7r'^4+18r'^2+7}{16(1+r'^2)}\right]+(1-\beta)\left[\frac{3r'^2+2r'+3}{8}\right]}
$$
(4.6)

with the best possible constants $\alpha = 3/16$, $\beta = 4(16/\pi^2 - 3/2)$.

The following equivalence relations show that the lower bound in (4.2) for $\mathcal{E}(r)$ is better than the lower bound in (4.6)

$$
\left[\frac{1}{128}\frac{(9+14x+9x^2)^2}{(1+x)^3}\right]^2 - \left[\frac{3}{16}\left(\frac{7x^4+18x^2+7}{16(1+x^2)}\right) + \frac{13}{16}\left(\frac{(3x^2+2x+3)}{8}\right)\right]
$$

$$
= \frac{(225x^4+830x^3+1218x^2+830x+225)(1-x)^6}{16384(1+x)^6(1+x^2)} > 0,
$$

for $x \in (0, 1)$.

Remark 4.7. The following double inequality was derived by Zhang et al. in [30, Corollary 3.1] : Let $l(r) = (1 + r)/2$ and $u(r) = (3 + r^2)/4$, then

$$
\frac{\pi}{2} \left[\frac{u(r')}{4} + \frac{3l(r')}{4} \right] < \mathcal{E}(r) < \frac{\pi}{2} \left[\sigma u(r') + (1 - \sigma)l(r') \right] \tag{4.7}
$$

holds for all $r \in (0,1)$, where $\sigma = 2(4/\pi - 1)$.

The following equivalence relations show that the lower bound in (4.2) for $\mathcal{E}(r)$ is better than the lower bound in (4.7)

$$
\frac{1}{128} \frac{(9+14x+9x^2)^2}{(1+x)^3} - \left(\frac{3(1+x^2)}{16} + \frac{3(1+x)}{8}\right)
$$

$$
= \frac{(8x^2+15x+9)(1-x)^3}{128(1+x)^3} > 0,
$$

for $x \in (0,1)$.

Acknowledgment. The authors would like to express their sincere thanks to the editor and the anonymous reviewers for their helpful comments and suggestions.

References

- [1] H. Alzer, S.-L. Qiu, *Monotonicity theorems and inequalities for the complete elliptic integrals*, J. Comput. Appl. Math. **172**, 289–312, 2004.
- [2] G.D. Anderson, M.K. Vamanamurthy, M. Vuorinen, *Conformal Invariants, Inequalities, and Quasiconformal Maps*, John Wiley & Sons, New York, 1997.
- [3] R.W. Barnard, K. Pearce, and K.C. Richards, *An inequality involving the generalized hypergeometric function and the arc length of an ellipse*, SIAM J. Math. Anal. **31**(3), 693–699, 2000.
- [4] F. Bowman, *Introduction to Elliptic Functions with Applications*, Dover Publications, New York, 1961.
- [5] P.F. Byrd and M.D. Friedman, *Handbook of Elliptic Integrals for Engineers and Scientists*, Springer-Verlag, New York, 1971.
- [6] Y.-M. Chu, M.-K.Wang, *Inequalities between arithmetic-geometric, Gini, and Toader means*, Abstr. Appl. Anal. **2012**, Art. ID 830585, 2012.
- [7] Y.-M. Chu, M.-K. Wang, X.-Y. Ma, *Sharp bounds for Toader mean in terms of contraharmonic mean with applications*, J. Math. Inequal. **7** (2), 161–166, 2013.
- [8] Y.-M. Chu, M.-K. Wang, S.-L. Qiu, *Optimal combinations bounds of root-square and arithmetic means for Toader mean*, Proc. Indian Acad. Sci. Math. Sci. 122, 41–51, 2012.
- [9] Y.-M. Chu, M.-K. Wang, S.-L. Qiu, *Optimal Lehmer mean bounds for the Toader mean.* Results Math. **61**, 223–229, 2012.
- [10] Y.-M. Chu, M.-K. Wang, S.-L. Qiu, Y.-P. Jiang, *Bounds for complete elliptic integrals of the second kind with applications*, Comput. Math. Appl. **63**, 1177–1184, 2012.
- [11] Y. Hua, *Bounds For The Arithmetic Mean In Terms Of The Toader Mean And Other Bivariate Means*, Miskolc Math. Notes **18** (1) , 203–210, 2017.
- [12] Y. Hua, F. Qi, *The Best Bounds for Toader Mean in Terms of the Centroidal and Arithmetic Means*, Filomat **28** (4), 775–780, 2014.
- [13] Y. Hua, F. Qi, *A double inequality for bounding Toader mean by the centroidal mean*, Proc. Indian Acad. Sci. (Math. Sci.) **124** (4), 527–531, 2014.
- [14] W.-D. Jiang, F. Qi, *A double inequality for the combination of Toader mean and the arithmetic mean in terms of the contraharmonic mean*, Publ. Inst. Math. **99** (113), 237–242, 2016.
- [15] W.-H. Li, M.-M. Zheng, *Some inequalities for bounding Toader mean*, J. Func. Spaces Appl. **2013**, Art. ID 394194, 5 pages, 2013.
- [16] W.-M. Qian, H.-H. Chu, M.-K. Wang, Y.-M. Chu, *Sharp inequalities for the Toader mean of order -1 in terms of other bivariate means*, J. Math. Inequal **16** (1), 127–141, 2022.
- [17] S.-L. Qiu, J.-M. Shen, *On two problems concerning means*, J. Hangzhou Insitute Electronic Engineering (In Chinese) **17** (3), 1–7, 1997.
- [18] Y.-Q. Song, W.-D. Jiang, Y.-M. Chu, D.-D. Yan, *Optimal bounds for Toader mean in terms of arithmetic and contraharmonic means*, J. Math. Inequal **7** (4), 751–757, 2013.
- [19] Gh. Toader, *Some mean values related to the arithmetic-geometric mean*, J. Math. Anal. Appl. **218**, 358–368, 1998.
- [20] M. Vuorinen, *Hypergeometric functions in geometric function theory*, in: Special Functions and Differential Equations, Proceedings of a Workshop held at The Institute of Mathematical Sciences, Madras, India, January 13-24, 1997, Allied Publ., New Delhi, 119–126, 1998.
- [21] M.-K. Wang, Y.-M. Chu, Y.-M. Li, W. Zhang, *Asymptotic expansion and bounds for complete elliptic integrals*, Math. Inequal. Appl. **23** (3), 821–841, 2020.
- [22] M.-K. Wang, Y.-M. Chu, S.-L. Qiu, Y.-P. Jiang, *Bounds for the perimeter of an ellipse*, J. Approx. Theory. **164**, 928–937, 2012.
- [23] Z.-H. Yang, *Sharp approximations for the complete elliptic integrals of the second kind by one-parameter means*, J. Math. Anal. Appl. **467**, 446–461, 2018.
- [24] Z.-H. Yang, Y.-M. Chu, W.Zhang, *High accuracy asymptotic bounds for the complete elliptic integral of the second kind*, Appl. Math. Comput. **348**, 552–564, 2019.
- [25] Z.-H. Yang, Y.-M. Chu, W. Zhang, *Monotonicity of the ratio for the complete elliptic integral and Stolarsky mean*, J. Inequal. Appl. **2016**, 176, 2016.
- [26] Z.-H. Yang_", Y.-M. Chu, W. Zhang, *Accurate approximations for the complete elliptic integral of the second kind*, J. Math. Anal. Appl. **438**, 875–888, 2016.
- [27] Z.-H. Yang, Y.-M. Chu, X.-H. Zhang, *Sharp Stolarsky mean bounds for the complete elliptic integral of the second kind*, J. Nonlinear Sci. Appl. **10**, 929–936, 2017.
- [28] Z.-H. Yang, W.-M. Qian, Y.-M. Chu, W.Zhang, *Monotonicity rule for the quotient of two functions and its application*, J. Inequal. Appl. **2017**, 106, 2017.
- [29] Z.-H. Yang, J.-F. Tian, *Sharp bounds for the Toader mean in terms of arithmetic and geometric means*, RACSAM **115**, 99, 2021.
- [30] F. Zhang, W.-M. Qian, H.-Z. Xu, *Optimal bounds for Seiffert-like elliptic integral mean by harmonic, geometric, and arithmetic means*, J. Inequal. Appl **2022**, 33, 2022.
- [31] T.-H. Zhao, H.-H. Chu , Y.-M. Chu, *Optimal Lehmer mean bounds for the nth powertype Toader means of n* = *−*1*,* 1*,* 3, J. Math. Inequal **16** (1), 157–168, 2022.
- [32] T.-H. Zhao, M.-K. Wang, Y.-Q. Dai and Y.-M. Chu, *On the generalized power-type Toader mean*, J. Math. Inequal. **16**(1), 247–264, 2022.