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In the scheduling literature, the studies that consider unavailable periods (UPs) have generally
ignored the resources. However, when the resources to be used in unavailable periods are limited
and these resources are needed for more than one machine at the same time, the problem of when
the resource should be allocated to which machine arises. This decision is important as it can
greatly affect the effectiveness of the machine schedule. For this reason, it is necessary to consider
not only the UPs, but also the resources used by the UPs. In this study, flow shop scheduling
problem with unavailable periods, flexible in a time window, and additional resources is
discussed. In the considered problem, since additional resources are required during the
unavailable periods and they can serve just one machine at a time, they cannot overlap. A MIP
model and a hybrid algorithm that genetic algorithm and modified subgradient algorithm works

together, have been developed for the considered problem. The performance of the hybrid
algorithm is compared with pure genetic algorithm and Cplex solver of GAMS by using randomly
generated test problems. Test results showed that while hybrid algorithm has solution quality
advantage, genetic algorithm has solution time advantage. In addition, with the developed hybrid
algorithm, GAMS results were improved up to 88%.

1. INTRODUCTION

Manufacturers must consider their production environment's conditions to obtain efficient schedules.
Taking into consideration the maintenance activities and resource constraints in production scheduling is
very critical in modern-day manufacturing and service environments [1]. Since handling these constraints
increases the complexity of the problem, most studies in the scheduling literature, assume that machines
are always available or ignore the additional resources. However, in many sectors, production is interrupted
periodically due to planned maintenance and rest breaks. Furthermore, additional resources such as tools
or a specialized workforce are required frequently in production or maintenance activities. For that reason,
these constraints need to be considered when making scheduling decisions. However, as Geurtsen et al. [1]
stated the number of studies that consider both unavailable periods (UP) and additional resources (AR) is
still limited. The first study on machine scheduling problems with UP and AR was in 2000 [2]. The studies
carried out from this date to the present are presented in Table 1.
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Table 1. Studies on machine scheduling with UP and AR

Reference ME | TW |Objectives Solution Method
Lee and Chen [2] P v’ |total weighted completion time B&B
Yoo and Lee [3] P v | multiple objective functions DP
Belkaid et al. [4] P makespan GA, MIP
Wong et al. [5] P makespan GA
Wong et al. [6] P makespan GA
Wang and Liu [7] P makespan GA
Fuetal. [8] P makespan PSO
Liu and Wang [9] R makespan, total completion time, |PTA
resource cost
Rebai et al. [10] R total weighted completion time, MIP, GA, H
total tardiness cost maintenance,
total earliness cost maintenance
Tavana et al. [11] multiple objective functions IP
Lietal. [12] makespan ABC-AC
Aramon Bajestani and F total maintenance ITA
Beck [13] and lost production costs
Boufellouh and Belkaid F makespan and total production NSGA-II,
[14] Ccosts BOPSO
Wang and Yu [15] J v | makespan, maximum machine FBS
workload, total machine workload
Fu et al. [16] J makespan PSO
This study F v" | makespan HA

ME: Machine Environment, P: identical parallel machines, R: unrelated parallel machines, F: Flow Shop, J: Job Shop, TW: time
window , GA: Genetic Algorithm, HA: Hybrid Algorithm, B&B: branch and bound, PTA: Polynomial time algorithm, DP:
Dynamic programming, H: Heuristic, MIP: Mixed Integer Programming, IP: Integer Programming, FBS: Filtered Beam Search,
PSO: Particle Swarm Optimization, ABC-AC: Artificial Bee Colony with Adaptive Competition, NSGA-II: Non-Dominated
Sorting Genetic Algorithm, BOPSO: Bi-Objective Adaptation of the Particle Swarm optimization, ITA: Integrated two-stage
algorithm.

The addition of UP and AR constraints increases the complexity of scheduling problems. Therefore, as can
be seen from Table 1, most of the studies dealing with these constraints together are in the parallel machine
environment (P and R), which is less complex than flow shop (F) and job shop (J) scheduling problems.

Makespan is a manufacturer-oriented objective function as it serves to increase machine efficiency.
Therefore, it cannot be ignored by many firms. Also, this objective function serves to balance machine
loads in parallel machine scheduling problems. Therefore, it is one of the most frequently discussed
objective functions in the scheduling literature. Similarly, as seen in Table 1, makespan is the most
frequently used objective function in studies that UP and AR constraints are considered together.

Due to its NP-hard nature, it is not possible to solve the large sized of machine scheduling problems that
deal with UP and AR constraints together with exact solution methods, so as can be seen from Table 1,
metaheuristic algorithms are generally suggested as a solution method. Among the metaheuristic
algorithms, GA has become one of the most preferred algorithms due to its success. GA is a method for
solving both constrained and unconstrained optimization problems. The application of GAs to constrained
optimization problems is often a challenging effort. Several methods such as repairing, penalizing, etc. have
been proposed for handling constraints. The most common method in GAs to handle constraints is to use
a penalty function. However, determining the value of the penalty parameter is also a difficult problem. If
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the value of it is not proper, even a feasible solution may not be obtained. Therefore, in this study, a hybrid
algorithm that modified subgradient (MSG) algorithm and GA work together is proposed.

The MSG algorithm was proposed by Gasimov [17] for solving dual problems constructed in respect to a
sharp augmented Lagrangean function. It is proven that the sharp augmented Lagrangean guarantees the
zero-duality gap, if the objective and constraint functions are all Lipschitz [17]. Then, Kasimbeyli et al.
[18] proposed the feasible value based modified subgradient (FMSG) algorithm as an improved version of
the MSG algorithm. Detailed information about these algorithms can be reached from Gasimov [17] and
Kasimbeyli et al. [18]. MSG and FMSG algorithms were utilized in the literature by many researchers to
solve different nonconvex optimization problems such as quadratic assignment problem [19], quadratic
knapsack problem [20], cell formation problem [21], multi-period facility layout problem [22], generalized
quadratic multiple knapsack problem [23], capacitated vehicle routing problem [24] and aircraft
maintenance routing problem [25]. Since the performances of the both MSG and FMSG algorithms depend
on the performance of the solution method used for solving the sub problem at any iteration, some
researchers hybridized these algorithms with metaheuristics. Ozcelik and Sara¢ [21] and Takan and
Kasimbeyli [24] hybridized MSG with genetic algorithm, Sara¢ and Sipahioglu [23] hybridized FMSG with
GA and Bulbul and Kasimbeyli [25] with ant colony optimization algorithm. When the hybrid algorithms
in which MSG/FMSG algorithms and metaheuristic algorithms work together in the literature are examined,
it has been observed that these studies have been applied to constrained problems, whose constraints are
hard to handle with metaheuristics, and successful results have been obtained for these. Therefore, in this
study, a hybrid algorithm in which MSG and GA work together is proposed for the FSS with UP and AR
constraints for the first time.

Unavailable periods can be considered in two ways; flexible in a time window or fixed. Most of the studies
in related literature assume the unavailable periods as fixed, that is, the starting time and the end time of
UPs are pre-determined. However, in practice, since the starting time of UPs is generally flexible,
availability constraints on the machine are non-fixed [15]. This means that the starting time of the UPs is
not known in advance and has to be determined within the given time window during the scheduling
process. The studies that considered the availability constraints as non-fixed are limited; such as Lee and
Chen [2], Yoo and Lee [3] in identical parallel machine environment and Wang and Yu [15] in job shop
environment. From the reached literature, there is not any study that considers UPs as flexible in a time
window in FSS with UP and AR constraints.

Since FSS is an important problem commonly encountered in mass production systems, it has been
frequently addressed by researchers in recent years. For detailed information on studies dealing with the
FSS problem, see the review papers of Singh et al. [26], Komaki et al. [27], and Yenisey and Yagmahan
[28].

There are only two studies considers FSS with UP and AR constraints. Aramon Bajestani and Beck [13]
addressed an integrated maintenance and production scheduling problem. They solved the problem with an
integrated two-stage algorithm. In the first stage, machines and time periods are assigned to maintenance,
while in the second stage a schedule is created for the current time period. These two stage is solved
iteratively until the solution costs in two stages converge. Boufellouh and Belkaid [14] considered
production scheduling, maintenance planning and resource supply rate decisions in a permutation flow shop
environment. The authors modelled the problem in a bi-objective manner, to minimize the makespan and
total production costs, and proposed NSGA-11 and BOPSO for the solution of the problem. None of these
two studies considered the UP as flexible in a time window.

In this study, a flow shop scheduling problem with unavailable periods, flexible in a time window, and
additional resource constraints is considered. To solve the problem, a hybrid algorithm that GA and MSG
algorithm works together is proposed. Proposed solution method has a big advantage in dealing with
complex constraints.

In the following section, the problem addressed is defined and the developed mathematical model is
presented. The details of the proposed GA and hybrid algorithm (HA) are given in the third section, and



1566 Feristah OZCELIK, Tugba SARAC/ GU J Sci, 36(4): 1563-1576 (2023)

the experimental results are presented in the fourth section. In the fifth section, the obtained results and
suggestions for the future are discussed. In Appendix, we state the best-found sequences with GAMS, GA
or HA.

2. PROBLEM DEFINITION AND DEVELOPED MATHEMATICAL MODEL

In the considered problem, n jobs are processed with the same order on m machines. The processing time
(pj1) of job j on each machine may be different. Job setup times are machine and sequence dependent. Jobs
are ready at time zero. Each machine can only perform one job at a time. Each machine has available and
unavailable periods. Available period I must occur within a certain interval. A job cannot be assigned to an
unavailable period and cannot be split. Therefore, it must either be completed before or start after the
unavailable period. During UPs, additional resources are used. ARs can serve only one machine at a time,
in other words, there is a single server in the system. For that reason, it is desired that the UPs on different
machines should not overlap. The objective function is to minimise the completion time of the last job on
the last machine.

The proposed mathematical model (FSS-UP-AR) and the sets, indices, parameters, decision variables,
constraints and objective function of this model are given below;

Sets and indexes:

N={1,2,..,n}setofjob.i,j,k € N

M={1, 2, .., m} setof machines. [,r € M

Q=412 ., max 6;} set of number of UPs. f € Q where §; is the number of UPs in machine i

Parameters:

pji- processing time of job j in machine |

h;,: setup time of job j in machine I (if j is the first job)

s;j1- sequence and machine dependent setup time of job j in machine | after job i
6: big enough positive number

b;: duration of UP in machine |

o™ minimum time of available period in machine |

a/™**: maximum time of available period in machine |

Decision variables:

xXji: 1, if job j is assigned k™ sequence; 0, otherwise.

Cy,: completion time of job j assigned k™ sequence in machine |

ay;: starting time of job j assigned k™ sequence in machine |

ag”: starting time of UP f in machine |

Cf”: completion time of UP f in machine |

w,fﬂ: 1, if job in k™ sequence at machine | is completed before UP f starts in the same machine; 0, if UP f
is completed before job in k™ sequence at machine | starts in the same machine.

W}?lr: 1, if UP fin machine I is completed before UP f is started in machine r; 0, if UP f in machine r is
completed before UP f is started in machine 1.

(FSS-UP-AR)
Objective function:

min z = Cpy, 1)

Constraints:

ijk= 1 VjeN )

k
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ijk =1

€11 = Z(hﬂ + pj1) Xjk

7
Cii = Cig-ny+hy+p; —0(1—x5)

Ck1 2 C-1)1 T Pj1 + Sij1 — (2 - Xi(k-1) — xjk)

Q
E
v

Cik—1)1

Q
E
\Y

Cra-1

)
E
\Y,

a;; =0

ay = €y — Z(hjl + D) Xj1
j

agy = Cx1 —Dj1 — Sij1 — 9(2 ~ Xi(k-1) ~ xik)

A1 < Ckl - le - Sijl + 9(2 - xi(k_l) - xjk)

aVf > guin

alf < omx

CHP = CYP  + by + o™
CrP < CPP + by + o™
a}ylp = CfUlP —b;

CH" < ag + 0 wiip

Ca < aff +6(1 —wip)
Chl < aff +Bwh,

CfUrP < a}]lp +B(1- W]I?lr)
xj, € {0,1}

g, Cp = 0

ag”, CH" =0

wir € {0,1}

wh, € {0,1}

2 Qg +Ppjt+ Siji — 9(2 — Xi(k-1) — xjk)

VkeN

I>1,VjEN
k>1,i#j
I>1,k>1
I>1,k>1

k>11>1,i+#j

[>1

k>1i+j
k>1,i#j

VieEM

vieM
f>1,VIeEM
f>1LvIieM
VfEQVIEM
VkeENVfeQVIEM
VkeENVfeEQVIEM
r+l,VfeQ
r#lLVfeQ
VjkeN

Vk € NVIEM
VfEQVIEM
VkeENVfeEQVIEM

vVfeQvVvlrem

©)

(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)

(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)

The objective (1) is to minimise the last job of last machine. Equations (2) and (3) are the assignment
constraints. Equations (4)-(13) is for the calculation of the completion and starting times of the jobs and
Equations (14)-(18) is also for the UPs. Equations (19)-(22) are the nonoverlapping constraints. Equations
(19) and (20) avoids that the jobs are overlap with UPs in the same machine and Equations (21) and (22)
avoids overlapping the UPs in the different machines. Equations (23)-(27) defines the types of decision

variables.
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3. PROPOSED SOLUTION METHODS
In this section, the proposed GA and the hybrid algorithm are presented in detail.
3.1. Genetic Algorithm

Genetic algorithm (GA) is a metaheuristic that mimics the evolutionary process in biology. A GA is an
iterative procedure that searches the decision space at multiple points simultaneously. Here, each solution
is represented by a chromosome, and chromosomes construct a population. For each generation, GA
searches for better solutions using selection, crossover, and mutation operators. Steps of the proposed
genetic algorithm are given below.

Steps of the genetic algorithm:

Initialization Step. Get the algorithm parameters. Generate and evaluate the initial population.
repeat

selection

crossover

mutation

evaluation

elitizm
until the stopping criteria is satisfied

In the Initialization Step, firstly the values of GA parameters are read. In this study, the values of these
parameters are taken as 50 for population size (ps), 0.6 for crossover rate (cr), and 0.1 for mutation rate
(mr). Then, initial population is generated randomly. Each chromosome in the population represents to a
solution (sequence of jobs). Permutation encoding structure is used as solution representation. A sample
chromosome (2 3 4 5 1) shows that the five jobs will be processed in sequence 2, 3, 4, 5, and 1.

In the proposed GA, selection, crossover, mutation, evaluation, and elitizm steps are repeated until the best
solution has not been able to improve for 10000 generations. In the selection, crossover and mutation steps,
two-tournament, OX and insertion operators are preferred, respectively, since these operators have been
successfully applied in the studies using permutation encoding structure [29].

Since the considered problem has constraints, in the evaluation step, firstly, the constraint handling method
is determined. With the used solution representation, the assignment (2)-(3) constraints are guaranteed to
be satisfied. The constraints of calculating the starting and completion times of jobs and UPs (4)-(20) do
not require any extra effort to be provided. They are easily calculated with the solution of the corresponding
chromosome. However, to satisfy the nonoverlapping constraint group (21)-(22) a constraint handling
method is required. For this, the penalty method is used.

Fitness function (fitnessg4) of the proposed GA consist of two parts; the objective function of the proposed
mathematical model (FSS- UP-AR) and penalty value. It is given in Equation (28)

fitnessgy = Cpym + wzlz Zf Jirf (28)
T

where ¢ is the penalty coefficient and is calculated using the formula ¢ = 100nm. Here, g, isthe amount
of nonoverlapping constraint violations, calculated using Equation (29). For the satisfied constraints, the
value of g, s is zero

CUP — af; a¥P < CUF < CUF
gurr =1CY —a¥P; ¥ < CYF < CYF (29)

0; otherwise .
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In the elitizm step, by replacing the best individual of the previous population with the worst individual of
the current population, it is guaranteed that the successful solutions obtained in the former generations will
be transferred to the new generations.

3.2. Hybrid Algorithm

In this paper, a hybrid algorithm, in which the nonoverlapping constraint group is provided by the MSG
algorithm and the sub-problem of the MSG algorithm is solved with GA, is developed. The definitions and
the steps of the hybrid algorithm are given below.

k : iteration number.

u : number of constraints.

u® and c* : dual variables calculated at the k" iteration.
f(x) : objective function of the problem

g(x) : constraint functions of the problem.

H : upper bound for the dual problem

s*: positive step size parameter.

aand & positive step size parameters.

Steps of the hybrid algorithm:

Initialization Step. Let k = 1. Choose a vector (ul, c')e R* x R, and the scalars o € R, and &, a real
number in range (0, 2).

Step 1. Solve the following sub-problem (SP-MSG) with given (u*, c*).

(SP-MSG):
min Lk, u,c) = £(x) + g ()] - kg () (30)
subject to f(x*) + c¥||g(x*)|| — W, g(x*)y < H (31)
where x* belongs to the set S, ||. || is the Euclidean norm and <.,.> is the Euclidean inner product on R¥.

If || g(x*)|| = 0 then STOP. (u¥, c¥), is a solution to the dual problem, x* is a solution to primal problem.
Otherwise, go to Step 2.

Step 2. k = k + 1. Update the s*, u* and c¥ using the formulas given in the Equations (32), (33) and
(34) respectively.

Sa (ﬁ — L(x*,u¥, ck))

S @ ar ol 2
W=kt~ gsk g(x) (33)
ck= ¢kt 4 (14 a) sk g(x")| (34)

Go to Step 1.

In the hybrid algorithm, GA-MSG is used to solve the sub-problem of the MSG algorithm (SP-MSG). GA-
MSG is the same as the GA, given in section 3.1, except for the fitness function. The fitness function of
GA-MSG corresponds to the Lagrange function of the MSG algorithm and its formula is given in Equation
(35)

fitnessga_msg = Cpm + c* fZer 2f glzrf — X2 2y u;{rfglrf- (39)
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The initial values of the c®and u?rf parameters are taken as zero. As similar to GA, the population size (ps)

of the developed HA is taken as 50, the crossover rate (cr) is 0.6, and the mutation rate (mr) is 0.1. If the
solutions have not been able to be improved for 20 generations, HA is terminated.

4. COMPUTATIONAL RESULTS

All computations are performed on a 2.70 GHz i7 PC with 8 Gb of RAM. GAMS 24.0.2 Cplex solver is
used to solve the proposed mathematical model. The time limit is 10800 seconds for GAMS/Cplex. The
developed GA is coded in Borland Delphi 7.0. In section 4.1, the features of the test problems and in section
4.2, the obtained test results are given.

4.1. Test Problems

The performance of the proposed methods is tested by using randomly generated test problems. 12 problem
types are generated, including six job-machine (n-m) combinations and two types of A values. The
considered job-machine combinations are 10-2, 20-3, 30-4, 50-4, 100-5, 150-6 and A type takes the value

1, if A= % or 2, if A= % Processing times (p;;) are generated from a discrete uniform distribution with a

range between 20 and 100. Setup times (hj;, sji;) and duration of UPs (b;) are generated from discrete
uniform distribution of [5, 20] and [20,30], respectively. Maximum time of available periods (o;"%*) are
generated by using the formula given in Equation (36)

am%* = SnA where A€ {i%} §~U{120,150}. (36)

Minimum time of available periods (a™") are calculated by rounding 0.8 times a}™%* to the nearest integer
number.

A total of 36 test problems are generated, three samples for each problem type. The test problems are named
as n-m-A fpe-sample number. The test problems are available for download at
https://drive.google.com/drive/folders/1ludTmFc9iQYi6iTDPHQkeMGLRWjOZx6wN?usp=sharing.

4.2. Test Results

Generated test problems are solved with GAMS, GA and HA. The results of n < 30 test problems are
presented in Table 2 and those with n > 50 in Table 3. The tables consist of five parts. Problem names are
given in the first part, objective function values and CPU times of the GAMS, GA and HA are given in the
second, the third and the fourth parts, respectively. The relative percentage improvement values between
two solution methods (GAMS-GA, GAMS-HA, and GA-HA) are calculated and given in the last part of
the tables. For GAMS-GA, the percentage improvement obtained by GA with respect to GAMS is
calculated using the formula (37). The percentage improvement values of GAMS-HA and GA-HA are
calculated as similar to GAMS-GA

IMPgams—ca = % 100. (37)

As seen from Table 2 and 3, with the GAMS/Cplex, for all of the 10 job problems optimal solutions are
obtained within the time limit. While feasible solutions are obtained for 20, 30, and 50 job problems, they
could not be found for n = 100.
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Table 2. Test results for n < 30 problems

GAMS GA HA . . .
problem IMPGaMS-GA LMPGAMS-HA IMPGa-HA
z t(sn.) t (sn.) z t (sn.)
10-2-1-1 659 | 6543 | 659 <1 659 <1 0,00 0,00 0,00
10-2-1-2 854 | 7500 | 854 <1 854 <1 0,00 0,00 0,00
10-2-1-3 688 | 6167 | 691 <1 691 <1 -0,44 -0,44 0,00
10-2-2-1 803 | 11172 | 807 <1 807 <1 -0,50 -0,50 0,00
10-2-2-2 838 | 12588 | 838 <1 838 <1 0,00 0,00 0,00
10-2-2-3 717 | 8713 | 717 <1 717 <1 0,00 0,00 0,00
20-3-1-1 | 1627 | 10800 | 1610 3] 1612 1 1,04 0,92 -0,12
20-3-1-2 | 1484 | 10800 | 1479 1| 1476 1 0,34 0,54 0,20
20-3-1-3 | 1687 | 10800 | 1679 3] 1679 1 0,47 0,47 0,00
20-3-2-1 | 1682 | 10800 | 1649 2| 1646 1 1,96 2,14 0,18
20-3-2-2 | 1658 | 10800 | 1650 1| 1649 1 0,48 0,54 0,06
20-3-2-3 | 1561 | 10800 | 1554 1| 1548 1 0,45 0,83 0,39
30-4-1-1 | 2519 | 10800 | 2476 5| 2464 19 1,71 2,18 0,48
30-4-1-2 | 2346 | 10800 | 2327 1| 2320 13 0,81 1,11 0,30
30-4-1-3 | 2329 | 10800 | 2335 7] 2325 13 -0,26 0,17 0,43
30-4-2-1 | 2412 | 10800 | 2400 3| 2397 25 0,50 0,62 0,13
30-4-2-2 | 2483 | 10800 | 2475 2| 2473 17 0,32 0,40 0,08
30-4-2-3 | 2503 | 10800 | 2472 9 | 2468 25 1,24 1,40 0,16
Table 3. Test results for n > 50 problems
problem GAMS GA HA IMpga-na
z t(sn.) z t(sn.) z t(sn.)
50-4-1-1 | 29728 | 10800 3834 12 | 3817 17 0,44
50-4-1-2 | 4334 | 10800 3774 23 | 3758 30 0,42
50-4-1-3 | 25676 | 10800 3803 18 | 3785 20 0,47
50-4-2-1 | 4019 | 10800 3785 13 | 3719 27 1,74
50-4-2-2 | 4146 | 10800 3796 43 | 3760 19 0,95
50-4-2-3 | 30534 | 10800 3701 20 | 3689 23 0,32
100-5-1-1 - 10800 7686 36 | 7668 71 0,23
100-5-1-2 - 10800 7583 23 | 7554 135 0,38
100-5-1-3 - 10800 7854 56 | 7797 83 0,73
100-5-2-1 - 10800 7796 27 | 7777 119 0,24
100-5-2-2 - 10800 8032 60 | 8019 151 0,16
100-5-2-3 - 10800 7703 | 144 | 7607 137 1,25
150-6-1-1 - 10800 | 12118 58 | 11839 256 2,30
150-6-1-2 - 10800 | 12354 28 | 12056 221 2,41
150-6-1-3 - 10800 | 12343 | 109 | 12218 186 1,01
150-6-2-1 - 10800 - 12308 2600 -
150-6-2-2 - 10800 - 12310 3122 -
150-6-2-3 - 10800 - 12048 148 -

The proposed GA and HA reached the optimal solutions for four of six 10 job problems. They found better
solutions than the GAMS for the remaining problems. When the results of 50 job problems, which are the
largest problems GAMS can solve, are focused, it seems that the improvement rates are up to 88%.
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Although pure GA, which uses the penalty method to ensure the nonoverlapping constraints, has a solution
time advantage to HA, it could not find a feasible solution to the 150-6-2-1, 150-6-2-2, 150-6-2-3 problems.
On the other hand, the proposed HA is both able to find feasible solutions for all test problems and improved
the solutions of GA.

In Tables Al and A2, we state the best-found sequences with GAMS, GA or HA for n < 50 problems and
n = 100 problems, respectively.

5. CONCLUSIONS

In this study, flow shop scheduling problem with UP and AR constraints is discussed. A MIP model is
proposed for the considered problem. Since it is not possible to solve problems larger than 50 jobs with
the proposed mathematical model, an algorithm that can solve large-sized problems is needed. It is difficult
to satisfy all of the UP and AR constraints by a metaheuristic. Including some of these constraints in the
objective function with the help of the Lagrange function and satisfying them with the Subgradient
algorithm may contribute to the performance of metaheuristic algorithms. In this study, firstly a pure GA,
and then an HA, where AR constraints are included in the Lagrange function and the problem is solved
with the MSG algorithm, are proposed. In the HA algorithm, the sub-problem of the MSG algorithm is
solved with a GA that takes into account the constraints other than AR. The performance of the proposed
solution methods is tested by using randomly generated test problems. With the developed algorithms,
GAMS results have been improved up to 88%. Test results showed that while HA can obtain more
successful solutions than GA, GA has a shorter solution time than HA. In addition, while HA can find
feasible solutions for all problems, it has been observed that pure GA, using a penalty function to satisfy
AR constraints, has difficulty in finding feasible solutions for n >150 job problems. In the future, the effect
of the hybridization of the MSG algorithm with other metaheuristics or the inclusion of different constraint
groups in the Lagrangian function can be examined.
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Table Al. Best-found sequences for n < 50 problems

problem | bestofv | best solution

10-2-1-1 659 | 64931015782

10-2-1-2 854 (35281691074

10-2-1-3 688 | 12589104763

10-2-2-1 803 |196581073412

10-2-2-2 838 |74381026951

10-2-2-3 717 | 10578461392

20-3-1-1 1610 | 2816711105615117199134121820143

20-3-1-2 1476 | 1101393162171912618201587111454

20-3-1-3 1679 | 2068175191161811212415913314710

20-3-2-1 1646 | 4101314717199151661853820212111

20-3-2-2 1649 | 7111618419176812152132059114103

20-3-2-3 1548 | 1056154168207313142191217181191

30-4-1-1 2464 | 651302219173134297824182811101420211215252623292716

30-4-1-2 2320 | 2430101962512225931129121484172327211813267 16152820

30-4-1-3 2325 | 192731213221721718414231162428262991163010525215208

30-4-2-1 2397 | 102262919233025131412112027192621231854241517287168

30-4-2-2 2473 | 572172514302918232231201227198112642162491310151628

30-4-2-3 2468 | 812183043271420227256919291011623252411172826132115

50-4-1-1 3817 131449619184243174715164431243932025227123551122140482874104132
33293437 233089 384645265021 36

50-4-1-2 3758 303332723421840192244349388175014351143716513263411045648461915
2234 252028293936274421124731

50-4-1-3 3785 152313449243039846471732482137167342135293345123138445361140314
42262228104318271941650259 20

50-4-2-1 3719 4123847442716421394641621362350224349148181252153263717113973320
403024295194834102835453231

50-4-2-2 3760 158550211161743342313539922332830714614484134426193216362025427
42 37471340453818492412102923

50-4-2-3 3689 4413311612910254745371826214020505233641219221424414635172731149

334364238328282397915303448
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Table A2. Best-found sequences for n > 100 problems

problem

best ofv

best solution

100-5-1-1

7668

23304526 2750313996 6684 1087 19 72 13 18 40 67 68 41 44 59 29 48 36 74 58 62 54 16 38 2
5271115491470213575617 3717331009 6156 9355512488946 9043 655397 98 85 82
7647 6422998880457799492814295785916960 776328 123386837134203225

100-5-1-2

7554

182754145730416349176926527981551320338521904 1096164 379892351693
4858225688331742282404595091293894678577136347765122495153997 3888
729484 67 59 8 80 6044 61 76 19 99 51 42 66 70 62 73 75 86 87 6 100 56 53 32 28 11 23 43 47

100-5-1-3

7797

344285758371012951128 7117 40 81 64 51 154959 43 25 33 44 45 52 4 56 100 36 84 77 29
23221653854795529331974148327724683351613063656824580986286142174
99 26 66 69 90 38 7391 92 88 3294 132054 67 76 50 78 19 79 39 89 96 82 18 60 70 75 87 76

100-5-2-1

T

72866346 83761284317854186722243591927301555010099 81 8224 96 20 23 25 37
293247645133917435885341477794117384545221695562 7544951065 669492
1371589848907 68 61 28 40 87 88 380 11 89 56 60 16 39 93 97 36 49 19 57 6 73 26 70 53 42

100-5-2-2

8019

52155876 257431759784 827 46 68 94 44 92 24 21 10 33 54 8560 11 70 96 40 42 1 91 18 100
34248803574116 50262286 5532993043 71394959 1972289893 14476981 772920
233835904561 838765551665637956264134631236989538878737978267617

100-5-2-3

7607

478444303872852042693731129439705288837992751252428261777 36789050
2776451559 60 51 71 10 13 57 54 35 32 55 100 81 14 66 67 86 80 11 49 93 65 33 91 41 97 58 29
6882968923406431695469734599 1936498535648 618763746278342118222

150-6-1-1

11839

148 103 47 48 20 143 86 142 559 130 29 128 37 134 57 138 144 46 132 11 117 81 49 107 56 108 67
141 44 150 90 78 12 136 106 30 88 104 8 87 84 1 58 116 139 140 91 73 70 92 114 26 99 149 42 10
5085131 34 118 100 97 60 64 53 52 27 39 96 115 123 105 110 40 135 102 43 71 21 55 109 94 129
892812095121 17 362126 83 6 93 146 16 68 1551 14562 7 14 33 147 4 13 69 80 125 72 66 124
61311824 11111211923 137 35122 101 2522 74 7545 19 65 76 82 38 63 54 113 98 133 127 32
37941779

150-6-1-2

12056

110 37 150 47 138 91 136 121 54 130 38 42 7 126 75 141 17 23 145 32 147 86 55 88 2 139 95 104 66
29142 120 116 149 19 94 63 107 101 119 85 148 28 44 39 137 16 123 53 31 77 58 8 56 113 27 125
36 48 65 81 122 68 83 87 21 41 129 131 92 13 71 51 143 33 49 11 50 72 82 146 60 100 102 1 103 96
109424 117 128 1154526 52 127 7998 9 111 64 112 57 99 15 93 124 10 5 108 97 30 25 59 67 22 3
841052018 35709080 76 144 118 89 140 106 6 133 46 114 135132 40 14 34 61 134 74 12 43 73
78 69 62

150-6-1-3

12218

713145847394 112 8 24 63 50 117 81 140 22 127 5510 121 109 104 19 138 1 69 133 99 11 25
123 30 137 125 31 107 20 88 21 82 96 150 106 119 97 56 89 64 105 66 38 37 29 18 103 42 141 114
28 79108 60 27 131 53 58 5 15 75 126 78 67 70 110 48 80 54 23 74 43 87 136 146 9 147 76 143 101
9541221112120 45 134 86 92 68 113 130 34 39 1340 139 26 116 57 7 12 1153541 142 14 32 72
1354944 47 16 65 6 91 128 118 77 83 144 129 98 51 52 132 17 100 149 36 90 102 46 124 85 33 148
62 6159 93

150-6-2-1

12308

424 14194 102 130 28 150 131 46 77 121 51951 32 78 16 149 58 57 13 109 134 107 68 23 29 140
4460 100 54 3918 138 71 8591 120 3 136 59 10 81 97 45 129 118 110 20 66 76 74 101 88 148 111
11411998 112 84 21 133 93 147 899531 7 79 8 26 145 139 30 126 142 117 146 12592 37 72 65
127 64 40 99 96 55 116 86 61 137 123 124 2573 82 11 34 43 90 108 143 106 14 50 38 948 33 70 41
1324987 1051135144836 27 12 128 67 80 52 36 104 42 47 15 122 17 69 53 113 56 62 2 3563 75
115103 22

150-6-2-2

12310

77149 1853 81 9539 123 25 108 3 17 140 103 107 114 38 111 29 102 130 145 63 96 141 14 110 31
34116 89 104 23 120 7 42 33 93 60 85 126 92 118 119 127 124 2 27 88 64 47 139 8 41 125 67 105
82144 118719100154 150 135 71 117 146 16 106 134 148 76 54 52 70 13 109 44 45 83 66 32 98
147 80 43 137 99 84 55 69 94 21 28 74 97 112 35 22 49 86 143 6524 12 128 115 46 91 920 1 50 129
56190138 142 121 51 37 73 57 10 48 68 133 122 136 30 79 58 40 101 131 26 56 36 78 132 75 59
11372626

150-6-2-3

12048

143 148 9 150 72 12 87 94 34 2 138 24 91 147 69 101 110 25 125 4 32 33 127 137 36 108 58 120 67
16114286 61 7053 119 115 21 57 6 66 133 8 144 31 116 41 65 88 96 62 44 129 95 102 112 29 85
126111 81 93 131 132 46 51 106 113 82 60 30 48 84 80 23 103 37 9726 793 76 1 99 92 10 122 135
137152 64 39 35124 89 98 140 142 68 59 74 18 27 14 19497 134 55 50 117 17 141 118 130 114
100 56 123 105 54 15 40 28 104 145 107 139 22 128 90 121 43 20 77 136 5 146 47 63 149 45 109 75
78387383




