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CHROMATIC SCHULTZ POLYNOMIAL OF CERTAIN GRAPHS
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Abstract. A topological index of a graph G is a real number which is pre-

served under isomorphism. Extensive studies on certain polynomials related
to these topological indices have also been done recently. In a similar way,

chromatic versions of certain topological indices and the related polynomials

have also been discussed in the recent literature. In this paper, the chromatic
versions of the Schultz polynomial and modified chromatic Schultz polynomial

are introduced and determined this polynomial for certain fundamental graph

classes.

1. Introduction

For all terms and definitions, not defined specifically in this paper, we refer
to [10]. Further, for graph colouring, see [6, 7]. Unless mentioned otherwise, all
graphs considered here are undirected, simple, finite and connected.

A proper vertex colouring of a graph G is an assignment φ : V (G) → C of the
vertices of G, where C = {c1, c2, c3, . . . , cℓ} is a set of colours such that adjacent
vertices of G have different colours. The cardinality of the minimum set of colours
which allows a proper colouring of G is called the chromatic number of G and is
denoted χ(G). The set of all vertices of G which have the colour ci is called the
colour class of that colour ci in G. The cardinality of the colour class of a colour
ci is said to be the strength of that colour in G and is denoted by θ(ci). We can
also define a function ζ : V (G) → {1, 2, 3, . . . , ℓ} such that ζ(vi) = s if and only if
φ(vi) = cs, cs ∈ C.

A vertex colouring consisting of the colours having minimum subscripts may be
called a minimum parameter colouring (see [8]). If we colour the vertices of G
in such a way that c1 is assigned to maximum possible number of vertices, then
c2 is assigned to maximum possible number of remaining uncoloured vertices and
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proceed in this manner until all vertices are coloured, then such a colouring is called
a χ−-colouring of G. In a similar manner, if cℓ is assigned to maximum possible
number of vertices, then cℓ−1 is assigned to maximum possible number of remaining
uncoloured vertices and proceed in this manner until all vertices are coloured, then
such a colouring is called a χ+-colouring of G.

A topological index of a graphG is a real number which is preserved under isomor-
phism. The chromatic versions of certain topological indices have been introduced
in [8]. The Schultz polynomials and modified Schultz polynomials of graphs are
some of such widely studied polynomials (see [1, 2, 4]).

Some chromatic version of topological indices were introduced and studied in [8]
and later the idea of chromatic topological polynomials was introduced in [9] In
this paper, we discuss the chromatic versions of certain polynomials related to the
topological indices of a graph G.

2. Chromatic Schultz Polynomial of Graphs

Note that throughout this study, we use the chromatic colourings of the graphs
under consideration. Motivated by the studies on Schultz polynomial of graphs
(see [1,2,4,5]), we can now introduce the chromatic version of the Schultz polynomial
as follows:

Definition 1. Let G be a connected graph with chromatic number χ(G). Then,
the chromatic Schultz polynomial of G, denoted by Sχ(G, x), is defined as

Sχ(G, x) =
∑

u,v∈V (G)

(ζ(u) + ζ(v))xd(u,v).

Definition 2. Let G be a connected graph with chromatic number φ− and φ+ be
the minimal and maximal parameter colouring of G. Then,

(i) the χ−-chromatic Schultz polynomial of G, denoted by Sχ−(G, x), is defined
as

Sχ−(G, x) =
∑

u,v∈V (G)

(ζφ−(u) + ζφ−(v))xd(u,v);

and
(ii) the χ+-chromatic Schultz polynomial of G, denoted by Sχ+(G, x), is defined

as

Sχ+(G, x) =
∑

u,v∈V (G)

(ζφ+(u) + ζφ+(v))xd(u,v).

Now, we can determine the chromatic Schultz polynomials of certain fundamental
graph classes.

2.1. Chromatic Schultz Polynomials of Paths. In this section, we discuss the
two types of chromatic Schultz polynomials of paths.
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Theorem 1. Let Pn be a path on n vertices. Then, we have

Sχ−(Pn, x) =


n−1
2∑

i=0

[(3n− 6i− 3)x+ (3n− 6i− 1)]x2i; if n is odd;

3 ·
n∑

i=0

(n− i)xi; if n is even.

Proof. Let V = {v1, v2, . . . , vn} be the vertex set of Pn, where the vertices are
labelled consecutively. Note that χ(Pn) = 2. Let c1, c2 be the two colours we use
for colouring Pn. We also note that te diameter of Pn is n − 1. Hence, the power
of the variable x varies from 0 to n− 1 in the Schultz polynomial of Pn. Here, we
need to consider the following two cases:

Case-1: Let n be odd. Then, with respect to a χ−-colouring, the vertices
v1, v3, v5, . . . vn get the colour c1 and the vertices v2, v4, v6, . . . , vn−1 get the colour
c2. The possible colour pairs and their numbers in G in terms of the distances
between them are listed in Table 1.

Table 1. A list of color pairs and the distance between them in
an odd path.

Distance d(u, v) Colour pairs
Number of

pairs
Total number of

pairs

0
(c1, c1)

n+1
2 n

(c2, c2)
n−1
2

1 (c1, c2) n− 1 n− 1

2
(c1, c1)

n−1
2 n− 2

(c2, c2)
n−3
2

3 (c1, c2) n− 3 n− 3

4
(c1, c1)

n−3
2 n− 4

(c2, c2)
n−5
2

5 (c1, c2) n− 5 n− 5

6
(c1, c1)

n−5
2 n− 6

(c2, c2)
n−7
2

...
...

...
...

n− 3
(c1, c1) 2

3
(c2, c2) 1

n− 2 (c1, c2) 2 2

n− 1
(c1, c1) 1

1
(c2, c2) 0
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In the above table, the possible distances between different pairs of vertices are
written in the first column, the different colour pairs with respect to each distance
is written in the second column and the number of corresponding colour pairs with
respect to each distance is written in the third column. The total number of vertex
pairs corresponding to each distance is written in the fourth column.

From Table-1, we note that for 0 ≤ r ≤ n, the number of vertex pairs which are
at a distance r is n− r and in this case all colour pairs contain two colours, when r
is odd. But, when r is even, all colour pairs contain the same colour - either (c1, c1)
or (c2, c2). In this case, note that the number of (c1, c1)-colour pairs is

n−r+1
2 and

the number of (c2, c2)-colour pairs is
n−r−1

2 so that total number of colour pairs is
n− r. Hence,

Sχ−(Pn, x) =
∑
r odd

(1 + 2)(n− r)xr +
∑

r even

[
n− r + 1

2
· 2 + n− r − 1

2
· 4
]
xr

=
∑
r odd

(3n− 3r)xr +
∑

r even

(3n− 3r − 1)xr

=

n−1
2∑

i=0

(3n− 6i− 3)x2i+1 +

n−1
2∑

i=0

(3n− 6i− 1)x2i

=

n−1
2∑

i=0

[(3n− 6i− 3)x+ (3n− 6i− 1)]x2i.

(since 3n− 6i− 3 = 0 at i =
n− 1

2
).

Case-2: Let n be even. Then, with respect to a χ−-colouring, the vertices
v1, v3, v5, . . . vn−1 get the colour c1 and the vertices v2, v4, v6, . . . vn get the colour
c2. The possible colour pairs and their numbers in G in terms of the distances
between them are listed in the following table.
From Table-2, we have

Sχ−(Pn, x) =
∑
r odd

(1 + 2)(n− r)xr +
∑

r even

[
n− r

2
· 2 + n− r

2
· 4
]
xr

=
∑
r odd

(3n− 3r)xr +
∑

r even

(3n− 3r)xr

= 3 ·
n−1∑
i=0

(n− i)xi.

This completes the proof. □

Note that the χ+-colouring of Pn can be obtained by interchanging the colours
c1 and c2 in the χ−-colouring. Hence, as explained in the proof of above theorem,
we have
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Table 2. A list of color pairs and the distance between them in
an even path.

Distance d(u, v) Colour pairs
Number of

pairs
Total number of

pairs

0
(c1, c1)

n
2 n

(c2, c2)
n
2

1 (c1, c2) n− 1 n− 1

2
(c1, c1)

n−2
2 n− 2

(c2, c2)
n−2
2

3 (c1, c2) n− 3 n− 3

4
(c1, c1)

n−4
2 n− 4

(c2, c2)
n−4
2

5 (c1, c2) n− 5 n− 5

6
(c1, c1)

n−6
2 n− 6

(c2, c2)
n−6
2

...
...

...
...

n− 3 (c1, c2) 3 3

n− 2
(c1, c1) 1

2
(c2, c2) 1

n− 1 (c1, c2) 1 1

Theorem 2. Let Pn be a path on n vertices. Then, we have

Sχ+(Pn, x) =


n−1
2∑

i=0

[(3n− 6i− 3)x+ (3n− 6i+ 1)]x2i; if n is odd;

3 ·
n−1∑
i=0

(n− i)xi; if n is even.

2.2. Chromatic Schultz Polynomial of Cycles. In this section, we discuss the
two types of chromatic Schultz polynomials of cycles.

Theorem 3. Let Cn be a cycle on n vertices. Then, we have

Sχ−(Cn, x) =

 3n(1−x
n+2
2 )

1−x ; if n is even;

3(n+1)(1−x
n+1
2 )

1−x ; if n is odd.

Proof. Let V = {v1, v2, . . . , vn} be the vertex set of Cn, where the vertices are
labelled consecutively from one end vertex to the other in a clockwise manner.
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Note that if n is odd, then the diameter of Cn is n−1
2 and if n is even, the diameter

of Cn is n
2 . Hence, we have to consider the following two cases:

Case-1: Let n be even. Then, Cn is 2-colourable and we can label the vertices
v1, v3, v5 . . . , vn−1 by colour c1 and the vertices v2, v4, v6 . . . , vn by colour c2. Then,
for 0 ≤ i ≤ n

2 , the possible colour pairs and their numbers can be obtained from
the following table.

Table 3. A list of color pairs and the distance between them in
an even cycle.

Distance d(u, v) Colour pairs
Number of

pairs
Total number of

pairs

i, even
(c1, c1)

n
2 n

(c2, c2)
n
2

i, odd (c1, c2) n n

Then, from Table 3, we have

Sχ−(Cn, x) =
∑
i odd

3nxi +
∑

i even

[n
2
· 2 + n

2
· 4
]
xi

=
∑
i odd

3nxi +
∑

i even

(n+ 2n)xi

=

n
2∑

i=0

3nxi

=
3n(1− x

n+2
2 )

1− x
.

Case-2: Let n be odd. Then, χ(Cn) = 3 and the vertices v1, v3, v5 . . . , vn−1 by
colour c1 and the vertices v2, v4, v6 . . . , vn−2 by colour c2 and the vertex vn gets
colour c3. Then, for 0 ≤ i ≤ n−1

2 , the possible colour pairs and their numbers can
be obtained from Table 4.
When i = 0, we have∑

v∈V

(ζ(v) + ζ(v))xd(v,v) =

[
(2 + 4) · n− 1

2
+ 6 · 1

]
x0 = 3(n+ 1)x0

When i > 0 and is even, we have∑
d(u,v)=i

(ζ(u) + ζ(v))xd(u,v) =

[
(2 + 4) · n− r − 1

2
+ 3(r − 1) + (4 + 5) · 1

]
xi

= 3(n+ 1)xi
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Table 4. A list of color pairs and the distance between them in
an odd cycle.

Distance d(u, v) Colour pairs
Number of

pairs
Total number of

pairs

i = 0

(c1, c1)
n−1
2

n(c2, c2)
n−1
2

(c3, c3) 1

i > 0 and even

(c1, c1)
n−r−1

2

n

(c1, c2) r − 1

(c2, c2)
n−r−1

2

(c1, c3) 1

(c2, c3) 1

i >, odd

(c1, c1)
r−1
2

n

(c1, c2) n− r − 1

(c2, c2)
r−1
2

(c1, c3) 1

(c2, c3) 1

Similarly, when i > 0 and is odd, we have∑
d(u,v)=i

(ζ(u) + ζ(v))xd(u,v) =

[
(2 + 4) · r − 1

2
+ 3(n− r − 1) + (4 + 5) · 1

]
xi

= 3(n+ 1)xi

Therefore, Sχ−(Cn, x) =

n+1
2∑

i=0

3(n+1)xi = 3(n+1)(1−x
n+1
2 )

1−x , completing the proof. □

Note that in the χ−-colouring of an even cycle Cn if we the colours c1 and c2,
we get its χ+-colouring. It can be observed that this change makes no change
in the corresponding Schultz polynomial. But, for an odd cycle Cn, we have to
interchange the colours c1 and c3 in its χ−-colouring and keep c2 as it is to get a
χ+-colouring.

In view of this fact, the χ+-chromatic Schultz polynomial of Cn is obtained in
the following theorem.

Theorem 4. Let Cn be a cycle on n vertices. Then, we have

Sχ+(Cn, x) =

 3n(1−x
n+2
2 )

1−x ; if n is even;

(5n−3)(1−x
n+3
2 )

1−x ; if n is odd.
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2.3. Chromatic Schultz Polynomial of Complete Graphs. Next, we consider
the complete graphKn. InKn, we have d(u, v) = 1 for any two u, v ∈ V (G). There-
fore, Sχ−(Kn, x) and Sχ+(Kn, x) are the same and are first degree polynomials. The
following result provides the Schultz polynomial of a complete graph Kn.

Proposition 1. For n ≥ 2, Sχ−(Kn, x) = Sχ+(Kn, x) = (n2 +n)+ (2n2 −n− 3)x.

Proof. In any proper vertex colouring, distinct vertices in Kn get distinct colours.
Now,

∑
v∈V

2ζ(v)x0 = (2 + 4 + 6 + . . .+ 2n)x0 = n(n+ 1). Also, we have

∑
d(u,v)=1

(ζ(u) + ζ(v))x1 = (3 + 4 + 5 + . . .+ (2n− 1))x =

(
2n− 3

2
(2n+ 2)

)
x

= (2n− 3)(n+ 1)x.

Therefore, Sχ−(Kn, x) = (n2 + n) + (2n2 − n− 3)x = Sχ+(Kn, x). □

2.4. Chromatic Schultz Polynomial of Complete Bipartite Graphs. Next,
let us consider the complete bipartite graphs Ka,b, where a ≥ b.

Theorem 5. For a complete bipartite Ka,b, a ≥ b, a+b = n, we have Sχ−(Kn, x) =
(2a + 4b) + 3abx + (a(a − 1) + 2b(b − 1))x2 and Sχ+(Kn, x) = (4a + 2b) + 3abx +
(2a(a− 1) + b(b− 1))x2.

Proof. Note that Ka,b is 2-colourable and its diameter is 2. Since a ≥ b, with
respect to all a vertices in the first partition get the colour c1 and all b vertices in
the second partition get colour c2. Then, we have the following table. Then,

Table 5. A list of color pairs and the distance between them in
a complete bipartite graph.

Distance d(u, v) Colour pairs
Number of

pairs
Total number of

pairs

i = 0
(c1, c1) a

a+ b
(c2, c2) b

i = 1 (c1, c2) ab ab

i = 2
(c1, c1)

(
a
2

) (
a
2

)
+

(
b
2

)
(c2, c2)

(
b
2

)
Sχ−(Km,n, x) = (2a+ 4b) + 3abx+ (2 ·

(
a

2

)
+ 4 ·

(
b

2

)
)x2

= (2a+ 4b) + 3abx+ (a(a− 1) + 2b(b− 1))x2.

In a similar way, by interchanging c1 and c2, we can prove that Sχ+(Km,n, x) =
(4a+ 2b) + 3abx+ (2a(a− 1) + b(b− 1))x2. □
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3. Modified Chromatic Schultz Polynomials

Definition 3. Let G be a connected graph with chromatic number χ(G). Then,
the modified chromatic Schultz polynomial of G, denoted by S∗χ(G, x), is defined as

S∗χ(G, x) =
∑

u,v∈V (G)

(ζ(u)ζ(v))xd(u,v).

Definition 4. Let G be a connected graph with chromatic number φ− and varphi+

be the minimal and maximal parameter colouring of G. Then,

(i) the modified χ−-chromatic Schultz polynomial of G, denoted by S∗χ−(G, x),

is defined as

S∗χ−(G, x) =
∑

u,v∈V (G)

(ζφ−(u) · ζφ−(v))xd(u,v);

and
(ii) the χ+-chromatic Schultz polynomial of G, denoted by S∗χ+(G, x), is defined

as

S∗χ+(G, x) =
∑

u,v∈V (G)

(ζφ+(u) · ζφ+(v))xd(u,v).

The following theorems discuss the modified chromatic Schultz polynomials of
paths.

Theorem 6. Let Pn be a path on n vertices. Then, we have

S∗χ−(Pn, x) =


n−1
2∑

i=0

[
(2n− 4i− 2)x+ ( 5n−10i−3

2 )
]
x2i; if n is odd;

n−1
2∑

i=0

[
(2n− 4i− 2)x+ ( 5n−10i

2 )
]
x2i; if n is even.

Proof. If n is odd, then from Table 1, we have

S∗χ−(Pn, x) =
∑
r odd

2(n− r)xr +
∑

r even

[
n− r + 1

2
· 1 + n− r − 1

2
· 4
]
xr

=
∑
r odd

(2n− 2r)xr +
∑

r even

(
5n− 5r − 3

2

)
xr

=

n−1
2∑

i=0

(2n− 4i− 2)x2i+1 +

n−1
2∑

i=0

(
5n− 10i− 3

2

)
x2i

=

n−1
2∑

i=0

[
(2n− 4i− 2)x+

(
5n− 10i− 3

2

)]
x2i.
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If n is even, then from Table 2, we have

S∗χ−(Pn, x) =
∑
r odd

2(n− r)xr +
∑

r even

[
n− r

2
· 1 + n− r

2
· 4
]
xr

=
∑
r odd

(2n− 2r)xr +
∑

r even

(
5n− 5r

2

)
xr

=

n−1
2∑

i=0

(2n− 4i− 2)x2i+1 +

n−1
2∑

i=0

(
5n− 10i

2

)
x2i

=

n−1
2∑

i=0

[
(2n− 4i− 2)x+

(
5n− 10i

2

)]
x2i.

This completes the proof. □

Similarly, by interchanging the colours c1 and c2, we have the following result.

Theorem 7. Let Pn be a path on n vertices. Then,

S∗χ+(Pn, x) =


n−1
2∑

i=0

[
(2n− 4i− 2)x+ ( 5n−10i+3

2 )
]
x2i; if n is odd;

n−1
2∑

i=0

[
(2n− 4i− 2)x+ ( 5n−10i

2 )
]
x2i; if n is even.

The following theorems discuss the modified chromatic Schultz polynomials of
cycles.

Theorem 8. Let Cn be a cycle on n vertices. Then, we have

S∗χ−(Cn, x) =


n
2∑

i=0

(
2nx+ 5n

2

)
x2i; if n is even;

5n+17
2 +

n−1
2∑

i=1

[
(2n+ 9i+ 10)x+ 5n−18i+13

2

]
x2i; if n is odd.

Proof. If n is even and r = d(u, v), u, v ∈ V (Cn), then from Table 3, we have

S∗χ−(Cn, x) =
∑
r odd

2nxr +
∑

r even

(n
2
· 1 + n

2
· 4
)
xr

=
∑
r odd

2nxr +
∑

r even

5n

2
xr

=

n
2∑

i=0

2nx2i+1 +

n
2∑

i=0

5n

2
x2i

=

n
2∑

i=0

[
2nx+

5n

2

]
x2i.
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Let n be odd. Then, from Table 4,

S∗χ−(Cn, x) =
∑
r=0

(
n− 1

2
· 1 + n− 1

2
· 4 + 9 · 1) +

∑
r>0 and odd

(
r − 1

2
(1 + 4) + 2(n− r − 1) + (3 + 6) · 1

)
xr +

∑
r>0 and even

(
(1 + 4)

n− r − 1

2
+ 2(r − 1) + (3 + 6) · 1

)
xr

=
5n+ 17

2
+

∑
r odd

4n+ 9r + 11

2
xr +

∑
r even

5n− 9r + 13

2
xr

=
5n+ 17

2
+

n−1
2∑

i=1

4n+ 18i+ 20

2
x2i+1 +

n−1
2∑

i=1

5n− 18i+ 13

2
x2i

=
5n+ 17

2
+

n−1
2∑

i=1

[
(2n+ 9i+ 10)x+

5n− 18i+ 13

2

]
x2i.

This completes the proof. □

Similarly, interchanging c1 and c2 in even cycles and interchanging c1 and c3 in
even cycles, we get

Theorem 9. Let Cn be a cycle on n vertices. Then, we have

S∗χ+(Cn, x) =


13n−11

2 +

n−1
2∑

i=1

[
(6n+ i− 7)x+ 13n−2i−15

2

]
x2i; if n is odd;

n
2∑

i=0

(
2nx+ 5n

2

)
x2i; if n is even.

The following result provides the modified Schultz polynomial of a complete
bipartite graph Ka,b.

Theorem 10. For a complete bipartite Ka,b, a ≥ b, a+b = n, we have S∗χ−(Kn, x) =

(a + 4b) + 2abx +
(

a(a−1)
2 + 2b(b− 1)

)
x2 and Sχ+(Kn, x) = (4a + b) + 2abx +(

2a(a− 1) + b(b−1)
2

)
x2.

Proof. The proof similar to that of Theorem 5. □

4. Conclusion

In this article, we have introduced a particular type of polynomial, called chro-
matic Schultz polynomial of graphs, as an analogue of the Schultz polynomial of
graphs and determined this polynomial for certain fundamental graphs.
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The study seems to be promising for further studies as the polynomial can be
computed for many graph classes and classes of derived graphs. The chromatic
Schultz polynomial can be determined for graph operations, graph products and
graph powers. The study on Schultz polynomials with respect to different types of
graph colourings also seem to be much promising. The concept can be extended to
edge colourings and map colourings also.

These polynomials have so many applications in various fields like Mathemat-
ical Chemistry, Distribution Theory, Optimisation Techniques etc. In Chemistry,
some interesting studies using the above-mentioned concepts are possible if c(vi)
(or ζ(vi)) assumes the values such as energy, valency, bond strength etc. Similar
studies are possible in various other fields. All these facts highlight the wide scope
for further research in this area.
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