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 Airplane detection from satellite imagery is a challenging task due to the complex backgrounds 
in the images and differences in data acquisition conditions caused by the sensor geometry 
and atmospheric effects. Deep learning methods provide reliable and accurate solutions for 
automatic detection of airplanes; however, huge amount of training data is required to obtain 
promising results. In this study, we create a novel airplane detection dataset called High 
Resolution Planes (HRPlanes) by using images from Google Earth (GE) and labeling the 
bounding box of each plane on the images. HRPlanes include GE images of several different 
airports across the world to represent a variety of landscape, seasonal and satellite geometry 
conditions obtained from different satellites. We evaluated our dataset with two widely used 
object detection methods namely YOLOv4 and Faster R-CNN. Our preliminary results show 
that the proposed dataset can be a valuable data source and benchmark data set for future 
applications. Moreover, proposed architectures and results of this study could be used for 
transfer learning of different datasets and models for airplane detection.   
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1. Introduction  
 

The rapid technological advancements in remote 
sensing systems have significantly improved [1] the 
availability of very high-resolution remote sensing 
imagery [2] to be used for the detection of geospatial 
objects such as airplanes, ships, buildings, etc. [3]. 
Airplane detection is essential in various fields such as 
airport surveillance [4], transportation activity analysis 
[5], defence and military applications and satellite 
imagery is a significant data source for this purpose with 
the advantages of covering large areas very quickly and 
periodically [6].  

Airplane detection studies from earlier years are 
generally based on template matching and machine 
learning. For example, Liu et al. [7] and Xu and Duan [8] 
have utilized deformable templates for airplane 
detection. Although this method is flexible and 
outperforms rigid shape matching, it still needs various 
types of information for template design [9]. Compared 
to template matching, machine learning methods have 

been used more widely for this purpose. Various feature 
extraction methods and classifiers are investigated in the 
literature. Sun et al. [10] utilized a spatial sparse coding 
bag of words (BOW) model combined with a linear 
support vector machine. This model uses sliding 
windows to extract features and employs a spatial 
mapping strategy to encode geometric information. 
Zhang et al. [11] proposed a rotation invariant histogram 
of oriented gradient (HOG) features for the detection of 
complex objects in high resolution imagery. They also 
improve their method further by using a generic 
discriminative part-based model later on [12]. Lei et al. 
[13] proposed a novel color-enhanced rotation-invariant 
Hough Forest to train a Pose-Estimation-based Rotation-
invariant Texton Forest. Liu and Shi [14] investigated the 
airplane feature possessing rotation invariant that 
combined with sparse coding and radial gradient 
transform. Machine learning methods require manually 
extracted features and thus, their performance is heavily 
depending on selecting accurate hand-crafted features 
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[15]. Deep learning approaches offer end-to-end 
solutions using automatic feature extraction. 

Recent studies illustrate that deep learning-based 
airplane detection methods not only outperform 
conventional object detection algorithms but also 
provide feasible solutions. Chen et al. [16] combined 
classification and localization processes for better 
optimization using transfer learning. Xu et al. [17] 
proposed a multilayer feature fusion process that fuses 
the shallow and deep layer features in fully convolutional 
neural networks (FCN). Zhu et al. [18] utilized the L2 
norm normalization, feature connection, scale scaling, 
and feature dimension reduction for more efficient 
fusion of low- and high-level features. Alganci et al. [6] 
assessed different deep learning approaches namely 
Faster Regional Convolutional Neural Network (Faster R-
CNN), Single Shot Multi-box Detector (SSD) and You Only 
Look Once Version 3 (YOLOv3) for airplane detection 
from very high resolution satellite imagery. Wu et al. [19] 
proposed Weakly Supervised Learning in AlexNet which 
requires only image-level labelled data contrary to other 
object detection methods. Zhou et al. [20] introduced 
Multiscale Detection Network to detect small-scale 
aircrafts in a multiscale detection architecture manner. Ji 
et al. [21] developed a Faster R-CNN based model that 
combines multi-angle features driven and majority 
voting strategy. Shi et al. [22] introduced Deconvolution 
operation with a Position Attention mechanism 
(DPANet) that captures the external structural feature 
representation of aircraft during the feature map 
generation process. Wu et al. [23] proposed a self-
calibrated Mask R-CNN model that performs perform 
object recognition and segmentation in parallel. Zeng et 
al. [24] utilize a top-down approach for aircraft detection 
in large scenes. Once the airport area is extracted with U-
Net, Faster-RCNN with a feature enhancement module is 
applied for target detection. Chen et al. [25] have 
proposed two-stage aircraft detection network. The first 
stage creates region proposals using a circular intensity 
filter and the second stage detects targets by using a 
combination of rotation-invariant histogram of oriented 
gradient and vector of locally aggregated descriptors.  

In order to train deep neural networks, huge amounts 
of images and corresponding labels are needed. 
Researchers have proposed datasets including airplanes 
for this purpose. Xia et al. [26] introduced the DOTA 
dataset with 15 classes including airplanes using imagery 
from Google Earth, Jilin-1 and Gaofen-2 satellites. This 
dataset has been then expanded, improved, and renamed 
as the iSAID dataset [27]. Lam et al. [28] utilized multi-
source imagery to generate the xView dataset which has 
passenger/cargo planes and 59 other classes. More 
recently, Shermeyer et al. [29] took the advantage of 
synthetic data to create RarePlanes dataset. The dataset 
consists of 253 WorldView-3 real and 50,000 synthetic 
imageries, and corresponding 14,700 hand-annotated 
and 630,000 simulated plane labels, respectively.  

In this study, we create a huge novel dataset solely for 
airplanes from very high-resolution Google Earth 
imagery using only hand-annotated labels. Our dataset, 
HRPlanes, includes images obtained from the biggest 
airports across the world to represent a variety of 
landscape, seasonal, and data acquisition geometry 

conditions. We also evaluate our dataset using state-of-
the-art deep neural networks namely YOLOv4 and Faster 
R-CNN to analyze the performance of two different object 
detection algorithms. 

 

2. Dataset 
 

The imagery required for the dataset has been 
obtained from Google Earth. We have downloaded 4800 
x 2703 sized 3092 RGB images from the biggest airports 
of the world such as Paris-Charles de Gaulle, John F. 
Kennedy, Frankfurt, Istanbul, Madrid, Dallas, Las Vegas 
and Amsterdam Airports, and aircraft boneyards like 
Davis-Monthan Air Force Base.  

Dataset images were annotated manually by creating 
bounding boxes for each airplane using HyperLabel 
software [30]. Quality control of each label was 
conducted by visual inspection of independent analysts 
who were not included in the labelling procedure. A total 
of 18,477 airplanes have been labelled. A sample image 
and corresponding minimum boxes for airplanes can be 
seen in Figure 1. 

The dataset has been approximately split as 70% 
(2166 images), 20% (615 images) and 10% (311 images) 
for training, validation and testing, respectively. 
 

 

 

 
Figure 1. Sample images from the HRPlanes dataset 
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3. Methods  
 

The proposed dataset has been evaluated using state-
of-the-art YOLOv4 and Faster R-CNN methods. Both 
methods have been widely utilized in various object 
detection applications in the literature. 

 
3.1. YOLOv4 

 
The first version of YOLO is proposed by [31], which 

is highlighted to be extremely fast. The network which 
runs on Darknet framework is a global model since it 
uses features from the whole image to predict bounding 
boxes. Therefore, the model is able to learn general 
representations of the objects. The input image is divided 
by an S x S grid. The grid that covers the center of an 
object is responsible for detecting the object. The 
bounding boxes are predicted with a confidence score 
which is calculated by: Pr(𝑜𝑏𝑗𝑒𝑐𝑡) × 𝐼𝑜𝑈𝐺𝑇  . YOLO has a 
GoogLeNet [32] based architecture which has 24 
convolutional and 2 fully connected layers. The network 
does not utilize the inception module, instead it uses a 1 
x 1 reduction layer with a 3 x 3 convolutional layer. While 
the linear activation function is used in the final layer, 
leaky rectified linear activation is exploited in all other 
layers. Even though YOLO is fast and sensitive to false 
positives, it still has problems with localization and 
recall. 

YOLOv2 [33] aims to improve the shortcomings of the 
first version of YOLO by simplifying the network with 
better representations. The first modification is adding 
batch normalization which also allows to removing 
dropouts from the model. YOLOv2’s classification 
network is trained on 448 x 448 resolution, instead of 
224 x 224. The network is then shrunk to 416 x 416 in 
order to obtain locations in the feature map as an odd 
number. The fully connected layers are removed in 
YOLOv2 and anchor boxes are added using dimension 
clusters to predict bounding boxes. Anchor boxes require 
manually determined box dimensions. To overcome this 
problem, k-means clustering is used to determine the 
bounding box priors. Even though the use of anchor 
boxes results in slight decrease in accuracy, an 
intermediate increase is obtained in the recall. The most 
significant improvement in YOLOv2 is the new backbone. 
Instead of using GoogLeNet based architecture, Darknet-
19 is proposed which consists of 19 convolutional and 5 
maximum pooling layers. 

YOLOv3 [34] uses logistic regression to calculate the 
objectness score for each predicted bounding box. The 
bounding boxes are predicted at three different scales by 
extracting features in all scales using a modified feature 
pyramid network [35]. In order to extract more semantic 
information, features from the earlier layers of the 
network are concatenated with up-sampled features 
from layers at the later stages. The feature extraction 
network Darknet-19 is more extended with 3 x 3 and 1 x 
1 convolutional layers and skip connections. The 
improved version has 53 convolutional layers and is 
referred as Darknet-53. Although YOLOv3 performs 
better with small objects compared to older YOLO 
versions, this is not the case for medium and large 
objects. 

YOLOv4 [36] aims to reach the optimum balance 
between resolution, layers and parameters in order to 
obtain accurate results rapidly. The Darknet-53 
backbone network is improved with Cross Stage Partial 
(CSP) module [37] which is called CSPDarknet-53 which 
contains 29 convolutional layers 3 × 3, a 725 × 725 
receptive field and 27.6 M parameters. With high number 
of convolutional layers, a larger receptive field allows the 
network to obtain a better detector.  In this scenario, the 
feature map of the base layer is partitioned and merged 
using a cross-stage hierarchy which provides more 
gradient flow. Additionally, Spatial pyramid pooling 
(SPP) [38] is integrated into the backbone of the network 
(CSPDarknet53 with Mish activation) in order to increase 
the receptive field even further. This helps to extract the 
main characteristic features without slowing the 
network. Path aggregation network (PANet) with Leaky 
activation is used for feature extraction instead of the 
FPN used in YOLOv3. Additionally, some CNN 
components have been integrated into the backbone and 
detector in order to improve the network further such as 
dropblock regularization, cross mini-batch 
normalization, CutMix and Mosaic data augmentation 
[36]. Whilst the authors select optimal hyper-parameters 
while applying genetic algorithms, they also provide 
some additional improvements to the network such as 
Self-Adversarial Training (SAT), modified spatial 
attention module, modified PAN, and Cross mini-Batch 
Normalization (CmBN). SAT is a data augmentation 
technique that consists of two forward-backward stages. 
In this way, the original image is altered to create the 
deception. Then, the network is trained using the 
modified images. SAM is modified by switching from 
spatial-wise attention to pointwise attention and the 
shortcut connection of PAN is replaced with 
concatenation. CmBN is a modified version of Cross-
Iteration Batch Normalization that gathers information 
in mini-batches within a single batch. 

 
3.2. Faster R-CNN 

 
Regions with CNN features (R-CNN) [39] combines 

region proposal with high-capacity CNNs that allows for 
bottom-up region proposals for better localization and 
performance. R-CNN consists of three parts. The first part 
creates region proposals using selective search which are 
not dependent on the class. The first part of the network 
creates around 2000 region proposals. The second part 
performs feature extraction using Caffe [40] with shared 
parameters for all classes. Since proposed regions can be 
in any size, they are dilated and warped to 227 x 227. 
Caffe network extracts a fixed size low-dimensional 
feature vector for each proposed region using five 
convolutional and two fully connected layers. The final 
part of the network scores each extracted feature vector 
utilizing class-specific linear SVMs. All regions with 
scores are then analyzed with non-maximum 
suppression for each class to obtain the best region 
proposal with the highest IoU. 

Feature extraction for each region proposal rather 
than a whole image increases computational cost and 
storage space. In order to overcome drawbacks, improve 
speed and increase the accuracy of the multi-stage 
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structured R-CNN method, a single-stage Fast-RCNN 
method that jointly learns the classification of proposal 
with refined localization is proposed [41]. The Fast R-
CNN network processes the whole image to create a 
feature map. A region of interest (RoI) pooling layer 
similar to SPPnet [38] takes the feature map and extracts 
a fixed-size feature vector using maximum pooling 
applied on each channel. Softmax probability estimates 
and bounding box positions are then produced by 
feeding each feature vector into a series of fully 
connected layers. During the training of Fast R-CNN, 
stochastic gradient descent mini-batches are sampled 
hierarchically. Computation and memory costs are 
shared for RoIs created in the same images during 
forward-backward passes. Additionally, the network 
jointly optimizes the classifier and the regressor in a 
single stage.  

Faster R-CNN [42] is based on a region proposal 
network (RPN). The detector in the network works with 
the rectangular object proposals by the RPN. Object 
proposals are then used by Fast R-CNN for detection. 
RPN also shares created features with Fast R-CNN thus, it 
does not increase computational cost. RPN also utilizes 
attention mechanisms that direct the Fast R-CNN 
detection network where to look. The anchors are 
created for each location as translation invariant and 
multi-scale. A multi-task loss is calculated by considering 
log loss and regression loss. Log loss is the classification 
loss between classes. For a single class airplane detection 
network, the classification loss calculates loss over 
airplane versus not plane. The regression loss is 
calculated once the anchor contains the desired object. 
Note that an object will have a defined maximum number 
of anchors. However, the anchor with the minimum loss 
will be attained as detection [42]. 

 
3.3. Accuracy Metrics 

 
The results are assessed using Microsoft COCO [43] 

evaluation metrics, which consist of various Average 
Precision (AP) and Average Recall (AR) values. In this 
study, we have used the first 3 evaluation metrics of 
Microsoft COCO to assess test results. These are namely 
mean average precision (mAP), mAP at 50% Intersection 
over Union (IoU), and mAP at 75% IoU. AP is a 
summarization metric derived from the precision-recall 
curve. It is calculated by the weighted mean of precision 
values for different recall threshold values varying from 
0 to 1 (Equation 1): 

 

𝐴𝑃 =∑(𝑅𝑛 − 𝑅𝑛−1) × 𝑃𝑛
𝑛

 (1) 

 

True Positives (TPs) are determined by IoU 
thresholds. For example, an IoU threshold of 50% means 
that the predicted bounding box will be counted as TP 
once it has equal to or greater than the IoU value of 50% 
with the ground truth, and AP is calculated based on this 
assumption which is the AP at 50% IoU threshold and 
referred as PASCAL VOC metric [44-45]. It is the same 
case for the AP at the 75% IoU threshold, which is 
stricter. The mAP is calculated by averaging APs 
calculated for 10 IoU thresholds from 50% to 95% with a 

0.05 increment for all classes. Since we have only one 
class in this study, mAP and AP values are identical. 
 
 

4. Results and Discussion 
 

Experiments were conducted in an Intel Core i9-
9900K 3.6 GHz CPU and an NVIDIA GeForce RTX 2080 Ti 
GPU. The training process for YOLOv4 was carried out in 
the Darknet framework. We conducted several initial 
experiments to find out the best hyperparameter 
configuration. Our results demonstrated that increasing 
batch size and subdivision affect the performance 
positively. This is similar for input image size as well. 
Higher image sizes provide better performance; 
however, computing load also increased for bigger image 
sizes, which is directly limited by the GPU. After manual 
hyper-tuning experiments, the best configuration for our 
hardware was found as; the input image of 416 x 416 
pixels for the network size, 64 as the batch size, and 32 
for the subdivision value. The learning rate, decay and 
momentum were input as 0.001, 0.0005 and 0.949, 
respectively. Complete-IoU loss was used as the loss 
function. YOLOv4 allows to apply various user-defined 
augmentation techniques namely mosaic, cut-mix, mix-
up and blur. We have applied these augmentation 
methods however our results show that using only 
mosaic augmentation improved the results considerably. 

Faster R-CNN network was trained on TensorFlow 
Object Detection API. The input image size was 1024 x 
600. Momentum optimizer were utilized with a 0.0001 
learning rate. We have used the random horizontal flip 
method for data augmentation. Both networks were 
trained using pre-trained weights from the MS COCO 
dataset. As explained for YOLOv4 experiments, Faster R-
CNN hyperparameters for training have been 
determined empirically. YOLOv4 training took 
approximately 12 hours to complete while the Faster R-
CNN training process was around 10 hours.  

Deep neural networks have been evaluated using the 
same test dataset for two different models. The 
evaluation results are given in Table 1. The evaluation 
results show that both networks perform well up to 75% 
IoU threshold; the mAP value of YOLOv4 is 73.02%; 
whereas Faster R-CNN provided slightly better 
performance with 76.40%. Although YOLOv4 produces 
very high mAP at 50% IoU value of 99.15%, this value 
reduces with increasing IoU values and decreses to 
91.82% for mAP at 75% IoU. YOLOv4 seems superior 
considering 50% and 75% IoU threshold. The decrease 
rate of AP with increasing IoU is higher for YOLOv4 
compared to Faster R-CNN. This indicates that YOLOv4 
cannot perform efficiently in higher IoU threshold levels 
higher than 80% in our dataset. 
 
Table 1. Evaluation results based on average precision 

 YOLOv4 Faster R-CNN 
mAP 73.02% 76.40% 
mAP@IoU=50% 99.15% 96.80% 
mAP@IoU=75% 91.82% 90.00% 

 
We present some figures to illustrate the obtained 

results with two different models; where purple boxes 
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represent YOLOv4 and green boxes represent Faster R-
CNN results. Since images are collected from different 
satellites, the real-world coverage of the images is 
different with respect to spatial resolution while 
represented with 4800 x 2703 pixels. For very high-
resolution images, the airplanes can be seen as very big 
objects within the scene with respect to image patch size. 
We will be using the term large scale for these examples 
such as Figure 2a, 2b, 2c, and 2d.  For high resolution 
images, the image patch is covering a bigger area in 
which we will be using the term small scale such as 
Figure 2e and 2f. The assessment of Figure 2 including 
samples from Amsterdam Schiphol Airport shows that 

airplanes represented with bigger object boxes could be 
clearly identified with both YOLOv4 and Faster R-CNN 
architectures as can be seen in Figure 2a, 2b, 2c and 2d. 
However, boundaries of bounding boxes for YOLOv4 
seem better at this scale specifically in Figure 2d 
compared to Faster R-CNN of Figure 2c, in which the tails 
of some airplanes are not included within the bounding 
boxes. We have a small-scale image example in Figure 2e 
and 2f, in which there are also airplanes of different sizes 
available. Faster R-CNN (Figure 2e) produces better 
results compared to YOLOv4 specifically for small 
airplanes. 

 

 
Figure 2. Prediction results of Faster R-CNN (green) and YOLOv4 (purple) from Amsterdam Schipol Airport 

 
 

Figure 3 shows prediction results for a small-scale 
imagery from Istanbul Sabiha Gokcen Airport. On the 
contrary to Figure 2f, YOLOv4 seems to be performing 
better in this example (Figure 3b). Both architectures 
have also detected the small propeller aircraft which is 
located in the upper left of the image (Figure 3a and 3b). 
Figure 3c and 3d present predictions for commercial 
planes on large scale in the same airport. In this example, 
YOLOv4 seems to create better bounding boxes (Figure 
3c) than Faster R-CNN (Figure 3d). This may be resulted 
due to boarding bridges near the planes. 

Our HRPlanes dataset consists of imageries from 
airports around different parts of the world. Some 
prediction results from Chengdu Shuangliu International 
Airport are shown in Figure 4. Both methods performed 
sufficiently with similar bounding boxes under clear 
(Figure 4a and 4b) and hazy (Figure 4c and 4d) 
atmospheric conditions. 

Military plane samples from Davis Monthan Air Force 
Base are shown in Figure 5. Both prediction results seem 
similar for fully visible airplanes in terms of both 
detection and bounding boxes as can be seen on the 
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center part of the image patch in Figures 5a and 5b; 
whereas, only YOLOv4 is able to detect tails of aircrafts 
on the southern part of the image patch (Figure 5b). 
Faster R-CNN could not able to capture parts of the 
aircrafts in this example. In another military planes 
example (Figure 5c and 5d), both architectures 
performed well and successfully detected seven military 
planes within the image patch. However, in some rare 

cases Faster R-CNN does not seem to create accurate 
bounding boxes for military planes and generate 
bounding boxes representing almost half of the airplanes 
(Figure 5e). Bounding boces of four out of six airplanes 
are not completely generated. YOLOv4 could detect all six 
airplanes and generate bounding boxes for all of them for 
the image patch (Figure 5f). 

 

 
Figure 3. Prediction results of Faster R-CNN (green) and YOLOv4 (purple) from Istanbul Sabiha Gokcen Airport 

 

 
Figure 4. Prediction results of YOLOv4 (purple) and Faster R-CNN (green) from Chengdu Shuangliu International 

 
Some small-scale examples which mostly consist of 

small propeller aircrafts are given in Figure 6. Faster R-
CNN seems to have significantly performed better in 

these imageries considering YOLOv4 have created 
various False Positives (FP) in different parts of the 
image (Figure 6b, 6d, and 6f). Some FP detections have 
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lower confidence levels, which could be eliminated by 
increasing the confidence level to 0.50 such as cases in 
Figure 6b to improve the results of YOLOv4. 

We show a plane graveyard example in Figure 7. Since 
the background is not complex and the planes are well 

aligned, both methods have performed efficiently in both 
examples. Even in small scale images, YOLOv4 was able 
to detect plane even though only their nose cones are 
visible which can be seen in upper right corner of Figure 
7b. 

 

 
Figure 5. Prediction results of Faster R-CNN (green) and YOLOv4 (purple) from Davis Monthan for millitary planes 

 
 

According to the prediction results, partly absent 
airplanes are generally detected by YOLOv4 (Figure 5b & 
Figure 7b). Only in some rare cases, Faster R-CNN is also 
able to detect them (Figure 8a). Additionally, it can be 
said that both methods can successfully identify 
airplanes in crowded scenes thanks to non-max 
suppression technique, even though Faster-RCNN has 
skipped one plane in Figure 8c. Both networks were even 
able to detect moving planes, which has a motion blur 
effect in the image (Figure 8e and 8f). 

Compared to similar studies in the literature, our 
results show promising results. Chen et al. [16] have also 
created a plane detection dataset from Google Earth 
images and obtained 96.23% mAP at 50% IoU with their 
proposed network.  Zhou et al. [20] have also used a 

similar dataset that consists of Google Earth and Tianditu 
images. They have achieved a mAP at 50% IoU value of 
90.66% using the proposed deep and wider module. Ji et 
al. [21] trained a modified Faster R-CNN network with 
two datasets (RSOD and DIOR) that consist of Google 
Earth imagery and the calculated mAP at 50% IoU values 
are 94.82% and 95.25%. Shi et al. [22] have utilized 
DOTA and DIOR datasets with the developed DPANet and 
obtained mAP values of 89.95% and 66.21%, 
respectively. Wu et al. [23] obtained a mAP at 50% IoU 
value of 96.80% using an improved version of DOTA with 
their improved Mask R-CNN network. As can be seen 
from the accuracy values obtained in the other recent 
studies in the literature, our results are also encoraging 
for plane detection from high resolution imagery. 
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Figure 6. Prediction results of Faster R-CNN (green) and YOLOv4 (purple) from a small-scale image with small 

propeller aircrafts 
 

 
Figure 7. Prediction results of Faster R-CNN (green) and YOLOv4 (purple) from a plane graveyard 
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Figure 8. Visibility, density and motion blur examples 
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5. Conclusion  
 

We created a novel airplane detection dataset, called 
HRPlanes, that includes image patches of commercial and 
military airplanes. We generated this new dataset to be a 
benchmark for deep learning-based object detection 
methods specifically for airplane cases. We evaluated the 
performance of YOLOv4 and Faster R-CNN on the created 
dataset with various experiments with different 
hyperparameters. Both models have provided 
satisfactory results for mAP at 75% IoU threshold above 
90% which is quite high. Our results show that the 
dataset provides highly accurate information to train 
deep neural networks efficiently. Our proposed models 
and hyperparameter setting could be used for various 
remote sensing-based airplane detection tasks and our 
model weights could be directly used for the inference of 
similar datasets and transfer learning of different 
datasets. Moreover, our test dataset could be used by 
different researchers to evaluate the new model 
proposals. After further analysis and quality checks, it is 
planned to share the whole dataset publicly. Train and 
validation sets of the dataset are available upon request 
from the corresponding author. Currently, the weights of 
both networks and test dataset are available on: 
https://github.com/TolgaBkm/HRPlanes 
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