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Abstract 

Wear behaviors of silane coated silica (SiO2) nanoparticle-filled glass fiber reinforced polymer 

composites were investigated depending on the type of silane coating (KH550: -Aminopropyl-

triethoxy-silane and KH570:  -Methacryloxypropyl-trimethoxy-silane) and nanoparticle percentages 

within the polymer matrix. Unlike the cases given in most research studies, the silanized silica 

nanoparticles were used as received. Therefore, the synergistic effects of silanization and nanoparticle 

reinforcement were successfully applied since the silanization process was eliminated. The matrix 

modification with the nanoparticles was carried out using an ultrasound homogenizer, and then the 

modified matrix was reinforced with glass fibers. Scanned electron microscopy revealed the disperse 

ability of silanized silica nanoparticles within the glass/epoxy composites. The wear behaviors of the 

developed composites were investigated via a ball-on-disc tribology device. Wear track profiles were 

obtained depending on the width and depth of the wear. The length of wear track and wear 

mechanisms were determined by a stereomicroscope. The findings have shown that both types of silane 

coating and silica nanofiller percentages significantly affected the wear rate of the composite 

structures. 

 

Silan Kaplı Silika Dolgulu Cam/Epoksi Nanokompozitlerin Aşınma 
Davranışlarının Araştırılması 

Anahtar Kelimeler  
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Aşınma testi; Aşınma 

mekanizmaları.  

Öz 

Silan kaplı silika (SiO2) nanoparçacık dolgulu cam elyaf takviyeli polimer kompozitlerin aşınma 

davranışları, silan kaplama tipine (KH550: -Aminopropyl-triethoxy-silan, KH570:  -

Methacryloxypropyl-trimethoxy-silan) ve polimer matrisi içindeki nanoparçacık yüzdelerine bağlı olarak 

incelenmiştir. Birçok araştırma çalışmasından farklı olarak, silanize silika nanoparçacıklar hazır bir 

şekilde kullanıldı. Bu nedenle silanizasyon işlemi ortadan kaldırıldığı için silanizasyon ve nanoparçacık 

takviyesinin sinerjistik etkileri başarıyla uygulandı. Nanopartiküller ile matris modifikasyonu, ultrasonik 

homojenleştirici kullanılarak gerçekleştirildi ve ardından modifiye edilmiş matris, cam elyaflarla 

güçlendirildi. Taramalı elektron mikroskobu, cam/epoksi kompozitler içinde silanize silika 

nanoparçacıkların dağılabilirliğini göstermiştir. Geliştirilen kompozitlerin aşınma davranışları bir triboloji 

cihazı ile incelenmiştir. Aşınmanın genişliğine ve derinliğine bağlı olarak aşınma izi profilleri elde 

edilmiştir. Aşınma izinin uzunluğu ve aşınma mekanizmaları bir stereomikroskop ile belirlendi. Bulgular, 

her iki silan kaplama tipinin ve silika nanodolgu yüzdelerinin kompozit yapıların aşınma durumunu 

önemli ölçüde etkilediğini göstermiştir. 

© Afyon Kocatepe Üniversitesi 

 

1. Introduction 

Thermosetting fiber-reinforced polymer (FRP) 

composites, commonly including epoxy, have a low 

resistance to impact loads and show brittle failure 

behavior and poor tribological properties (Kwon et 

al. 2017, Wu et al. 2015, Zhao et al. 2019). They also 

have poor thermal conductivity with high thermal 

expansion coefficients (Kausar 2020). By keeping 

the structural lightweight of the composites, the 

polymer matrix materials can be modified with 
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organic and inorganic particles (Deng et al. 2008) to 

enhance the structural performance of the FRP 

composites. Using secondary reinforcement 

elements like nano or microstructures can provide 

further improvements in the electrical, mechanical, 

physical, and thermal properties of the FRP 

composites (Bertasius et al. 2019, Liang and Wong 

2017). Moreover, matrix strengthening can 

contribute to the out-of-plane properties of the 

composites (Shokrieh et al. 2015). The common 

additive materials that can be used as the secondary 

reinforcing constituents are carbon nanotube (Tang 

et al. 2013), graphene (Jia et al. 2018), silica (Panse 

et al. 2016), titania (Rubab et al. 2014), alumina 

(Mohanty and Srivastava 2015), and boron carbide 

(Geren et al. 2021). 

 

The enhancements obtained by the matrix 

toughening with nano or microparticles are 

attributed to the reduced voids within the 

composite laminates, improved resistance to 

delamination failure of the laminates, and strong 

interfacial adhesion bonding between the fibers and 

the modified matrix (Kuzmin et al. 2016, 

Muralidhara et al. 2020, Wu et al. 2015). However, 

nanoparticles offer outstanding advantages even at 

very low contents than their microparticle 

counterparts (Elango and Faudzi 2015). Because 

nanoparticles have a high specific surface area that 

conducts a bridging effect, leading to better crack 

inhibition performance (Pun et al. 2019). 

 

Silica (SiO2) nanoparticles are inorganic materials 

and have widespread usage due to their very low 

cost, high specific surface area, high-temperature 

resistance, and nontoxic features (Megahed et al. 

2019, Pun et al. 2019, Wu et al. 2015). Lazar et al. 

(2018) used silica nanoparticles as a secondary 

reinforcement to improve the bending strength of 

glass FRP composites, and they obtained a nearly 

40% increase at 0.75 wt.% of silica to epoxy resin 

ratio.  Yıldırım et al. (Yildirim et al. 2017) increased 

the thermal decomposition temperature values of 

glass FRP composites with the addition of silica 

nanoparticles by about 45 C. However, silica 

nanoparticles have poor disperse ability due to the 

susceptibility of their reaction with water 

molecules, and thus the, agglomeration commonly 

becomes a challenging issue even at very low 

dispersion percentages (Saberian et al. 2019, Wang 

et al. 2019). The aggregation can also be attributed 

to the high surface energy of the nanoparticles 

(Ozsoy et al. 2017). The silica nanoparticles have 

been chemically treated with silane coupling agents 

to avoid agglomerations. The silane coatings can 

provide better dispersibility of the silica 

nanoparticles and conduct a bridging effect, 

obtaining higher mechanical and thermal properties 

(Allahverdi et al. 2012).   

 

There are several commercial silane coupling agents 

such as KH550, KH560, KH570, and KH792 to 

functionalize the silica nanoparticles. A significant 

improvement in the adhesion can be achieved 

between the reinforcing fillers and the matrix 

material due to the presence of silane coupling 

agents (Panin et al. 2019). In the literature, many 

researchers have usually applied silanization 

process to eliminate the disadvantages of silica 

nanoparticles. Wu et al. (2015) used a KH550 type 

silane coupling agent and highly reduced the 

agglomeration of the nanoparticles within the epoxy 

matrix. Zhang et al. (2021) compared the effects of 

different silane coupling agents on the mechanical 

and thermal properties of the polymer matrix. The 

results showed that the KH550 and KH792 types of 

silane coatings on silica nanoparticles provided 

significant improvements compared to the KH560 

and KH570 types. Wang et al. (2019) also reported 

the better integration of KH550 considering the 

thermodynamical properties of silanized 

SiO2/cellulose composites. 

 

The polymer matrix composites reinforced with 

several fibers and additive materials as fillers have 

been subjected to wear in many engineering 

applications. Therefore, investigations of the 

reinforced composites with modified matrix 

materials on the tribological properties have also 

attracted researchers. Zhao et al. (2019) reported a 

considerable reduction in coefficient of friction 

(COF) and wear rate values of epoxy composites by 

incorporating nano-sized boron nitride filler. Ozsoy 

et al. (2017) dispersed microparticles (alumina, 
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titania, and fly ash) into the epoxy and improved the 

COF and specific wear rates; 20 wt.% of fly ash micro 

fillers provided the best reductions. Silane coupling 

agents also play an important role to achieve better 

anti-wear properties. Panin et al. (2019) compared 

two silane-containing modifiers (Penta 1006 and 

KH550) for the wear properties of chopped glass 

fiber-filled ultrahigh molecular weight polyethylene 

composites. They reported that KH550 provided 

more effective compatibility with the glass fibers, so 

better tribological properties were obtained. 

 

In this study, the effects of as received silane coated 

silica nanoparticles on the wear behaviors of nano-

silica filled glass FRP composites were investigated. 

Both KH550 (-Aminopropyl-triethoxy silane) and 

KH570 (-Methacryloxypropyl-trimethoxy silane) 

silane coated silica nanoparticles were dispersed 

within epoxy at a weight ratio of 1.5% and 3%, 

respectively. Then the modified polymer matrix was 

reinforced with plain-woven glass fibers, acting as 

the primary reinforcement. The wear loss, specific 

wear rate, and wear mechanisms of the developed 

composites were evaluated considering the type of 

silane coating and nanofiller percentages. 

 

2. Materials and Method 

2.1 Composite Constituents and Manufacturing 

 

The developed composites have consisted of plain-

woven glass fibers, epoxy resin set, and silanized 

silica (SiO2) nanoparticles. Glass fibers have 2560 

kg/m3 density, 3400 MPa tensile strength, 73 GPa 

tensile modulus, and the elongation at break of the 

fibers is 2.75 %. Epoxy resin set consists of L160 

epoxy resin and H160 hardener, which the materials 

were mixed at a weight ratio of 100:25. The polymer 

matrix has a density of about 1190 kg/m3, and the 

tensile, compressive, and impact strength values are 

approximately 75 MPa, 90 MPa, and 45 kJ/m2, 

respectively. The elongation at break of the matrix 

is between 5-6.5%. The silanized SiO2 nanoparticles 

have a particle size of 18-35 nm and a specific 

surface area of 150-550 m2/gr. The types of silane 

coatings were KH550 (-Aminopropyl-triethoxy 

silane) and KH570 (-Methacryloxypropyl-

trimethoxy silane). The amount of silane coatings 

for both KH550 and KH570 is 3-4% with respect to 

the amount of silica. The purity of silane-coated SiO2 

nanoparticles is above 95.9% and 96.3% for KH550 

and KH570, respectively. All these specifications 

were obtained from the suppliers. The 

nanoparticles were used as received; therefore, the 

silane treatment process of silica nanoparticles was 

eliminated. 

 

The nanocomposites were manufactured in two 

stages. Once the modified polymer matrix materials 

were obtained and then they were reinforced with 

glass fibers. The steps of the manufacturing process 

are presented in Figure 1. 

 

2.2 Microscopic Examinations 

 

Scanned electron microscopy (SEM) and 

stereomicroscope were utilized in the present 

study. The SEM was used to analyze the 

dispersibility of silanized SiO2 nanoparticles within 

the glass/epoxy composites. The observations were 

made via Quanta 650 Field Emission SEM device, 

and to improve the image quality a very thin 

conductive coating material was applied over the 

specimens. The stereomicroscope was used via 

Nikon SMZ1500 stereomicroscope device to 

measure the wear track's length and determine the 

wear mechanisms on the worn surfaces.  

 

 
    

 
    

Figure 1. The manufacturing process of the silanized silica filled glass FRP nanocomposites 
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2.3 Wear Test 

 

The wear tests were carried out to reveal the wear 

behavior of the silanized nano silica filled glass FRP 

composites. The investigations were made by 

utilizing a ball-on-disc type multi-functional 

tribometer testing device (UTS Tribolog /www.uts-

design.com, Turkey). The tests were performed as 

dry rotating for a sliding distance of 400 m under 35 

N normal load for approximately one hour. The 

rotating speed was 125.6 mm/s and the ball 

material was 6 mm diameter Al2O3. During the wear 

tests, wear track profiles of the hybrid composites 

were obtained according to the scanned distance 

and wear depth. 

 

To compare the rate of wear, the volume loss (V) of 

the nanocomposites was determined. V values were 

calculated based on the product of integrated area 

of the wear track profiles and the average track 

length (L). This procedure was also reported in the 

literature (Aguilera-Camacho et al. 2021). Then the 

specific wear rate can be calculated according to 

Equations (1) and (2) (Aguilera-Camacho et al. 

2021). 

 

𝑉 = 𝐴𝑤𝑡 × 𝐿                                  (1) 

 

𝐾 =
𝑉

𝐹.𝑆
                     (2) 

 

Where V is the volume loss (mm3), Awt is the wear 

track integrated area (mm2), L is the track length 

(mm) that is measured on the worn surface with the 

aid of a stereomicroscope, K is the specific wear rate 

(mm3/Nm), F is the applied load (N), and S is the 

sliding distance (m). 

 

3. Results and Discussion 

3.1 Analysis of Silanized Silica Nanoparticles’ 

Dispersibility 

 

The dispersibility of silanized silica nanoparticles 

within the polymer matrix were examined with SEM 

images. Figure 2 presents the glass FRP (GFRP) 

composites hybridized with silanized silica 

nanoparticles depending on the type of silane 

coating and filler percentages. The sizes of some 

detected nanoparticles were measured, and the 

values are given in Figure 2. 

 

 

 

 

 
Figure 2. SEM images of the silanized silica filled GFRP 

nanocomposites 
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According to the supplier’s datasheet, the size of 

nanoparticles is in the range of 18-35 nm. As shown 

in Figure 2a (1.5 wt.% KH550 SiO2 filler addition) and 

2c (3 wt.% KH550 SiO2 filler addition), nanoparticles’ 

sizes are below 35 nm. However, the sizes of some 

nanoparticles are around 35 nm in Figure 2b (1.5 

wt.% KH570 SiO2 filler addition), and the sizes of 

some nanoparticles are above 35 nm in Figure 2d (3 

wt.% KH570 SiO2 filler addition). It is evident that the 

KH550 silane type has provided better integrity with 

the polymer matrix, so improved adhesion bonding 

was achieved. In the literature, Wang et al. (2020) 

functionalized the glass/PVC composites with 

KH550, KH560, and KH570. Their reported SEM 

images showed that the KH550 type of coating 

provided the best interfacial bonding of the glass 

fibers. On the other hand, the use of KH570 type 

silane coating did not finely homogenize the 

nanoparticles into smaller grains at 1.5 wt.% filler 

addition and did not prevent agglomeration at 3 

wt.% filler addition. The poor dispersibility adversely 

affects the load transfer between the matrix and the 

reinforcements leading to weakness in mechanical 

properties (Ulus et al. 2016, Zheng and Park 2019). 

 

3.2 Wear Behavior 

 

The wear resistances of the nanocomposites were 

revealed based on the wear track profiles. The wear 

depth versus scanned distance curves, given in 

Figure 3, comparatively presents the wear track 

profiles of the nanocomposites. Both the type of 

silane coating and nanoparticle percentages have 

significantly affected the wear behaviors. KH550 

coated silica filled GFRP nanocomposite has 

provided lower wear depth than that of KH570 

coating, irrespective of filler percentages. On the 

other hand, the maximum depth of wear values of 

1.5 wt.% silica filled GFRP nanocomposites were 

obtained at higher scanned distance values than 

that of 3 wt.% silica filled GFRP nanocomposites, 

irrespective of silane coating type. It can be inferred 

that increasing the filler percentages has caused the 

hybrid composite to be worn earlier. 
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Figure 3. Wear track profiles of silanized SiO2 filled GFRP 

nanocomposites. 

 

The area (Awt) under the curves was shaded, as 

shown in Figure 4. It can be seen that the area 

obtained from both 1.5 wt.% and 3 wt.% filler 

addition was found to be nearly the same for each 

silane coating. However, KH550-SiO2 fillers have 

provided the GFRP nanocomposite to obtain a lower 

track area than that of KH570-SiO2 fillers, 

irrespective of filler percentages. Because the dept 

of wear was observed higher in the case of KH570 

silane coating. This could be due to the better 

integration of the KH550 silane coating agent for 

SiO2 nanoparticles leading to improved interlaminar 

adhesion between the glass fibers and the modified 

matrix. Therefore, the resistance of KH550 coated 

silica-filled GFRP nanocomposites against wear was 

better, leading to a lower depth of wear. Panin et al. 

(2019) also recommended applying silane coating of 

KH550 for better anti-wear properties. On the other 

hand, the higher depth of wear obtained with 

KH570 coated silica-filled GFRP nanocomposites 

could be attributed to the non-uniform distribution 

of the nanoparticles, leading to poor interfacial 

strength between the glass fiber and the matrix. The 

agglomerations can weaken the load transfer and 

accelerates the composites’ failure due to the stress 

concentration around the agglomerates. Guo et al. 

(2019) compared the silanization effects of KH550 

and KH570 and reported that KH550 had more 

impact on the conducting of strong adhesion 

bonding that led to improved wear resistance. 
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Figure 4. The area under the wear track profile (Awt) of 

the silanized silica filled GFRP nanocomposites. 

 

The length of wear track values of the 

nanocomposites was obtained using a 

stereomicroscope. As seen in Figure 5, the track 

length was measured on the worn surfaces and 

recorded from several locations. The average L 

values and their standard deviations are written in 

Table 1.  

 

 

 

 

 
Figure 5. Measurements of wear track length of the 

silanized silica filled GFRP nanocomposites.  
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When Table 1 is scrutinized, the approximate wear 

track area (Awt) was found 0.25 mm2 and 0.32 mm2 

for KH550 and KH570 coated silica GFRP 

nanocomposites, respectively, and there is no 

significant difference between the nanocomposites 

having various filler percentages for each of the 

silane coating types. Similar trend can also be seen 

for other parameters in Table 1. The wear rate 

values were approximately found 38x10-6 mm3/Nm 

and 52x10-6 mm3/Nm for KH550 and KH570 coated 

silica GFRP nanocomposites, respectively. KH570 

silane coating for silica nanoparticles has caused 

about 36-38% higher volume loss and specific wear 

rate compared to the results of KH550. 

 

The wear failure mechanisms of the 

nanocomposites were examined on the worn 

surfaces using the stereomicroscope. Plastic 

deformation and adhesion are the typical wear 

mechanisms observed mainly for the KH550 silane 

coated silica GFRP nanocomposites, as seen in 

Figures 6a and 6c. Because the worn surfaces are 

seen wavy. The failure mechanisms for KH570 silane 

coated silica GFRP nanocomposites (Figures 6b and 

6d) were developed in a severe condition compared 

to the KH550. Also, wear debris particles, and pit 

formations were more visible in Figures 6b and 6d. 

Similar wear mechanisms were observed by Sharma 

et al. (2020). 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6. Stereomicroscope examination of wear 

mechanisms of silanized silica filled GFRP 

nanocomposites.  
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Table 1. Wear results of the silanized silica filled GFRP nanocomposites. 

Nanocomposites Awt (mm2) L (mm) V (mm3) K (mm3/Nm) x 10-6 

1.5 wt.% KH550-SiO2/G/E 0.25299 2.098 (0.099) 0.531 37.91 

3 wt.% KH550-SiO2/G/E 0.25290 2.114 (0.142) 0.534 38.19 

1.5 wt.% KH570-SiO2/G/E 0.31527 2.322 (0.136) 0.732 52.29 

3 wt.% KH570-SiO2/G/E 0.31582 2.300 (0.064) 0.726 51.89 

 

4. Conclusion 

The effects of nano-silica percentages and type of 

silane coating over the nanoparticles on the glass 

FRP composites have been revealed based on the 

wear behaviors. Both the filler amount and silane 

type have significant effects on the results. Mainly, 

the following conclusions can be drawn from the 

study: 

• Silane coating of silica nanoparticles with KH550 

has provided better dispersibility than KH570. 

• The wear grooves have become broader and 

deeper for KH570 coated silica-filled GFRP 

nanocomposites. The length and area of wear 

track values were found to be approximately 

10% and 25% higher when compared to that of 

KH550 coated silica-filled GFRP nanocomposites. 

• Increasing the silanized silica filler percentages 

(irrespective of silane type) led to the wearing out 

of GFRP nanocomposites at relatively lower 

scanned distance values. 

• The volume loss and specific wear rate values of 

KH550 coated silica-filled GFRP nanocomposites 

were 36-38% lower than that of KH570, 

irrespective of the filler percentages. 

• While the wear debris particles and pit 

formations were the dominant wear 

mechanisms for KH570 coated silica-filled GFRP 

nanocomposites, the waviness of the worn 

surfaces observed for KH550 coated silica filled 

GFRP nanocomposites has indicated the wear 

mechanisms of plastic deformation and 

adhesion. 
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