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ABSTRACT

Biological and physical treatment in wastewater treatment plants appears to be one of the most 
important variables in water quality management and planning. This crucial characteristic, on 
the other hand, is difficult to quantify and takes a long time to obtain precise results. Scientists 
have sought to devise several solutions to address these issues. Artificial intelligence models 
are one technique to monitor the pollutant parameters more consistently and economically at 
treatment plants and regulate these pollution elements during processing. This study proposes 
using an adaptive network-based fuzzy inference system (ANFIS) model to regulate primary 
and biological wastewater treatment and used it to model the nonlinear interactions between 
influent pollutant factors and effluent variables in a wastewater treatment facility. Models for 
the prediction of removal efficiency of biological oxygen demand (BOD), total nitrogen (TN), 
total phosphorus (TP), and total suspended solids (TSS) in a wastewater treatment plant were 
developed using ANFIS. Hydraulic retention time (HRT), temperature (T), and dissolved oxy-
gen (DO) were input variables for BOD, TN, TP, and TSS models, as determined by linear cor-
relation matrices between input and output variables. The findings reveal that the developed 
system is capable of accurately predicting and controlling outcomes. For BOD, TN, TP, and 
TSS, ANFIS was able to achieve minimum mean square errors of 0.1673, 0.0266, 0.0318, and 
0.0523, respectively. The correlation coefficients for BOD, TN, TP, and TSS are all quite strong. 
In the wastewater treatment plant, ANFIS' prediction performance was satisfactory and the 
ANFIS model can be used to predict the efficiency of removing pollutants from wastewater.

Cite this article as: Alnajjar HYH, Üçüncü O. Enhance modelling predicting for pollution 
removal in wastewater treatment plants by using an adaptive neuro-fuzzy inference system. 
Environ Res Tec 2022;5:3:213–226.

INTRODUCTION

As the population grows and companies flourish, waste-
water treatment becomes increasingly important due to 
the increased volume of wastewater generated by facilities 
each year. As a result, low-cost techniques that give accu-

rate results for predicting treatment efficiency in wastewa-
ter treatment plants (WWTP) must be developed. WWTP 
entails a number of sophisticated and unpredictably un-
predictable procedures. The treatment plant's smooth and 
effective operation, on the other hand, is dependent on 
a proper model capable of accurately representing the 
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system's dynamic character. Previously, the majority of 
models were utilized in industrial wastewater treatment 
plants. WWTP operation includes physical, biological, 
and chemical features of wastewater streams, as well as 
biological and degrading mechanisms. Improved process 
control algorithms based on artificial intelligence (AI) 
technologies have received a lot of attention as a result of 
growing environmental and economic concerns [1].

According to the literature, suspended solids (SSeff) and 
chemical oxygen demand (CODeff) in the effluent from a 
hospital wastewater treatment facility were forecasted us-
ing three distinct adaptive neuro-fuzzy inference systems 
(ANFIS) and artificial neural networks (ANN) and in terms 
of effluent prediction, the results showed that ANFIS sur-
passes ANN statistically [2]. The ANFIS model is used to 
forecast effluent pH quality and artificial neural network is 
used as a comparison [3]. Another study used five process 
variables to predict the effluent chemical oxygen demand 
load from a full-scale expanded granular sludge bed reac-
tor (EGSBR) treating corn processing wastewater, including 
influent chemical oxygen demand, influent flow rate, influ-
ent total Kjeldahl nitrogen, effluent volatile fatty acids, and 
effluent bicarbonate. The proposed ANFIS model was cre-
ated using a hybrid learning approach, and its performance 
was assessed using a set of test data randomly selected from 
the experimental domain. The ANFIS-based predictions 
were validated using a variety of descriptive statistical met-
rics, including root-mean-square error, index of agreement, 
a factor of two, fractional variance, the proportion of sys-
tematic error, and so on [4]. Using daily data, feed-forward 
neural network (FFNN), support vector regression (SVR), 
and ANFIS black box artificial intelligence models (AI) were 
used to estimate effluent biological oxygen demand (BODeff) 
and chemical oxygen demand (CODeff) of Tabriz wastewa-
ter treatment plant (WWTP). In addition, the BODeff and 
CODeff parameters were predicted using the autoregressive 
integrated moving average (ARIMA) linear model to com-
pare the linear and non-linear models' abilities in compli-
cated process prediction [5]. In another research, the non-
linear system of the activated sludge process in an industrial 
wastewater treatment plant was identified using the ANFIS 
and generalized linear model (GLM) regression. Predictive 
models of effluent chemical and 5-day biochemical oxygen 
demands were developed based on previously assessed in-
puts and outputs. From a list of possibilities, the least ab-
solute shrinkage and selection operator (LASSO) and a 
fuzzy brute force search were employed to choose the best 
regressor combination for the GLMs and ANFIS models, 
respectively [6]. Furthermore, ANFIS allows direct inverse 
control of the substrate in an activated sludge system and the 
performance of the suggested controller is proven by track-
ing the substrate setpoints then the result of that reveal that 
the proposed controller can efficiently and precisely manage 
the substrate concentration level and the proposed inverse 

controller could be a beneficial control mechanism for the 
WWTP [7]. In another prior study support vector machine 
(SVM) and adaptive neuro-fuzzy inference system (AN-
FIS) models were used to evaluate the removal efficiency of 
Kjeldahl Nitrogen in a full-scale aerobic biological waste-
water treatment facility and the input variables used in the 
modeling process include pH, COD, total solids (TS), free 
ammonia, ammonia nitrogen, and Kjeldahl nitrogen then 
the results of model development was provide an adaptable, 
functional, real-time, and alternate approach of replicating 
Kjeldahl nitrogen removal efficiency [8]. In another study, 
too, the use of successfully ANFIS modeling have employed 
to increase the output of anaerobic digesters [9]. The ANFIS 
model also was used to remove carbon and nitrogen. As a 
comparison, a feed-forward neural network is used. All of 
the variables investigated, including COD, suspended solids 
(SS), and ammonium nitrogen (NH4-N), were found to have 
increased prediction power using the ANFIS model [10].
According to prior research, most of them are focused on 
figuring out how to eliminate pollutants from wastewater 
during the biological treatment stage. Artificial intelligence 
models were used to analyze industrial and domestic waste-
water treatment plants.
As a result, Biological and physical treatment in wastewa-
ter treatment plants appears to be one of the most import-
ant aspects of water quality management and planning. 
This crucial characteristic, on the other hand, is difficult 
to quantify and takes a long time to obtain precise results. 
Scientists have sought to devise a number of solutions to 
address these issues. Artificial intelligence models are one 
technique to monitor the pollutant parameters more con-
sistently and economically at treatment plants and regulate 
these pollution elements during processing. Therefore, the 
fundamental goal of this research is to use the ANFIS mod-
el to apply, predict, and develop the pollutant removal ef-
ficiency for primary and biological treatment in WWTPs. 
This modeling study employed MATLAB APPDESIGNER 
model data for training, testing, and predictions. BOD, 
TN, TP, and TSS were the parameters investigated. Before 
running the simulation for prediction, the data was stan-
dardized. The output of the model was compared to actual 
training data and ANN data, and the error was minimized 
to produce the best operating points.

MATERIALS AND METHODS

Probabilistic reasoning, fuzzy logic, neural networks, and 
evolutionary computation are examples of intelligent tech-
nology. As can be observed, each of these technologies 
has its own set of benefits and drawbacks, and in many 
real-world applications, researchers will need to mix sev-
eral intelligent technologies and learn from other sources. 
Hybrid intelligent systems have emerged as a result of the 
requirement for such a combination [11].
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The term "hybrid intelligent system" refers to a system that 
incorporates at least two intelligent technologies. Combin-
ing a neural network with a fuzzy system, for example, pro-
duces a hybrid neuro-fuzzy system.

Soft Computing (SC), an emerging technique to construct-
ing hybrid intelligent systems capable of reasoning and 
learning in an uncertain and imprecise environment, is 
based on a combination of probabilistic reasoning, fuzzy 
logic, neural networks, and evolutionary computation.

Fuzzy Logic and Fuzzy Inference System
Fuzzification, fuzzy rule base, fuzzy output engine, and de-
fuzzification are the four steps of a fuzzy system, as depicted 
in (Fig. 1) [12]. The input unit contains the input variables, 
as well as any information about the input variables that will 
affect the scenario under investigation [13]. The informa-
tion with respect to the input variables is generally referred 
to as a database. The variables in the input can be numerical 
or textual [14]. Fuzzification is a method of assigning nu-
merical values to linguistic adjectives and calculating the 
number of membership functions in fuzzy system sets. The 
fuzzy rule base is made up of all logical rules that connect 
the input and output variables, as well as any possible inter-

mediary connections. The input variables are converted to 
their appropriate outputs by the fuzzy output engine. This 
is accomplished by considering the numerous relationships 
established in the fuzzy rule base. Finally, defuzzification is 
the process of converting the fuzzy system's language out-
puts into numerical values.

At the end of the information and fuzzy rule base inter-
action, the output unit generates variables. (Fig. 2) de-
picts the general ANFIS process for developing the AN-
FIS prediction model.

Model Architecture and Components
When a neural network is combined with a fuzzy system, 
a strong hybrid system capable of tackling complicated 
issues is created. This hybrid system's behavior may be 
defined in terms comparable to human rules, making it 
an accurate tool for simulating non-linear functions [15]. 
ANFIS employs a hybrid learning technique that speci-
fies how the weights should be updated to reduce the er-
ror between the actual and desired output, adjusting the 
fuzzy inference system's parameters and structure in the 
process (FIS). (Fig. 3) depicts the structure of ANFIS, 
which is a Sugeno fuzzy model.

Figure 1. The fuzzy logic controller's basic structure [12].

Figure 2. Flow chart of ANFIS test step [9].
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ANFIS is an adaptive network that uses supervised learn-
ing on the learning method, similar to the Takagi-Sugeno 
fuzzy inference system [16]. Inputs and outputs, database 
and pre-processor, fuzzy system generator, fuzzy inference 
system, and adaptive neural network are the five major 
components of the model [17]. In most cases, the input and 
output parameters are chosen or derived from the system 
description parameters. The database and pre-processor 
are required for model creation and contain information 
about system performance. This information is normally 
gathered by collecting data on parameters that the system 
monitors on a regular basis. MATLAB is regarded a good 
tool for this study and is utilized to create system perfor-
mance information.

A Sugeno fuzzy inference system and associated adaptive 
networks, as well as an ana adaptive network-based fuzzy 
inference system, are used (ANFIS). The input and output 
variables are chosen or generated from the variables that are 
typically used to describe the system. Model development 
necessitates the creation of a database containing system 
performance data. In most cases, it is created by gathering 
parameters from the APPDESIGNER model. For the model 
to produce accurate information on the system, the training 
database must be of high quality. The database must include 
sufficient and reliable information on the system for the 
model to accurately characterize it. A raw database, on the 
other hand, is likely to contain some duplicated and con-
tradictory data. As a result, the raw training database may 
need to be pretreated to reduce duplicates and resolve data 
conflicts. Because the ANFIS is normally launched with 
a prototype fuzzy system, a fuzzy system generator is re-
quired. This function is provided by the software MATLAB 
(Matworks Inc.). Jang [17] utilized MATLAB to program 
the model, demonstrating that the language is adequate for 
model programming.

In order to achieve the lowest possible error, the model will 
be used to determine the relationship between the APPDE-
SIGNER MATLAB model and the ANFIS model.

ANFIS is a multilayer feed-forward network that maps 
inputs into outputs with the use of neural network 
learning techniques and fuzzy reasoning. It's an adapt-
able neural network-based fuzzy inference system (FIS). 
The architecture of a typical ANFIS for the first order 
Sugeno fuzzy model, with two inputs, two rules, and one 
output (MFs). For a first order Sugeno fuzzy model [18], 
the following is an example of a rule set containing four 
fuzzy if–then rules:

Rule 1: If x is A1 and y is B1 then 

Rule 2: If x is A2 and y is B2 then 

where A1, A2, B1 and B2 are the MFs for the inputs x and y, re-
spectively, pij, qij and rij (i,j =1,2) are consequent parameters [19].

The architecture of a typical ANFIS, as shown in Figure 3, 
consists of five levels, each of which performs a different 
function in the ANFIS and is described below.

Layer 1: This layer's nodes are all adaptive nodes. They as-
sign membership scores to the inputs. This layer's outputs 
are determined by

 
(1)

where x and y are crisp inputs, and Ai and Bj are fuzzy sets 
characterized by appropriate MFs, which could be trian-
gular, trapezoidal, Gaussian function, or other shapes, and 
Ai and Bj are fuzzy sets characterized by appropriate MFs, 
which could be triangular, trapezoidal, Gaussian function, 
or other shapes. The generalized bell-shaped MFs (Eq. (2)) 
defined below are used in this investigation.

 
(2)

where {ai, bi, ci} and {aj, bj, cj} are the parameters of the 
MFs, governing the bell-shaped functions. Parameters 

Figure 3. ANFIS structure.
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in this layer are referred to as premise parameters or an-
tecedent parameters.

Layer 2: The nodes in this layer are fixed nodes with the 
number 2 next to them, indicating that they act as a simple 
multiplier. This layer's outputs are expressed as

 (3)

which represents the firing strength of each rule. The degree 
to which the antecedent element of the rule is satisfied is 
referred to as the firing strength.

Layer 3: The nodes in this layer are also fixed nodes with the 
label, indicating that they play a role in network normaliza-
tion. This layer's outputs can be expressed as

 (4)

which are called normalized firing strengths.

Layer 4: The output of each node in this layer is just the 
product of the normalized firing strength and a first-order 
polynomial (for a first order Sugeno model). As a result, Eq. 
(5) gives the outputs of this layer.

 (5)

Subsequent parameters refer to the parameters in this layer.

Layer 5: This layer's single node is a fixed node labelled ∑ that 
computes the total output as the sum of all incoming signals, i.e.,

 
(6)

When the values of the premise parameters are fixed, 
the result is a linear combination of the subsequent pa-
rameters. The ANFIS design may be seen to have two 
adaptive layers: Layers 1 and 4. to the input MFs. Lay-
er 4 has modifiable parameters {pij, qij, rij} Layer 1 has 
modifiable parameters {ai, bi, ci} and {aj, bj, cj} related 
pertaining to the first-order polynomial. The learning 
algorithm for this ANFIS architecture's task is to tune 
all the changeable parameters to match the training data 
in the ANFIS output. The hybrid learning algorithm is a 
two-step procedure for learning or altering certain ad-
justable parameters. The premise parameters are held 
constant in the forward pass of the hybrid learning 
algorithm, node outputs advance till Layer 4, and the 
subsequent parameters are determined using the least 
squares approach. The subsequent parameters are held 
constant in the backward pass, the error signals flow 
backward, and the premise parameters are updated us-
ing the gradient descent algorithm. Jang provides a de-
tailed algorithm and mathematical basis for the hybrid 
learning approach [18].

Table 1. Modeled primary and secondary treatment techniques

ANFIS1

ANFIS 2

ANFIS 3

ANFIS 4

ANFIS 5

ANFIS 6

ANFIS 7

ANFIS 8

ANFIS 9

ANFIS 10

ANFIS 11

primary treatment

primary treatment

Secondary 
Treatment

Secondary 
Treatment

Secondary 
Treatment

Secondary 
Treatment

Secondary 
Treatment

Secondary 
Treatment

Secondary 
Treatment

Secondary 
Treatment

Secondary 
Treatment

Mechanical screen + primary sedimentation tank

Mechanical screen + Grit removal + Grease trap 
+ primary sedimentation tank

Facultative pond+ Secondary sedimentation tank

Anaerobic ponds + Facultative Pond+ Secondary 
sedimentation tank

Aerobic ponds (Partial Mixing) + Facultative 
Pond+ Secondary sedimentation tank

Aerobic ponds (Complete Mixing) + Facultative 
Pond+ Secondary sedimentation tank

Anaerobic ponds+ Secondary sedimentation tank

Aerobic ponds (Partial Mixing) + Secondary 
sedimentation tank

Aerobic ponds (Complete Mixing) + Secondary 
sedimentation tank

Anaerobic ponds + Aerobic ponds (Partial 
Mixing) + Secondary sedimentation tank

Anaerobic ponds + Aerobic ponds (Complete 
Mixing) + Secondary sedimentation tank

HRT, T

HRT, T

HRT, T

HRT, T

HRT, T, DO

HRT, T, DO

HRT, T

HRT, T, DO

HRT, T, DO

HRT, T, DO

HRT, T, DO

BOD

BOD

BOD

BOD

BOD

BOD

BOD

BOD

BOD

BOD

BOD

TN

TN

TN

TN

TN

TN

TN

TN

TN

TN

TN

TSS

TSS

TSS

TSS

TSS

TSS

TSS

TSS

TSS

TSS

TSS

TP

TP

TP

TP

TP

TP

TP

TP

TP

TP

TP

System 
number

Processing ProcessingInputs Outbuts

a b dc
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To evaluate the prediction power of ANFIS and ANN 
trained by each data set, performance indices such as 
mean square error (MSE), root mean square normalized 
error (RMSE), mean absolute percentage error (MAPE), 
and correlation coefficient (R) are utilized. The MSE per-
formance index was established as follows:

 (7)

The RMSE performance index was defined as

 
(8)

where y is the measured values,  the corresponding pre-
dicted values and n is the number of samples.

Mean absolute percentage error (MAPE):

 (9)

Where  and  are the average values 
of At and Ft over the training or testing dataset. The small-
er RMSE and MAPE mean better performance.

Correlation coefficient (R):

 (10)

The Plant Description
The ANFIS model was tested as an artificial intelligence 
model to operate a MATLAB-modeled wastewater treat-
ment system.

The wastewater treatment plan's major processing tech-
niques were several types of primary treatment (two mod-
els) and secondary treatment (nine models).

Mechanical screen and primary sedimentation tank are 
one sort of primary treatment procedure, while mechanical 
screen, grit removal, grease trap, and primary sedimenta-
tion tank are the other.

In terms of secondary treatment, nine different models 
were compared and clarified in Table 1. The inputs to the 
ANFIS1 (a) model, for example, are HRT and T, and the 
output is BOD.

The influent variables include hydraulic retention time 
(HRT), temperature (T) and dissolved oxygen (DO) and 
the effluent variables include the removal efficiency of bio-

Figure 4. Schematic diagram of (a) ANFIS models with all input variables and (b) input–output mapping structure of 
ANFIS models with input variables.

(a)

(b)



Environ Res Tec, Vol. 5, Issue. 3, pp. 213–226, September 2022 219

logical oxygen demand (BOD5), total nitrogen (TN), total 
phosphorous (TP) and total suspended solids (TSS).

Model Implementation
The ANFIS (Adaptive Neuro-Fuzzy Inference System) ed-
itor of the Fuzzy toolbox in MATLAB was used to create 
a model in Sugeno structure (R2021 version, The Math-
Works Inc., USA). The membership functions were ex-
tracted from the APPDESIGNER system's data set, which 
had been standardized and divided into training and test-
ing data. The model's parameters were estimated using a 
hybrid learning method, and the model was validated us-
ing APPDESIGNER model data effluent parameters like 
output BOD, TN, TP, and TSS.

Figure 4a, b shows the topology of the ANFIS network that 
was employed. In the creation of a fuzzy system, eleven AN-
FIS structures with varying input correlation (Fig. 4a) and 
consisted of five layers were established (Fig. 4b). The fol-
lowing are the meanings of each layer in (Fig. 4b), as well as 
their counterpart in the ANFIS structures:

Input layer: In the ANFIS inputs layer, state variables are 
nodes: There are three input variables in total: HRT, T, and 
DO are all acronyms for hormone replacement therapy 
(from the influent) Layer with the membership function: 
Each state variable's term sets are nodes in the ANFIS val-
ues layer, which compute the membership value.

For each input variable:

Membership: triangle mf or gauss mf Membership number.

Rules layer: Each rule in the fuzzy class is a node in the AN-
FIS rules layer, with the rule matching factor xi computed 
using soft-min or product. Layer of the output membership 
function: In the function layer, each weighs the result of its 
linear regression fi, resulting in the rule output.

Table 2. The detailed information of the models

Model Training Testing   Number of input MF   Rules for the following outputs 
 data data   for the following outputs

   BOD TN TP TSS BOD TN TP TSS

ANFIS1 120 18 46 86 86 84 24 48 48 32
ANFIS2 120 18 86 108 106 106 48 80 60 60
ANFIS3 144 25 88 1010 99 1010 64 100 81 100
ANFIS4 144 22 106 88 66 98 60 64 36 72
ANFIS5 576 84 866 888 1086 666 288 512 480 216
ANFIS6 576 93 686 868 888 1086 288 384 512 480
ANFIS7 205 41 86 88 108 88 48 64 80 64
ANFIS8 576 107 688 787 677 856 384 392 294 240
ANFIS9 576 107 865 888 777 699 240 512 343 486
ANFIS10 576 105 878 988 789 567 448 576 504 210
ANFIS11 576 98 668 985 867 644 288 360 336 96

Table 3. Excel data from APPDESIGNER model

 Inputs   Outputs

HRT T DO BOD TN TP TSS

30.00 -5.00 0.10 5.00 1.00 1.00 50.00
37.39 -4.00 0.31 5.65 1.17 1.11 50.43
44.78 -3.00 0.53 6.30 1.35 1.22 50.87
52.17 -2.00 0.74 6.96 1.52 1.33 51.30
59.57 -1.00 0.95 7.61 1.70 1.43 51.74
66.96 0.00 1.17 8.26 1.87 1.54 52.17
30.00 -5.00 1.38 8.91 2.04 1.65 52.61
37.39 -4.00 1.59 9.57 2.22 1.76 53.04
44.78 -3.00 1.80 10.22 2.39 1.87 53.48
52.17 -2.00 2.02 10.87 2.57 1.98 53.91
59.57 -1.00 2.23 11.52 2.74 2.09 54.35
66.96 0.00 2.44 12.17 2.91 2.20 54.78
30.00 -5.00 2.66 12.83 3.09 2.30 55.22
37.39 -4.00 2.87 13.48 3.26 2.41 55.65
44.78 -3.00 3.08 14.13 3.43 2.52 56.09
52.17 -2.00 3.30 14.78 3.61 2.63 56.52
59.57 -1.00 3.51 15.43 3.78 2.74 56.96
66.96 0.00 3.72 16.09 3.96 2.85 57.39
30.00 -5.00 3.93 16.74 4.13 2.96 57.83
37.39 -4.00 4.15 17.39 4.30 3.07 58.26
44.78 -3.00 4.36 18.04 4.48 3.17 58.70
52.17 -2.00 4.57 18.70 4.65 3.28 59.13
59.57 -1.00 4.79 19.35 4.83 3.39 59.57
66.96 0.00 5.00 20.00 5.00 3.50 60.00
74.35 -5.00 0.10 20.65 5.17 3.61 60.43
81.74 -4.00 0.31 21.08 5.30 3.70 60.85
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Normalization layer:

Each xi is scaled into the normalization layer Normalization

Normalization is performed with the equation:

 (11)

Output layer: Each rule output is added to the output layer. 

Outputs: BOD, TN, TP and TSS (effluent).

Results and Discussion
As shown in (Fig. 5), the data from the APPDESIGNER 
model was used to create eleven different ANFIS models. 
As an example of data, the data generated from the APPDE-
SIGNER model has been organized in tables for usage in 
ANFIS, as seen in Table 3. The effluent BOD, TN, TP, and 
TSS were monitored in the system as indicators of treat-
ment performance and stability using the ANFIS models 
applied to the APPDESIGNER model.

The ANFIS model in this paper was created using Matlab's 
fuzzy function. The data was first examined using Matlab's 

fuzzy subtractive clustering tool, and the cluster centers 
were determined. The initializing parameters were deter-
mined using the cluster centers, which indicate the initial 
value of premise parameters.

To identify a suitable ANFIS model, the types and num-
bers of MFs in ANFIS were investigated, including 
Gaussian, generalized bell-shaped, triangular, and trap-
ezoidal-shaped functions, as well as the parameters. The 
values of RMSE and R between the model output values 
and observed values were used as selection criteria for the 
optimal final architecture. All ANFIS models with gen-
eralized bell-shaped MFs for each input variable showed 
the best results with diverse input variables. BOD, TN, 
TP, and TSS were all predicted using these models. Thus, 
monitoring the BOD, TN, TP, and TSS dynamics for the 
l wastewater treatment process, which was optimized by 
trial and error during the training phase, was adequate. 
The hybrid approach was used to train the network after 
selecting the initial value of the premise parameter and 
the design of the predictive model. The network's prem-

Figure 5. APPDESIGNER model interface.
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Figure 6. (a) Rule editor of Matlab fuzzy logic toolbox (b)Rule viewer screen to obtain defuzzified.

(a)

(b)
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ise and associated parameters were then trimmed. After 
obtaining the premise parameter, membership functions 
for the variables were drawn.

Following the training of the model, inference was 
done using fuzzy language rules (Fig. 6a). After the net-
work had been trained, those rules were obtained. In 
terms of comparing output values to input values, sev-
eral additional heuristic criteria were also introduced. 
Defuzzified findings and graphical outputs can also 
be generated. (Fig. 7) shows an example of a Surface 
Viewer screen generated by the Fuzzy Logic Toolbox. 
Variable outcomes can be plotted and compared in two 
or three dimensions. According to the mass center of 
variables, (Fig. 6b) displays the outcomes of applied 
rules and their related outputs. Defuzzified values for 
output variables can be determined manually using the 
interface by changing input values. The Rule Viewer can 
produce a variety of output values depending on the 
input data. Using the interface to acquire defuzzified 
output values for all of the genuine input values is not 
flexible. As a result, a program using Matlab codes is 
built to drive defuzzified output outcomes in line with 
real-world input values.

RESULTS

The influence of the ANFIS model inputs (temperature, dis-
solved oxygen, and hydraulic retention time) on the model 
outputs is also shown in Figure 7 (BOD, TN, TP and TSS).

The ANFIS 1 model, for example, indicates that raising the 
temperature and lengthening the hydraulic retention time 
improves the efficiency of pollutant removal in wastewater.

All R-square and RMSE values for the removal efficiency 
of BOD, TN, TP and TSS are also shown in Table 4. When 
training, R value was 0.9782 using ANFIS but when validat-
ing, R value was 0.9888 using ANFIS.

When training and validating, the RMSE values for AN-
FIS2 was 0.28 for BOD and 0.0266 using ANFIS was low-
er than that of 1.7289 and 1.6172 using ANN. The RMSE 
value of 0.0318 using ANFIS was also lower than that of 
1.7398 using ANN when predicting for TN. Figure 8 show 
the training and predicting results using ANFIS and AP-
PDESIGNER model.

The architecture of ANFIS combines ANN and fuzzy 
logic, as well as linguistic expressions of MFs and if–then 
rules, to overcome the limitations of traditional neural 
networks, such as the risk of becoming trapped in a lo-
cal minimum and model architecture selection, and to 
improve predicting performance. As a result, ANFIS is 
an excellent alternative for simulating wastewater treat-
ment performance. Furthermore, ANN is a black box in 
nature, with difficult to interpret links between inputs 
and outputs, whereas ANFIS is clear, with simple to un-
derstand and interpret if–then rules. The ANFIS mod-
el's prediction performance in the wastewater treatment 
plant was excellent, and the ANFIS model may be used 
to estimate the efficiency of eliminating contaminants 

Figure 7. 3D response surface graph.
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from wastewater. As a result, based on the artificial in-
telligence model, it is possible to build physical and bi-
ological treatment units in wastewater treatment plants, 
reducing the high costs and time necessary for wastewa-
ter treatment plant design.

CONCLUSIONS

Eleven models based on adaptive neuro-fuzzy inference 
system (ANFIS) were constructed in this research to pre-
dict biological oxygen demand (BOD), total nitrogen (TN), 
total phosphorous (TP), and total suspended solids (TSS) 
removal efficiency for a primary and biological wastewater 
treatment process. The developed models were trained and 
tested using data from the APPDESIGNER Matlab model 
for BOD, TN, TP, and TSS. For comparison, the ANN was 
also used. The neural network models generated good es-
timations for the BOD, TN, TP, and TSS data sets, which 
span a wide range of data for training and testing.

ANFIS was able to anticipate the variation in removal effi-
ciency based on the findings. Minimum root means square 
errors (RMSEs) of 0.1673, 0.0266, 0.0318, and 0.0523 were 
also attained for BOD, TN, TP, and TSS, respectively. For the 
BOD, TN, TP, and TSS data sets, which span a wide range 
of data for training and testing, the neural network mod-
els generated good estimations. Overall, the results showed 
that the simulated removal efficiency of BOD, TN, TP, and 
TSS closely matched observed concentrations, as seen by 
the low RMSE and very high R values. Given the high level 
of complexity in the wastewater treatment process, the sig-
nificant amount of variable information dispersed over the 
dataset, and the wide concentration ranges, ANFIS models' 
excellent prediction results for both effluent parameters are 
particularly relevant. As a result, the ANFIS modelling ap-
proach could serve as a generic foundation for modelling 
different treatment procedures. Furthermore, the ANFIS 
modelling approach could be used to anticipate and control 
the performance of treatment processes in treatment plants. 

Table 4. Determination of the appropriate ANFIS, APPDESIGNER and ANN models

System  RMSE     R-square value(APPDESIGNER-ANFIS) 
number

     BOD  TN  TP  TSS

 BOD TN TP TSS Training Testing Training Testing Training Testing Training Testing

ANFIS1 1.3838 0.0995 0.2020 0.3414 0.9782 0.9888 0.9998 0.9999 0.9995 0.9999 0.9996 0.9996

ANN1 1.0476 0.9313 1.0402 2.1390                

ANFIS2 0.2800 0.0266 0.0318 0.1009 0.9992 0.9995 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999

ANN2 1.7289 1.6172 1.7398 2.8112                

ANFIS3 1.2242 0.3460 0.4186 0.6890 0.9968 0.9992 0.9995 0.9998 0.998 0.9967 0.9984 0.9998

ANN3 3.1565 2.3511 1.4402 2.9541                

ANFIS4 1.2582 1.1756 1.1975 1.8257 0.9944 0.9957 0.9935 0.9828 0.9837 0.9906 0.9886 0.9721

ANN4 2.8542 2.3733 1.7433 2.8592                

ANFIS5 1.4918 0.1276 0.1784 0.9143 0.9925 0.9911 0.9998 0.9992 0.9996 0.9984 0.9898 0.9907

ANN5 0.9486 0.5106 0.6192 0.6485                

ANFIS6 2.4545 0.4452 0.1838 0.1289 0.9777 0.972 0.9967 0.9978 0.9996 0.9991 0.9998 0.9995

ANN6 2.2790 1.2215 1.7855 1.4524                

ANFIS7 1.5691 1.3102 0.4659 0.1036 0.9947 0.9973 0.9948 0.996 0.9979 0.998 0.9999 0.9999

ANN7 2.4422 2.0268 1.2311 0.6645                

ANFIS8 0.9822 0.8183 1.0491 0.0650 0.9979 0.9977 0.9901 0.9854 0.9879 0.9873 0.9999 0.9999

ANN8 3.5613 1.3684 2.0934 0.4360                

ANFIS9 1.9230 0.1842 0.6866 0.0326 0.9919 0.9899 0.9995 0.9994 0.9948 0.9953 0.9999 0.9999

ANN9 3.0028 1.1767 1.8458 0.3803                

ANFIS10 0.8467 0.4560 0.1174 0.0523 0.9984 0.998 0.9991 0.9968 0.9998 0.9998 0.9999 0.9999

ANN10 0.1673 0.1656 0.1835 0.0722                

ANFIS11 1.3892 1.3254 0.8686 0.1254 0.996 0.994 0.9942 0.9926 0.9943 0.9947 0.9997 0.9995

ANN11 3.9526 3.5289 2.5361 1.0930                
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Figure 8. Prediction results of BOD, TN, TP and TSS for ANFIS model.
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The proposed ANFIS outperformed Artificial neural net-
work (ANN) in terms of performance and generalization 
ability. The RMSE and R2 values for forecasting the removal 
efficiency of BOD, TN, TN, and TSS using ANFIS were con-
siderably improved. Overall, the findings suggest that ANFS 
can be used to predict pollutant removal mechanisms in 
wastewater treatment systems.
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