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Highlights 
• Flow shop scheduling problem with unavailable periods and additional resources is discussed. 
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• A MIP model and a hybrid algorithm have been developed. 

• In the proposed hybrid algorithm, genetic algorithm and modified subgradient algorithm works together. 

• With the developed hybrid algorithm, GAMS results are improved up to 88%.   
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Abstract 

In the scheduling literature, the studies that consider unavailable periods (UPs) have generally 

ignored the resources. However, when the resources to be used in unavailable periods are limited 

and these resources are needed for more than one machine at the same time, the problem of when 

the resource should be allocated to which machine arises. This decision is important as it can 

greatly affect the effectiveness of the machine schedule. For this reason, it is necessary to consider 

not only the UPs, but also the resources used by the UPs. In this study, flow shop scheduling 

problem with unavailable periods, flexible in a time window, and additional resources is 

discussed. In the considered problem, since additional resources are required during the 

unavailable periods and they can serve just one machine at a time, they cannot overlap. A MIP 

model and a hybrid algorithm that genetic algorithm and modified subgradient algorithm works 

together, have been developed for the considered problem. The performance of the hybrid 

algorithm is compared with pure genetic algorithm and Cplex solver of GAMS by using randomly 

generated test problems. Test results showed that while hybrid algorithm has solution quality 

advantage, genetic algorithm has solution time advantage. In addition, with the developed hybrid 

algorithm, GAMS results were improved up to 88%. 
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1. INTRODUCTION 

 

Manufacturers must consider their production environment's conditions to obtain efficient schedules. 

Taking into consideration the maintenance activities and resource constraints in production scheduling is 

very critical in modern-day manufacturing and service environments [1]. Since handling these constraints 

increases the complexity of the problem, most studies in the scheduling literature, assume that machines 

are always available or ignore the additional resources. However, in many sectors, production is interrupted 

periodically due to planned maintenance and rest breaks. Furthermore, additional resources such as tools 

or a specialized workforce are required frequently in production or maintenance activities. For that reason, 

these constraints need to be considered when making scheduling decisions. However, as Geurtsen et al. [1] 

stated the number of studies that consider both unavailable periods (UP) and additional resources (AR) is 

still limited. The first study on machine scheduling problems with UP and AR was in 2000 [2]. The studies 

carried out from this date to the present are presented in Table 1. 
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Table 1. Studies on machine scheduling with UP and AR 

Reference ME TW Objectives Solution Method 

Lee and Chen [2] P ✓ total weighted completion time B&B 

Yoo and Lee [3]  P ✓ multiple objective functions DP  

Belkaid et al. [4]  P  makespan GA, MIP  

Wong et al. [5]  P  makespan GA  

Wong et al. [6]  P  makespan GA  

Wang and Liu [7]  P  makespan GA  

Fu et al. [8]  P  makespan PSO  

Liu and Wang [9]  R  makespan, total completion time, 

resource cost  

PTA  

Rebai et al. [10] R  total weighted completion time, 

total tardiness cost maintenance, 

total earliness cost maintenance 

MIP, GA, H  

Tavana et al. [11] R  multiple objective functions IP  

Li et al. [12] R  makespan ABC-AC 

Aramon Bajestani and 

Beck [13] 

F  total maintenance 

and lost production costs 

ITA  

Boufellouh and Belkaid 

[14] 

F  makespan and total production 

costs 

NSGA-II, 

BOPSO 

Wang and Yu [15] J ✓ makespan, maximum machine 

workload, total machine workload 

FBS 

Fu et al. [16] J  makespan PSO 

This study F ✓ makespan HA 

ME: Machine Environment, P: identical parallel machines, R: unrelated parallel machines, F: Flow Shop, J: Job Shop, TW: time 

window , GA: Genetic Algorithm, HA: Hybrid Algorithm, B&B: branch and bound, PTA: Polynomial time algorithm, DP: 

Dynamic programming, H: Heuristic, MIP: Mixed Integer Programming, IP: Integer Programming, FBS: Filtered Beam Search, 

PSO: Particle Swarm Optimization, ABC-AC: Artificial Bee Colony with Adaptive Competition, NSGA-II: Non-Dominated 

Sorting Genetic Algorithm, BOPSO: Bi-Objective Adaptation of the Particle Swarm optimization, ITA: Integrated two-stage 

algorithm. 

 

The addition of UP and AR constraints increases the complexity of scheduling problems. Therefore, as can 

be seen from Table 1, most of the studies dealing with these constraints together are in the parallel machine 

environment (P and R), which is less complex than flow shop (F) and job shop (J) scheduling problems.  

 

Makespan is a manufacturer-oriented objective function as it serves to increase machine efficiency. 

Therefore, it cannot be ignored by many firms. Also, this objective function serves to balance machine 

loads in parallel machine scheduling problems. Therefore, it is one of the most frequently discussed 

objective functions in the scheduling literature. Similarly, as seen in Table 1, makespan is the most 

frequently used objective function in studies that UP and AR constraints are considered together. 

 

Due to its NP-hard nature, it is not possible to solve the large sized of machine scheduling problems that 

deal with UP and AR constraints together with exact solution methods, so as can be seen from Table 1, 

metaheuristic algorithms are generally suggested as a solution method. Among the metaheuristic 

algorithms, GA has become one of the most preferred algorithms due to its success. GA is a method for 

solving both constrained and unconstrained optimization problems. The application of GAs to constrained 

optimization problems is often a challenging effort. Several methods such as repairing, penalizing, etc. have 

been proposed for handling constraints.  The most common method in GAs to handle constraints is to use 

a penalty function. However, determining the value of the penalty parameter is also a difficult problem. If 
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the value of it is not proper, even a feasible solution may not be obtained.  Therefore, in this study, a hybrid 

algorithm that modified subgradient (MSG) algorithm and GA work together is proposed. 

 

The MSG algorithm was proposed by Gasimov [17] for solving dual problems constructed in respect to a 

sharp augmented Lagrangean function. It is proven that the sharp augmented Lagrangean guarantees the 

zero-duality gap, if the objective and constraint functions are all Lipschitz [17]. Then, Kasimbeyli et al. 

[18] proposed the feasible value based modified subgradient (FMSG) algorithm as an improved version of 

the MSG algorithm. Detailed information about these algorithms can be reached from Gasimov [17] and  

Kasimbeyli et al. [18]. MSG and FMSG algorithms were utilized in the literature by many researchers to 

solve different nonconvex optimization problems such as quadratic assignment problem [19], quadratic 

knapsack problem [20], cell formation problem [21], multi-period facility layout problem [22], generalized 

quadratic multiple knapsack problem [23], capacitated vehicle routing problem [24] and aircraft 

maintenance routing problem [25]. Since the performances of the both MSG and FMSG algorithms depend 

on the performance of the solution method used for solving the sub problem at any iteration, some 

researchers hybridized these algorithms with metaheuristics. Ozcelik and Saraç [21] and Takan and 

Kasımbeyli [24] hybridized MSG with genetic algorithm, Saraç and Sipahioglu [23] hybridized FMSG with 

GA and Bulbul and Kasımbeyli [25] with ant colony optimization algorithm. When the hybrid algorithms 

in which MSG/FMSG algorithms and metaheuristic algorithms work together in the literature are examined, 

it has been observed that these studies have been applied to constrained problems, whose constraints are 

hard to handle with metaheuristics, and successful results have been obtained for these. Therefore, in this 

study, a hybrid algorithm in which MSG and GA work together is proposed for the FSS with UP and AR 

constraints for the first time. 

 

Unavailable periods can be considered in two ways; flexible in a time window or fixed. Most of the studies 

in related literature assume the unavailable periods as fixed, that is, the starting time and the end time of 

UPs are pre-determined. However, in practice, since the starting time of UPs is generally flexible, 

availability constraints on the machine are non-fixed [15]. This means that the starting time of the UPs is 

not known in advance and has to be determined within the given time window during the scheduling 

process. The studies that considered the availability constraints as non-fixed are limited; such as Lee and 

Chen [2], Yoo and Lee [3] in identical parallel machine environment and Wang and Yu [15] in job shop 

environment. From the reached literature, there is not any study that considers UPs as flexible in a time 

window in FSS with UP and AR constraints. 

 

Since FSS is an important problem commonly encountered in mass production systems, it has been 

frequently addressed by researchers in recent years. For detailed information on studies dealing with the 

FSS problem, see the review papers of Singh et al. [26], Komaki et al. [27], and Yenisey and Yağmahan 

[28].    

 

There are only two studies considers FSS with UP and AR constraints. Aramon Bajestani and Beck [13] 

addressed an integrated maintenance and production scheduling problem. They solved the problem with an 

integrated two-stage algorithm. In the first stage, machines and time periods are assigned to maintenance, 

while in the second stage a schedule is created for the current time period. These two stage is solved 

iteratively until the solution costs in two stages converge. Boufellouh and Belkaid [14] considered 

production scheduling, maintenance planning and resource supply rate decisions in a permutation flow shop 

environment. The authors modelled the problem in a bi-objective manner, to minimize the makespan and 

total production costs, and proposed NSGA-II and BOPSO for the solution of the problem.  None of these 

two studies considered the UP as flexible in a time window. 

 

In this study, a flow shop scheduling problem with unavailable periods, flexible in a time window, and 

additional resource constraints is considered. To solve the problem, a hybrid algorithm that GA and MSG 

algorithm works together is proposed. Proposed solution method has a big advantage in dealing with 

complex constraints. 

 

In the following section, the problem addressed is defined and the developed mathematical model is 

presented. The details of the proposed GA and hybrid algorithm (HA) are given in the third section, and 
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the experimental results are presented in the fourth section. In the fifth section, the obtained results and 

suggestions for the future are discussed. In Appendix, we state the best-found sequences with GAMS, GA 

or HA. 

 

2. PROBLEM DEFINITION AND DEVELOPED MATHEMATICAL MODEL 

 

In the considered problem, n jobs are processed with the same order on m machines. The processing time 

(𝑝𝑗𝑙) of job j on each machine may be different. Job setup times are machine and sequence dependent. Jobs 

are ready at time zero. Each machine can only perform one job at a time. Each machine has available and 

unavailable periods. Available period l must occur within a certain interval. A job cannot be assigned to an 

unavailable period and cannot be split. Therefore, it must either be completed before or start after the 

unavailable period. During UPs, additional resources are used. ARs can serve only one machine at a time, 

in other words, there is a single server in the system. For that reason, it is desired that the UPs on different 

machines should not overlap. The objective function is to minimise the completion time of the last job on 

the last machine. 

 

The proposed mathematical model (FSS-UP-AR) and the sets, indices, parameters, decision variables, 

constraints and objective function of this model are given below; 

 

Sets and indexes: 

𝑁= {1, 2, .., n} set of job. 𝑖, 𝑗, 𝑘 ∈ 𝑁 

M = {1, 2, .., m}  set of machines. 𝑙, 𝑟 ∈ 𝑀 

Q = {1, 2, .., 𝑚𝑎𝑥
𝑖

𝛿𝑖} set of number of UPs. 𝑓 ∈ 𝑄 where 𝛿𝑖 is the number of UPs in machine i 

 

Parameters: 

𝑝𝑗𝑙: processing time of job j in machine l 

ℎ𝑗𝑙: setup time of job j in machine l (if j is the first job) 

𝑠𝑖𝑗𝑙: sequence and machine dependent setup time of job j in machine l after job i  

𝜃: big enough positive number  

𝑏𝑙: duration of UP in machine l 

𝜎𝑙
𝑚𝑖𝑛: minimum time of available period in machine l 

𝜎𝑙
𝑚𝑎𝑥: maximum time of available period in machine l 

 

Decision variables: 

𝑥𝑗𝑘: 1, if job j is assigned kth sequence; 0, otherwise. 

𝐶𝑘𝑙: completion time of job j assigned kth sequence in machine l 

𝑎𝑘𝑙: starting time of job j assigned kth sequence in machine l 

𝑎𝑓𝑙
𝑈𝑃: starting time of UP f in machine l 

𝐶𝑓𝑙
𝑈𝑃: completion time of UP f in machine l 

𝑤𝑘𝑓𝑙
𝑆 : 1, if job in kth sequence at machine l is completed before UP f starts in the same machine; 0, if UP f 

is completed before job in kth sequence at machine l starts in the same machine. 

𝑤𝑓𝑙𝑟
𝐷 : 1, if UP f in machine l is completed before UP f is started in machine r; 0, if UP f in machine r is 

completed before UP f is started in machine l.   

 

(FSS-UP-AR) 

Objective function: 

𝑚𝑖𝑛 𝑧 = 𝐶𝑛𝑚 (1) 

 

Constraints: 

∑ 𝑥𝑗𝑘

𝑘

=  1                                                                                ∀ 𝑗 ∈ 𝑁  (2) 
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∑ 𝑥𝑗𝑘

𝑗

=  1                                                                                ∀ 𝑘 ∈ 𝑁  (3) 

𝐶11 =  ∑(ℎ𝑗1 + 𝑝𝑗1)

𝑗

𝑥𝑗𝑘                                                  (4) 

𝐶1𝑙 ≥  𝐶1(𝑙−1) + ℎ𝑗𝑙 + 𝑝𝑗𝑙 − 𝜃(1 − 𝑥𝑗1)                             𝑙 > 1, ∀ 𝑗 ∈ 𝑁      (5) 

𝐶𝑘1 ≥  𝐶(𝑘−1)1 + 𝑝𝑗1 + 𝑠𝑖𝑗1 − 𝜃(2 − 𝑥𝑖(𝑘−1) − 𝑥𝑗𝑘)      𝑘 > 1, 𝑖 ≠ 𝑗 (6) 

𝑎𝑘𝑙 ≥  𝐶(𝑘−1)𝑙                                                                            𝑙 > 1, 𝑘 > 1 (7) 

𝑎𝑘𝑙 ≥  𝐶𝑘(𝑙−1)                                                                           𝑙 > 1, 𝑘 > 1     (8) 

𝐶𝑘𝑙 ≥  𝑎𝑘𝑙 + 𝑝𝑗𝑙 + 𝑠𝑖𝑗𝑙 − 𝜃(2 − 𝑥𝑖(𝑘−1) − 𝑥𝑗𝑘)                𝑘 > 1, 𝑙 > 1, 𝑖 ≠ 𝑗 (9) 

𝑎11 = 0 (10) 

𝑎1𝑙 =  𝐶1𝑙 − ∑(ℎ𝑗𝑙 + 𝑝𝑗𝑙)

𝑗

𝑥𝑗1                                              𝑙 > 1 (11) 

𝑎𝑘1 ≥  𝐶𝑘1 − 𝑝𝑗1 − 𝑠𝑖𝑗1 − 𝜃(2 − 𝑥𝑖(𝑘−1) − 𝑥𝑗𝑘)              𝑘 > 1, 𝑖 ≠ 𝑗 (12) 

𝑎𝑘1 ≤  𝐶𝑘1 − 𝑝𝑗1 − 𝑠𝑖𝑗1 + 𝜃(2 − 𝑥𝑖(𝑘−1) − 𝑥𝑗𝑘)              𝑘 > 1, 𝑖 ≠ 𝑗 (13) 

𝑎1𝑙
𝑈𝑃 ≥ 𝜎𝑙

𝑚𝑖𝑛                                                                      ∀ 𝑙 ∈ 𝑀 (14) 

𝑎1𝑙
𝑈𝑃 ≤ 𝜎𝑙

𝑚𝑎𝑥                                                                     ∀ 𝑙 ∈ 𝑀 (15) 

𝐶𝑓𝑙
𝑈𝑃 ≥ 𝐶𝑓−1,𝑙

𝑈𝑃  + 𝑏𝑙 + 𝜎𝑙
𝑚𝑖𝑛                                               𝑓 > 1, ∀ 𝑙 ∈ 𝑀 (16) 

𝐶𝑓𝑙
𝑈𝑃 ≤ 𝐶𝑓−1,𝑙

𝑈𝑃  + 𝑏𝑙 + 𝜎𝑙
𝑚𝑎𝑥                                              𝑓 > 1, ∀ 𝑙 ∈ 𝑀 (17) 

𝑎𝑓𝑙
𝑈𝑃 = 𝐶𝑓𝑙

𝑈𝑃 − 𝑏𝑙                                                              ∀ 𝑓 ∈ 𝑄, ∀ 𝑙 ∈ 𝑀 (18) 

𝐶𝑓𝑙
𝑈𝑃 ≤ 𝑎𝑘𝑙 + 𝜃 𝑤𝑘𝑓𝑙

𝑆                                                                ∀ 𝑘 ∈ 𝑁, ∀ 𝑓 ∈ 𝑄, ∀𝑙 ∈ 𝑀 (19) 

𝐶𝑘𝑙 ≤ 𝑎𝑓𝑙
𝑈𝑃 + 𝜃(1 − 𝑤𝑘𝑓𝑙

𝑆 )                                                    ∀ 𝑘 ∈ 𝑁, ∀ 𝑓 ∈ 𝑄, ∀𝑙 ∈ 𝑀 (20) 

𝐶𝑓𝑙
𝑈𝑃 ≤ 𝑎𝑓𝑟

𝑈𝑃 + 𝛽 𝑤𝑓𝑙𝑟
𝐷                                                               𝑟 ≠ 𝑙, ∀ 𝑓 ∈ 𝑄 (21) 

𝐶𝑓𝑟
𝑈𝑃 ≤ 𝑎𝑓𝑙

𝑈𝑃 + 𝛽 (1 − 𝑤𝑓𝑙𝑟
𝐷 )                                                  𝑟 ≠ 𝑙, ∀ 𝑓 ∈ 𝑄 (22) 

𝑥𝑗𝑘 ∈  {0,1}                                                                              ∀ 𝑗, 𝑘 ∈ 𝑁 (23) 

𝑎𝑘𝑙 , 𝐶𝑘𝑙  ≥  0                                                                            ∀ 𝑘 ∈  𝑁, ∀ 𝑙 ∈ 𝑀 (24) 

𝑎𝑓𝑙
𝑈𝑃 , 𝐶𝑓𝑙

𝑈𝑃 ≥ 0                                                                           ∀ 𝑓 ∈ 𝑄, ∀ 𝑙 ∈ 𝑀   (25) 

𝑤𝑘𝑓𝑙
𝑆 ∈  {0,1}                                                                            ∀ 𝑘 ∈ 𝑁, ∀ 𝑓 ∈ 𝑄, ∀𝑙 ∈ 𝑀 (26) 

𝑤𝑓𝑙𝑟
𝐷 ∈  {0,1}                                                                             ∀ 𝑓 ∈ 𝑄, ∀𝑙, 𝑟 ∈ 𝑀 (27) 

 

The objective (1) is to minimise the last job of last machine. Equations (2) and (3) are the assignment 

constraints. Equations (4)-(13) is for the calculation of the completion and starting times of the jobs and 

Equations (14)-(18) is also for the UPs. Equations (19)-(22) are the nonoverlapping constraints. Equations 

(19) and (20) avoids that the jobs are overlap with UPs in the same machine and Equations (21) and (22) 

avoids overlapping the UPs in the different machines. Equations (23)-(27) defines the types of decision 

variables. 
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3. PROPOSED SOLUTION METHODS 

 

In this section, the proposed GA and the hybrid algorithm are presented in detail.  
 

3.1. Genetic Algorithm 

 

Genetic algorithm (GA) is a metaheuristic that mimics the evolutionary process in biology. A GA is an 

iterative procedure that searches the decision space at multiple points simultaneously. Here, each solution 

is represented by a chromosome, and chromosomes construct a population. For each generation, GA 

searches for better solutions using selection, crossover, and mutation operators. Steps of the proposed 

genetic algorithm are given below. 

 

Steps of the genetic algorithm: 

Initialization Step. Get the algorithm parameters. Generate and evaluate the initial population. 

repeat 

  selection 

  crossover  

  mutation 

  evaluation 

   elitizm 

until the stopping criteria is satisfied 

 

In the Initialization Step, firstly the values of GA parameters are read. In this study, the values of these 

parameters are taken as 50 for population size (ps), 0.6 for crossover rate (cr), and 0.1 for mutation rate 

(mr). Then, initial population is generated randomly. Each chromosome in the population represents to a 

solution (sequence of jobs). Permutation encoding structure is used as solution representation.  A sample 

chromosome (2 3 4 5 1) shows that the five jobs will be processed in sequence 2, 3, 4, 5, and 1. 

 

In the proposed GA, selection, crossover, mutation, evaluation, and elitizm steps are repeated until the best 

solution has not been able to improve for 10000 generations. In the selection, crossover and mutation steps, 

two-tournament, OX and insertion operators are preferred, respectively, since these operators have been 

successfully applied in the studies using permutation encoding structure [29]. 

 

Since the considered problem has constraints, in the evaluation step, firstly, the constraint handling method 

is determined. With the used solution representation, the assignment (2)-(3) constraints are guaranteed to 

be satisfied. The constraints of calculating the starting and completion times of jobs and UPs (4)-(20) do 

not require any extra effort to be provided. They are easily calculated with the solution of the corresponding 

chromosome. However, to satisfy the nonoverlapping constraint group (21)-(22) a constraint handling 

method is required. For this, the penalty method is used. 

 

Fitness function (𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝐺𝐴) of the proposed GA consist of two parts; the objective function of the proposed 

mathematical model (FSS- UP-AR) and penalty value. It is given in Equation (28) 

 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝐺𝐴 = 𝐶𝑛𝑚 + 𝜑 ∑ ∑ ∑ 𝑔𝑙𝑟𝑓
𝑓𝑟𝑙

 (28) 

 

where 𝜑 is the penalty coefficient and is calculated using the formula 𝜑 = 100𝑛𝑚. Here,  𝑔𝑙𝑟𝑓 is the amount 

of nonoverlapping constraint violations, calculated using Equation (29). For the satisfied constraints, the 

value of 𝑔𝑙𝑟𝑓 is zero 

 

𝑔𝑙𝑟𝑓 = {

𝐶𝑓𝑙
𝑈𝑃 − 𝑎𝑓𝑟

𝑈𝑃; 𝑎𝑓𝑟
𝑈𝑃 ≤ 𝐶𝑓𝑙

𝑈𝑃 ≤ 𝐶𝑓𝑟
𝑈𝑃

𝐶𝑓𝑟
𝑈𝑃 − 𝑎𝑓𝑙

𝑈𝑃; 𝑎𝑓𝑙
𝑈𝑃 ≤ 𝐶𝑓𝑟

𝑈𝑃 ≤ 𝐶𝑓𝑙
𝑈𝑃

0; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 .

 (29) 
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In the elitizm step, by replacing the best individual of the previous population with the worst individual of 

the current population, it is guaranteed that the successful solutions obtained in the former generations will 

be transferred to the new generations. 

 

3.2. Hybrid Algorithm  

 

In this paper, a hybrid algorithm, in which the nonoverlapping constraint group is provided by the MSG 

algorithm and the sub-problem of the MSG algorithm is solved with GA, is developed. The definitions and 

the steps of the hybrid algorithm are given below. 

 

k : iteration number. 

𝜇 : number of constraints. 

𝑢𝑘 and 𝑐𝑘 : dual variables calculated at the 𝑘𝑡ℎ iteration. 

f(x) : objective function of the problem 

g(x) : constraint functions of the problem. 

�̅� : upper bound for the dual problem 

𝑠𝑘: positive step size parameter. 

 and  :  positive step size parameters. 

 

Steps of the hybrid algorithm: 

Initialization Step. Let k = 1. Choose a vector (𝑢1, 𝑐1)∈ 𝑅𝜇 × 𝑅+ and the scalars  ∈ 𝑅+ and , a real 

number in range (0, 2). 

 

Step 1. Solve the following sub-problem (SP-MSG) with given (𝑢𝑘, 𝑐𝑘). 

(SP-MSG): 

min
𝑥𝑘∈𝑆

  𝐿(𝑥𝑘 , 𝑢𝑘 , 𝑐𝑘) = 𝑓(𝑥𝑘) + 𝑐𝑘‖𝑔(𝑥𝑘)‖ − 〈𝑢𝑘 , 𝑔(𝑥𝑘)〉 (30) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑓(𝑥𝑘) + 𝑐𝑘‖𝑔(𝑥𝑘)‖ − 〈𝑢𝑘 , 𝑔(𝑥𝑘)〉 ≤ �̅� (31) 

where 𝑥𝑘 belongs to the set S, ‖. ‖ is the Euclidean norm and <.,.> is the Euclidean inner product on 𝑅𝜇. 

If ‖𝑔(𝑥𝑘)‖ = 0 then STOP. (𝑢𝑘, 𝑐𝑘), is a solution to the dual problem, 𝑥𝑘 is a solution to primal problem. 

Otherwise, go to Step 2. 

 

Step 2. 𝑘 =  𝑘 +  1. Update the 𝑠𝑘, 𝑢𝑘 and 𝑐𝑘 using the formulas given in the Equations (32), (33) and 

(34) respectively.   

 

𝑠𝑘 =
𝛿𝛼 (�̅� − 𝐿(𝑥𝑘 , 𝑢𝑘 , 𝑐𝑘))

(𝛼2 + (1 + 𝛼)2)║𝑔(𝑥𝑘)║
2 

(

(32) 

𝑢𝑘 =  𝑢𝑘−1  −  𝑠𝑘  𝑔(𝑥𝑘) 
(

(33) 

𝑐𝑘 =  𝑐𝑘−1  + (1 + ) 𝑠𝑘║𝑔(𝑥𝑘)║ 
(

(34) 

 

Go to Step 1. 

 

In the hybrid algorithm, GA-MSG is used to solve the sub-problem of the MSG algorithm (SP-MSG). GA-

MSG is the same as the GA, given in section 3.1, except for the fitness function. The fitness function of 

GA-MSG corresponds to the Lagrange function of the MSG algorithm and its formula is given in Equation 

(35) 

 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝐺𝐴−𝑀𝑆𝐺 = 𝐶𝑛𝑚 + 𝑐𝑘√∑ ∑ ∑ 𝑔𝑙𝑟𝑓
2

𝑓𝑟𝑙 − ∑ ∑ ∑ 𝑢𝑙𝑟𝑓
𝑘 𝑔𝑙𝑟𝑓𝑓𝑟𝑙 . (35) 
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The initial values of the 𝑐0and 𝑢𝑙𝑟𝑓
0  parameters are taken as zero. As similar to GA, the population size (ps) 

of the developed HA is taken as 50, the crossover rate (cr) is 0.6, and the mutation rate (mr) is 0.1. If the 

solutions have not been able to be improved for 20 generations, HA is terminated. 

 

4. COMPUTATIONAL RESULTS 

 

All computations are performed on a 2.70 GHz i7 PC with 8 Gb of RAM. GAMS 24.0.2 Cplex solver is 

used to solve the proposed mathematical model. The time limit is 10800 seconds for GAMS/Cplex. The 

developed GA is coded in Borland Delphi 7.0. In section 4.1, the features of the test problems and in section 

4.2, the obtained test results are given. 

 

4.1. Test Problems 

 

The performance of the proposed methods is tested by using randomly generated test problems. 12 problem 

types are generated, including six job-machine (n-m) combinations and two types of ∆ values. The 

considered job-machine combinations are 10-2, 20-3, 30-4, 50-4, 100-5, 150-6 and ∆ type takes the value 

1, if ∆=
1

4
 or 2, if ∆=

1

3
. Processing times (𝑝𝑗𝑙) are generated from a discrete uniform distribution with a 

range between 20 and 100. Setup times (ℎ𝑗𝑙 , 𝑠𝑗𝑘𝑙) and duration of UPs (𝑏𝑙) are generated from discrete 

uniform distribution of [5, 20] and [20,30], respectively. Maximum time of available periods (𝜎𝑙
𝑚𝑎𝑥) are 

generated by using the formula given in Equation (36) 

 

𝛼𝑙
𝑚𝑎𝑥 = 𝛿𝑛∆                   where ∆∈ {

1

4
,

1

3
}, 𝛿~𝑈{120,150}. (36) 

 

Minimum time of available periods (𝛼𝑙
𝑚𝑖𝑛) are calculated by rounding 0.8 times 𝛼𝑙

𝑚𝑎𝑥 to the nearest integer 

number.  

 

A total of 36 test problems are generated, three samples for each problem type. The test problems are named 

as n-m-∆ type-sample number. The test problems are available for download at 

https://drive.google.com/drive/folders/1udTmFc9iQYi6iTDPHQkeMGLRWjOZx6wN?usp=sharing. 

 

4.2. Test Results 

 

Generated test problems are solved with GAMS, GA and HA. The results of 𝑛 ≤ 30  test problems are 

presented in Table 2 and those with 𝑛 ≥ 50 in Table 3. The tables consist of five parts. Problem names are 

given in the first part, objective function values and CPU times of the GAMS, GA and HA are given in the 

second, the third and the fourth parts, respectively. The relative percentage improvement values between 

two solution methods (GAMS-GA, GAMS-HA, and GA-HA) are calculated and given in the last part of 

the tables. For GAMS-GA, the percentage improvement obtained by GA with respect to GAMS is 

calculated using the formula (37). The percentage improvement values of GAMS-HA and GA-HA are 

calculated as similar to GAMS-GA 

 

𝑖𝑚𝑝𝐺𝐴𝑀𝑆−𝐺𝐴 =
𝑧𝐺𝐴𝑀𝑆−𝑧𝐺𝐴

𝑧𝐺𝐴𝑀𝑆
100. (37) 

 

As seen from Table 2 and 3, with the GAMS/Cplex, for all of the 10 job problems optimal solutions are 

obtained within the time limit. While feasible solutions are obtained for 20, 30, and 50 job problems, they 

could not be found for 𝑛 ≥ 100.  
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Table 2. Test results for 𝑛 ≤ 30 problems 

problem 
GAMS GA HA 

𝑖𝑚𝑝𝐺𝐴𝑀𝑆−𝐺𝐴 𝑖𝑚𝑝𝐺𝐴𝑀𝑆−𝐻𝐴 𝑖𝑚𝑝𝐺𝐴−𝐻𝐴 
z t (sn.) z t (sn.) z t (sn.) 

10-2-1-1 659 6543 659 <1 659 <1 0,00 0,00 0,00 

10-2-1-2 854 7500 854 <1 854 <1 0,00 0,00 0,00 

10-2-1-3 688 6167 691 <1 691 <1 -0,44 -0,44 0,00 

10-2-2-1 803 11172 807 <1 807 <1 -0,50 -0,50 0,00 

10-2-2-2 838 12588 838 <1 838 <1 0,00 0,00 0,00 

10-2-2-3 717 8713 717 <1 717 <1 0,00 0,00 0,00 

20-3-1-1 1627 10800 1610 3 1612 1 1,04 0,92 -0,12 

20-3-1-2 1484 10800 1479 1 1476 1 0,34 0,54 0,20 

20-3-1-3 1687 10800 1679 3 1679 1 0,47 0,47 0,00 

20-3-2-1 1682 10800 1649 2 1646 1 1,96 2,14 0,18 

20-3-2-2 1658 10800 1650 1 1649 1 0,48 0,54 0,06 

20-3-2-3 1561 10800 1554 1 1548 1 0,45 0,83 0,39 

30-4-1-1 2519 10800 2476 5 2464 19 1,71 2,18 0,48 

30-4-1-2 2346 10800 2327 1 2320 13 0,81 1,11 0,30 

30-4-1-3 2329 10800 2335 7 2325 13 -0,26 0,17 0,43 

30-4-2-1 2412 10800 2400 3 2397 25 0,50 0,62 0,13 

30-4-2-2 2483 10800 2475 2 2473 17 0,32 0,40 0,08 

30-4-2-3 2503 10800 2472 9 2468 25 1,24 1,40 0,16 

 

 

Table 3. Test results for 𝑛 ≥ 50 problems 

problem 
GAMS GA HA 𝑖𝑚𝑝𝐺𝐴−𝐻𝐴 

z t (sn.) z t (sn.) z t (sn.) 
 

50-4-1-1 29728 10800 3834 12 3817 17 0,44 

50-4-1-2 4334 10800 3774 23 3758 30 0,42 

50-4-1-3 25676 10800 3803 18 3785 20 0,47 

50-4-2-1 4019 10800 3785 13 3719 27 1,74 

50-4-2-2 4146 10800 3796 43 3760 19 0,95 

50-4-2-3 30534 10800 3701 20 3689 23 0,32 

100-5-1-1 - 10800 7686 36 7668 71 0,23 

100-5-1-2 - 10800 7583 23 7554 135 0,38 

100-5-1-3 - 10800 7854 56 7797 83 0,73 

100-5-2-1 - 10800 7796 27 7777 119 0,24 

100-5-2-2 - 10800 8032 60 8019 151 0,16 

100-5-2-3 - 10800 7703 144 7607 137 1,25 

150-6-1-1 - 10800 12118 58 11839 256 2,30 

150-6-1-2 - 10800 12354 28 12056 221 2,41 

150-6-1-3 - 10800 12343 109 12218 186 1,01 

150-6-2-1 - 10800 -  12308 2600 - 

150-6-2-2 - 10800 -  12310 3122 - 

150-6-2-3 - 10800 -   12048 148 - 

 
The proposed GA and HA reached the optimal solutions for four of six 10 job problems.  They found better 

solutions than the GAMS for the remaining problems. When the results of 50 job problems, which are the 

largest problems GAMS can solve, are focused, it seems that the improvement rates are up to 88%. 
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Although pure GA, which uses the penalty method to ensure the nonoverlapping constraints, has a solution 

time advantage to HA, it could not find a feasible solution to the 150-6-2-1, 150-6-2-2, 150-6-2-3 problems.  

On the other hand, the proposed HA is both able to find feasible solutions for all test problems and improved 

the solutions of GA. 

 

In Tables A1 and A2, we state the best-found sequences with GAMS, GA or HA for 𝑛 ≤ 50 problems and 

𝑛 ≥ 100 problems, respectively. 

 

5. CONCLUSIONS  

 

In this study, flow shop scheduling problem with UP and AR constraints is discussed. A MIP model is 

proposed for the considered problem.  Since it is not possible to solve problems larger than 50 jobs with 

the proposed mathematical model, an algorithm that can solve large-sized problems is needed. It is difficult 

to satisfy all of the UP and AR constraints by a metaheuristic. Including some of these constraints in the 

objective function with the help of the Lagrange function and satisfying them with the Subgradient 

algorithm may contribute to the performance of metaheuristic algorithms. In this study, firstly a pure GA, 

and then an HA, where AR constraints are included in the Lagrange function and the problem is solved 

with the MSG algorithm, are proposed. In the HA algorithm, the sub-problem of the MSG algorithm is 

solved with a GA that takes into account the constraints other than AR. The performance of the proposed 

solution methods is tested by using randomly generated test problems. With the developed algorithms, 

GAMS results have been improved up to 88%. Test results showed that while HA can obtain more 

successful solutions than GA, GA has a shorter solution time than HA. In addition, while HA can find 

feasible solutions for all problems, it has been observed that pure GA, using a penalty function to satisfy 

AR constraints, has difficulty in finding feasible solutions for n ≥150   job problems. In the future, the effect 

of the hybridization of the MSG algorithm with other metaheuristics or the inclusion of different constraint 

groups in the Lagrangian function can be examined. 
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Table A1. Best-found sequences for 𝑛 ≤ 50 problems 

problem best ofv best solution 

10-2-1-1 659 6 4 9 3 10 1 5 7 8 2 

10-2-1-2 854 3 5 2 8 1 6 9 10 7 4 

10-2-1-3 688 1 2 5 8 9 10 4 7 6 3 

10-2-2-1 803 9 6 5 8 10 7 3 4 1 2 

10-2-2-2 838 7 4 3 8 10 2 6 9 5 1 

10-2-2-3 717 10 5 7 8 4 6 1 3 9 2 

20-3-1-1 1610 2 8 16 7 11 10 5 6 15 1 17 19 9 13 4 12 18 20 14 3 

20-3-1-2 1476 1 10 13 9 3 16 2 17 19 12 6 18 20 15 8 7 11 14 5 4 

20-3-1-3 1679 20 6 8 17 5 19 1 16 18 11 2 12 4 15 9 13 3 14 7 10 

20-3-2-1 1646 4 10 13 14 7 17 19 9 15 16 6 18 5 3 8 20 2 12 11 1 

20-3-2-2 1649 7 11 16 18 4 19 17 6 8 12 15 2 13 20 5 9 1 14 10 3 

20-3-2-3 1548 10 5 6 15 4 16 8 20 7 3 13 14 2 19 12 17 18 11 9 1 

30-4-1-1 2464 6 5 1 30 22 19 17 3 13 4 29 7 8 24 18 28 11 10 14 20 21 12 15 25 26 23 2 9 27 16 

30-4-1-2 2320 24 30 10 19 6 25 12 22 5 9 3 11 29 1 2 14 8 4 17 23 27 21 18 13 26 7 16 15 28 20 

30-4-1-3 2325 19 27 3 12 13 22 17 21 7 18 4 14 23 1 16 24 28 26 29 9 11 6 30 10 5 25 2 15 20 8 

30-4-2-1 2397 10 22 6 29 1 9 2 3 30 25 13 14 12 11 20 27 19 26 21 23 18 5 4 24 15 17 28 7 16 8 

30-4-2-2 2473 5 7 2 17 25 14 30 29 18 23 22 3 1 20 12 27 19 8 11 26 4 21 6 24 9 13 10 15 16 28 

30-4-2-3 2468 8 12 18 30 4 3 27 14 20 22 7 25 6 9 19 29 10 1 16 23 2 5 24 11 17 28 26 13 21 15 

50-4-1-1 3817 
13 14 49 6 19 18 42 43 17 47 15 16 44 31 24 39 3 20 25 2 27 12 35 5 11 22 1 40 48 28 7 4 10 41 32 

33 29 34 37 23 30 8 9 38 46 45 26 50 21 36 

50-4-1-2 3758 
30 33 32 7 23 42 18 40 19 2 24 43 49 38 8 17 50 14 35 11 4 37 16 5 13 26 3 41 10 45 6 48 46 1 9 15 

22 34 25 20 28 29 39 36 27 44 21 12 47 31 

50-4-1-3 3785 
15 23 13 4 49 24 30 39 8 46 47 17 32 48 2 1 37 16 7 34 21 35 29 33 45 12 31 38 44 5 36 11 40 3 14 

42 26 22 28 10 43 18 27 19 41 6 50 25 9 20 

50-4-2-1 3719 
4 12 38 47 44 27 16 42 13 9 46 41 6 21 36 23 50 22 43 49 14 8 18 1 25 2 15 3 26 37 17 11 39 7 33 20 

40 30 24 29 5 19 48 34 10 28 35 45 32 31 

50-4-2-2 3760 
15 8 5 50 21 11 6 17 43 34 2 31 35 39 9 22 33 28 30 7 1 46 14 48 41 3 44 26 19 32 16 36 20 25 4 27 

42 37 47 13 40 45 38 18 49 24 12 10 29 23 

50-4-2-3 3689 
44 13 31 16 1 29 10 25 47 45 37 18 26 21 40 20 50 5 23 36 4 12 19 22 14 24 41 46 35 17 27 3 11 49 

33 43 6 42 38 32 8 28 2 39 7 9 15 30 34 48 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1576  Feristah OZCELIK, Tugba SARAC/ GU J Sci, 36(4): 1563-1576 (2023) 

 
 

Table A2. Best-found sequences for 𝑛 ≥ 100 problems 

problem best ofv best solution 

100-5-1-1 7668 

23 30 45 26 27 50 31 39 96 66 84 10 87 19 72 13 18 40 67 68 41 44 59 29 48 36 74 58 62 54 16 38 2 

52 7 11 15 49 14 70 21 35 75 6 17 37 1 73 3 100 9 61 56 93 55 51 24 8 89 46 90 43 65 53 97 98 85 82 

76 47 64 22 99 88 80 4 57 79 94 92 81 42 95 78 5 91 69 60 77 63 28 12 33 86 83 71 34 20 32 25 

100-5-1-2 7554 

18 27 54 14 5 7 30 41 63 49 17 69 26 52 79 81 55 13 20 33 85 21 90 4 10 96 1 64 37 98 92 35 16 93 

48 58 2 25 68 83 31 74 22 82 40 45 9 50 91 29 3 89 46 78 57 71 36 34 77 65 12 24 95 15 39 97 38 88 

72 94 84 67 59 8 80 60 44 61 76 19 99 51 42 66 70 62 73 75 86 87 6 100 56 53 32 28 11 23 43 47 

100-5-1-3 7797 

34 42 8 57 58 37 10 12 95 11 28 71 17 40 81 64 51 15 49 59 43 25 33 44 45 52 4 56 100 36 84 77 29 

23 22 16 53 85 47 9 55 2 93 31 97 41 48 3 27 72 46 83 35 1 61 30 63 65 68 24 5 80 98 62 86 14 21 74 

99 26 66 69 90 38 73 91 92 88 32 94 13 20 54 67 7 6 50 78 19 79 39 89 96 82 18 60 70 75 87 76 

100-5-2-1 7777 

72 86 63 46 83 76 12 84 31 78 54 18 67 2 22 43 59 1 9 27 30 15 5 50 100 99 81 82 24 96 20 23 25 37 

29 32 47 64 51 33 91 74 35 8 85 34 14 77 79 41 17 38 45 4 52 21 69 55 62 75 44 95 10 65 66 94 92 

13 71 58 98 48 90 7 68 61 28 40 87 88 3 80 11 89 56 60 16 39 93 97 36 49 19 57 6 73 26 70 53 42 

100-5-2-2 8019 

52 15 58 76 25 74 31 75 97 84 8 27 46 68 94 44 92 24 21 10 33 54 85 60 11 70 96 40 42 1 91 18 100 

34 2 48 80 3 57 41 16 50 26 22 86 55 32 99 30 43 71 39 49 59 19 72 28 98 93 14 47 69 81 77 29 20 

23 38 35 90 45 61 83 87 65 5 51 66 56 37 95 62 64 13 4 63 12 36 9 89 53 88 78 73 79 7 82 67 6 17 

100-5-2-3 7607 

47 84 44 30 38 72 85 20 42 69 37 31 12 94 39 70 52 88 83 79 92 75 1 25 24 28 26 17 77 36 78 90 50 

27 76 45 15 59 60 51 71 10 13 57 54 35 32 55 100 81 14 66 67 86 80 11 49 93 65 33 91 41 97 58 29 

68 82 96 89 23 40 6 43 16 95 46 9 73 4 5 99 19 3 64 98 53 56 48 61 87 63 74 62 7 8 34 21 18 2 22 

150-6-1-1 11839 

148 103 47 48 20 143 86 142 5 59 130 29 128 37 134 57 138 144 46 132 11 117 81 49 107 56 108 67 

141 44 150 90 78 12 136 106 30 88 104 8 87 84 1 58 116 139 140 91 73 70 92 114 26 99 149 42 10 

50 85 131 34 118 100 97 60 64 53 52 27 39 96 115 123 105 110 40 135 102 43 71 21 55 109 94 129 

89 28 120 95 121 17 36 2 126 83 6 93 146 16 68 15 51 145 62 7 14 33 147 4 13 69 80 125 72 66 124 

61 31 18 24 111 112 119 23 137 35 122 101 25 22 74 75 45 19 65 76 82 38 63 54 113 98 133 127 32 

3 79 41 77 9 

150-6-1-2 12056 

110 37 150 47 138 91 136 121 54 130 38 42 7 126 75 141 17 23 145 32 147 86 55 88 2 139 95 104 66 

29 142 120 116 149 19 94 63 107 101 119 85 148 28 44 39 137 16 123 53 31 77 58 8 56 113 27 125 

36 48 65 81 122 68 83 87 21 41 129 131 92 13 71 51 143 33 49 11 50 72 82 146 60 100 102 1 103 96 

109 4 24 117 128 115 45 26 52 127 79 98 9 111 64 112 57 99 15 93 124 10 5 108 97 30 25 59 67 22 3 

84 105 20 18 35 70 90 80 76 144 118 89 140 106 6 133 46 114 135 132 40 14 34 61 134 74 12 43 73 

78 69 62 

150-6-1-3 12218 

71 3 145 84 73 94 112 8 24 63 50 117 81 140 22 127 55 10 121 109 104 19 138 1 69 133 99 11 25 

123 30 137 125 31 107 20 88 21 82 96 150 106 119 97 56 89 64 105 66 38 37 29 18 103 42 141 114 

28 79 108 60 27 131 53 58 5 15 75 126 78 67 70 110 48 80 54 23 74 43 87 136 146 9 147 76 143 101 

95 4 122 111 2 120 45 134 86 92 68 113 130 34 39 13 40 139 26 116 57 7 12 115 35 41 142 14 32 72 

135 49 44 47 16 65 6 91 128 118 77 83 144 129 98 51 52 132 17 100 149 36 90 102 46 124 85 33 148 

62 61 59 93 

150-6-2-1 12308 

4 24 141 94 102 130 28 150 131 46 77 121 5 19 51 32 78 16 149 58 57 13 109 134 107 68 23 29 140 

44 60 100 54 39 18 138 71 85 91 120 3 136 59 10 81 97 45 129 118 110 20 66 76 74 101 88 148 111 

114 119 98 112 84 21 133 93 147 89 95 31 7 79 8 26 145 139 30 126 142 117 146 125 92 37 72 65 

127 64 40 99 96 55 116 86 61 137 123 124 25 73 82 11 34 43 90 108 143 106 14 50 38 9 48 33 70 41 

132 49 87 105 1 135 144 83 6 27 12 128 67 80 52 36 104 42 47 15 122 17 69 53 113 56 62 2 35 63 75 

115 103 22 

150-6-2-2 12310 

77 149 18 53 81 95 39 123 25 108 3 17 140 103 107 114 38 111 29 102 130 145 63 96 141 14 110 31 

34 116 89 104 23 120 7 42 33 93 60 85 126 92 118 119 127 124 2 27 88 64 47 139 8 41 125 67 105 

82 144 11 87 19 100 15 4 150 135 71 117 146 16 106 134 148 76 54 52 70 13 109 44 45 83 66 32 98 

147 80 43 137 99 84 55 69 94 21 28 74 97 112 35 22 49 86 143 65 24 12 128 115 46 91 9 20 1 50 129 

5 61 90 138 142 121 51 37 73 57 10 48 68 133 122 136 30 79 58 40 101 131 26 56 36 78 132 75 59 

113 72 62 6 

150-6-2-3 12048 

143 148 9 150 72 12 87 94 34 2 138 24 91 147 69 101 110 25 125 4 32 33 127 137 36 108 58 120 67 

16 11 42 86 61 70 53 119 115 21 57 6 66 133 8 144 31 116 41 65 88 96 62 44 129 95 102 112 29 85 

126 111 81 93 131 132 46 51 106 113 82 60 30 48 84 80 23 103 37 97 26 79 3 76 1 99 92 10 122 135 

13 71 52 64 39 35 124 89 98 140 142 68 59 74 18 27 14 19 49 7 134 55 50 117 17 141 118 130 114 

100 56 123 105 54 15 40 28 104 145 107 139 22 128 90 121 43 20 77 136 5 146 47 63 149 45 109 75 

78 38 73 83 

 


